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Background: The IOM report, Preventing Medication Errors, emphasizes the overall lack of knowledge of
the incidence of adverse drug events (ADE). Operating rooms, emergency departments and intensive care
units are known to have a higher incidence of ADE. Labor and delivery (L&D) is an emergency care unit
that could have an increased risk of ADE, where reported rates remain low and under-reporting is sus-
pected. Risk factor identification with electronic pattern recognition techniques could improve ADE
detection rates.
Objective: The objective of the present study is to apply Synthetic Minority Over Sampling Technique
(SMOTE) as an enhanced sampling method in a sparse dataset to generate prediction models to identify
ADE in women admitted for labor and delivery based on patient risk factors and comorbidities.
Results: By creating synthetic cases with the SMOTE algorithm and using a 10-fold cross-validation tech-
nique, we demonstrated improved performance of the Naïve Bayes and the decision tree algorithms. The
true positive rate (TPR) of 0.32 in the raw dataset increased to 0.67 in the 800% over-sampled dataset.
Conclusion: Enhanced performance from classification algorithms can be attained with the use of syn-
thetic minority class oversampling techniques in sparse clinical datasets. Predictive models created in
this manner can be used to develop evidence based ADE monitoring systems.

� 2008 Elsevier Inc. All rights reserved.
1. Background

The Institute of Medicine (IOM) in the report, Preventing Medica-
tion Errors [1] recommended the implementation of decision
support tools derived from evidence based knowledge and patient
information as part of the strategies to prevent medication errors
(ME). The report also recommended the active monitoring of med-
ication use to promote prevention strategies. Although medical
research has actively pursued these problems, the reported inci-
dence of ME is suspected to be under-estimated [1–3].

These IOM reports [1,2] define ME as avoidable errors occurring
in the medication use process. Adverse drug event (ADE) is a more
inclusive definition that covers both ME and adverse drug
reactions.

Operating rooms, emergency departments and intensive care
units are known to have a higher incidence of ADE [4]. Labor and
delivery (L&D) areas are considered by quality assurance groups
ll rights reserved.
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as special care units and pregnant women are considered by the
FDA as a vulnerable group for ADE [1]. L&D provides emergency
care and therefore should also be treated as a high risk area Studies
published in the literature focus on specific drugs and anesthesiol-
ogy events [5–9]. To the best of our knowledge there are no pub-
lished studies of ADE as a general category in pregnant women.
Our findings indicate an incidence of 0.34% of ADE in women
admitted to L&D. This incidence is surprisingly low in a population
that includes at least 10% of high risk pregnancies that require
poly-pharmacy [10].

One of the most complex tasks in the design and development
of automated decision support tools is evidence based rule gener-
ation and knowledge extraction from existing data [11]. The task is
even more challenging in those cases where the class label of inter-
est or ADE patients as in this case, has an incidence of 1% or less
[12]. Datasets with these characteristics are also known as skewed
or imbalanced datasets. The class of interest is relatively rare and
there are important trade-offs in the decision between false nega-
tives and/or false positives. Overall, it is more costly to have a false
negative versus a false positive. More so in a medical application
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where the interest is detecting patients with adverse outcomes
that can be prevented. Without loss of generality, we will assume
that the larger class or the majority class is the negative class and
the class of interest is the minority (smaller) or positive class. We
will use these terms inter-changeably in the paper. The use of
machine learning algorithms in sparse datasets with class imbal-
ance causes suboptimal classification performance as these tech-
niques get overwhelmed by the majority class. Recent work has
focused on sampling techniques that counter the problem of class
imbalance by either oversampling the minority class or under-
sampling the majority class [12–15].

In this paper, we focus on the application of the Synthetic
Minority Over Sampling Technique (SMOTE). SMOTE works by
generating new instances from the existing cases. SMOTE
effectively counters the imbalance in data by not only solving the
problem of high class skew but also the problem of high sparsity.
It works in the ‘‘feature space’’ rather than ‘‘data space’’. The syn-
thetic samples are created by taking each minority class sample
and the k nearest neighbors. The synthetic sample shares features
of both the chosen minority class sample and one or more of the
nearest neighbors. This approach effectively forces the decision
region of the minority class to become more general. The synthetic
cases will not only increase the data space but will also amplify the
features of the minority class without duplicating the original data.
SMOTE’s effectiveness has been shown in a variety of domains and
with a variety of classifiers [15,16].

The objective of the present study was to apply SMOTE as an
enhanced sampling method using a sparse dataset and to identify
a prediction model for ADE in women admitted for L&D based on
patient risk factors and comorbidities. We would like to note here
that we tried other of oversampling methods like replication and
random under-sampling but none of them resulted in improve-
ment. Hence, for clarity of presentation in the paper, we only focus
our discussion and results on using SMOTE.

1.1. Description of data-mining techniques

Machine learning techniques include both data sampling and
learning algorithms. Over sampling techniques are applied to reuse
the available data by dividing the dataset into three or more sets.
Once the data sampling step is completed, the classification algo-
rithms are applied to the resulting datasets. Subsequently, the per-
formance of the classifiers is evaluated by comparison of the
results in the training, testing and validation datasets.

SMOTE was used to generate new synthetic cases for this
study. The computations for the new synthetic sample variables
are based on Euclidian distance for continuous variables and the
Value Distance Metric for the nominal features. The continuous
variable values are created by taking the difference in distance
between two existing minority class samples and multiplying that
difference by a random number between 0 and 1. The resulting
number is added to the feature value of the original sample and
the result will be the value of that variable in the new synthetic
sample. For nominal variables, the variable value is assigned by
majority vote of the k nearest neighbors. As a result, the synthetic
cases will have attributes with values similar to the existing cases
and not just replications as provided with oversampling. The
objective is to increase the representation of the minority class
in the resulting dataset and reflect the structure of the original
cases. By adding new samples of similar characteristics to the
originals the decision region is amplified and there should be
improvement of the evaluation measures: true positives and the
area under the curve (AUC). The newly created cases are
appended to the original dataset in 100% increments. Thus the
‘‘second” dataset will have 100% more minority class cases, the
third 200% more minority class cases and so forth. This technique
has proven to be useful in improving prediction of sparse datasets
by other authors [14].

1.2. Classification algorithms

Naïve Bayes is a simple probabilistic classifier based on Bayes’
theorem with strong (naive) independence assumptions. Bayes’
theorem is based on the conditional probability theory; the poster-
ior probability is proportional to the product of the prior probabil-
ity and likelihood. With the independence assumption, the Naïve
Bayes classifier over-simplifies the models. It avoids the complex-
ity of producing the joint probabilities across features, which
quickly becomes overwhelming by the large number of features.
While the assumption of independence is ‘‘naïve”, it has been
shown to perform exceptionally well in classification in the medi-
cal field [17,18].

Decision trees are predictive models that allow the selection of
an attribute that will serve as the root node for prediction. Based
on the probability distribution chance of occurrence and gain or
utility of the root nodes, the leaf nodes (or branching nodes) are
created [17]. Decision trees are inductive learners that have proven
to perform well in clinical research. The interpretation is facilitated
for domain knowledge experts by the display in graphical form.
C4.5 is a popular decision tree learning algorithm used in a multi-
tude of domains. We used the WEKA [17] (Waikato environment
for knowledge analysis) Open Source Software implementation of
C4.5, namely JR48, in our experiments.

Naïve Bayes and decision trees were chosen as the classification
algorithms for the experiments because the results are in a format
that facilitates interpretation by domain experts. The graphical
representation of the decision trees and the simplicity of the Naïve
Bayes model are easily understood as opposed to the ‘‘black box”
that other algorithms such as Neural Networks and Vector
Machines generate [19].
2. Methods

2.1. Subjects

Records for the present study came from the Enterprise Data
Warehouse (EDW) of Intermountain Healthcare in Salt Lake City,
Utah. The EDW contains clinical care and coded data for billing
and reporting. Data from 135,000 individual patients admitted
for L&D during years 2002–2005 were extracted. The variables
included demographic characteristics and discharge diagnosis as
well as maternal and fetal outcomes and maternal comorbidities.

Inclusion criteria were post partum women with gestational
ages between 20 and 44 weeks and birth weight between 500
and 4800 g. Two patient’s records with maternal age above 55
were excluded as they were confirmed to be data entry errors. In
patients with multifetal pregnancies, the outcome data of the
first-born infant were selected for inclusion.

2.2. Data preprocessing

A classification methodology for outcomes and comorbidities
was created based on the clinical classification of ICD9 codes for
labor and delivery published by Yasmeen et al. [20] and on the
reportable adverse events criteria published by the Joint Commis-
sion and the Utah Department of Health [21,22]. In interest of clar-
ity we called these tables ‘‘published classifications”.

The published classifications included ICD9 codes assigned to
obstetrical diagnosis, pregnancy related comorbid diagnoses, pro-
cedures and for sentinel events. For example the diagnosis ‘‘diabe-
tes mellitus” includes ICD9 codes: 250.xx, 357.2, 362.0, 648.0x. We
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created an electronic table called ‘‘classifications” with one column
that included each one of the diagnosis, procedures and sentinel
events and another column with the ICD9 code. The original
ICD9 table included the ICD9 code and the description. We then
used SQL queries to join both tables on the ICD9 code and selected
both the description from the ICD9 table and the classification
from the published classifications. One by one each row was veri-
fied to ensure that the ICD9 description matched the classifica-
tions. A column in the ICD9 table was added for class variables of
diagnosis, procedures and risk factors to use in our study, e.g.
‘ADE’, ‘Cesarean’, ‘pregnancy induced hypertension’, etc. Once the
tables were joined by ICD9 and the verification was made, we
updated the class variable column assigning a category to each
ICD9 code. Table 1 shows the resulting clinical classification and
categories and the corresponding ICD9 codes. We found some fac-
tors not included in the published classifications, since those were
of interest for prediction they were added to the table. The factors
added by us were: demographic variables such as maternal age,
fetal weight and fetal presentation during labor.

The clinical classification attribute was added to the patient
dataset as a dichotomous variable. Those records that had an
ICD9 code corresponding to each comorbidity, risk factor or proce-
dure were assigned a value of 1 or 0 if not present.

The above procedure was done in order to ensure the accuracy
of the classifications and include other codes that were in use at
Intermountain Healthcare and were not in the publications. It also
allowed us to assign a diagnosis to each patient and use it for the
validation with the patient electronic record.

2.3. Data validation

Despite shortcomings, numerous clinical and informatics
researchers have proven the usefulness of ICD9 coding systems
for clinical research [23]. Table 2 describes the different methodol-
ogies used to validate the accuracy of the clinical classification. The
patient electronic records were randomly selected and the valida-
tion for diagnosis was done on the clinicians interface of the med-
ical record. Kappa statistic for agreement between the free text
diagnosis in the clinical notes and the classification created based
on the ICD9 codes was used.

From the pharmacy database we extracted values for number of
drugs administered to the patients with ADE and to those with
no-ADE. The mean values for number of drugs for each group
and the t statistic for comparison are also included in Table 2. As
expected from previous reports in the literature, patients with
ADE had a statistical significant higher number of drugs [24].

Comparison of disease incidence in the study population and
the population disease incidence reported by the Utah Department
of Health were performed. Similar incidences were found in the
comparison for pregnancy induced hypertension, gestational dia-
betes, preterm birth and fetal weight.

2.4. Statistical procedures

2.4.1. Attribute selection or dimensionality reduction
The original dataset consisted of eighty four variables including

maternal comorbidities, demographic information, fetal outcomes
and surgical procedures. Principal components analysis (PC) and
v2 ranking were used to determine the explained variability in
the dataset. The methods were also used for variable selection of
highly correlated variables and to avoid multicollinearity [1,3].
We applied v2 ranking and PC to each of the complete datasets
after the SMOTE procedure. This approach allowed the comparison
of the variance in each of the original and resulting datasets. The
intent was to verify if SMOTE altered the structure of the data.
Variables with high collinearity (Eigenvectors > .5) were dropped
in favor of those that preserved more specific information e.g.
puerperal fever vs surgical wound infection. After we ensured that
the preserved variables had no collinearity, we selected the vari-
ables with Eigenvalues that explained 80% of the variability as
advised in the literature [25].

2.4.2. Data sampling
The ratio of ADE to controls in the dataset was 0.348/100 and

clearly qualifies as a highly imbalanced data set. We used 10-fold
cross-validation as a vehicle to empirically validate the results.
10-fold cross-validation divides the data into 10 mutually exclu-
sive subsets, and then combines nine of those at a time and evalu-
ates the 10th left-out subset. Thus, a classifier is identified on ten
different, but overlapping training sets, and evaluated on 10 com-
pletely unique testing sets. In preliminary experiments (results not
included not included in this study), we applied a popular ensem-
ble technique called AdaBoost that provides random oversampling
of the minority class and random under-sampling of the majority
class. None of these resulted in an improvement over the perfor-
mance of the base classifier. The SMOTE algorithm was applied cre-
ating new synthetic cases of the class of interest in 100%
increments. The first synthetic dataset had 100% more ADE cases
than the original one, the second synthetic dataset had 200% more
synthetic cases and so forth.

The suite of classification algorithms were then applied to the
datasets modified by SMOTE. SMOTE boosted datasets using the
10-fold cross-validation sampling technique. The decision to use
10-fold cross-validation sampling technique was based on the
small number of cases with class label of interest (ADE). The liter-
ature reports risk of overfitting and therefore introducing bias to
the evaluation of the performance of the classification algorithms
with this technique. However, the standard evaluation technique
in situations where a limited number of cases is available is strat-
ified 10-fold cross-validation [17,26]. Stratified 10-fold cross-vali-
dation implies averaging the results after invoking the algorithm
10 times 10-fold. In other words, each classification algorithm runs
100 times on each dataset. In our experiments, the Naïve Bayes
classifier took 2 h for one instance of 10-fold and 4.5 h for the deci-
sion tree. The total time to run the experiments reported was
136.5 h. The computational expense for 21 datasets was beyond
the capacity of our resources. Based on the literature 10 is the sug-
gested number of folds for the best estimate of errors [17]. Like-
wise, SMOTE does not alter the original distribution of the data,
therefore the problem of overfitting is avoided [27].

2.4.3. Performance measures
The performance measures for evaluation of the classification

algorithms were true positive rate (TPD), AUC (area under the
curve) and Kappa Statistics for agreement of classification between
the different models.

2.4.4. Validity of results and clinical interpretation
As previously noted, the justification for utilizing SMOTE as the

data boosting algorithm is to increase the availability of cases with
the class label of interest; patients with ADE. We decided not to use
oversampling techniques that involve exact data replication and
favored SMOTE as an alternative that creates new synthetic cases
of the original class label of interest. In order to prove that SMOTE
did not change the original data structure, we applied PC to com-
pare the variance of the original dataset and that of synthetic data-
sets through the comparison of the Eigenvalues. Likewise, PC is
described as an exploratory technique useful to gain a better
understanding of the interrelationships among the data [23].

Domain expertise, in this case clinical interpretation of the
results is necessary when applying novel techniques for predictive
models [17,25]. In order to determine if the predictive models



Table 1
Clinical classification and ICD codes

Comorbidity ICD9 DX CD

Abnormal cervix 1808, 1809, 2331, 2333, 6150, 6160, 6168, 6221, 62211, 62212, 6223, 6224, 6225, 6227, 6228, 65450, 65451, 65453, 65461, 65462, 65463,
75240, 75249, 7950, 79500, 79503, 79504, 79505, 79509, 7951, V1041, V6110

Adverse drug event 2454, 2865, 4582, 62210, 6923, 6930, 7955, 9623, 9681, 9750, 979, 98982, 995, 9952, 9958, 99589, 9998, E8506, E8552, E8580, E8582,
E8586, E876, E8768, E8789, E8798, E8799, E930, E9300, E9301, E9302, E9303, E9304, E9305, E9306, E9307, E9308, E9309, E931, E9310,
E9311, E9312, E9313, E9314, E9315, E9316, E9317, E9318, E9319, E932, E9320, E9321, E9322, E9323, E9324, E9325, E9326, E9327, E9328,
E9329, E933, E9330, E9331, E9332, E9333, E9334, E9335, E9338, E9339, E934, E9340, E9341, E9342, E9343, E9344, E9345, E9346, E9347,
E9348, E9349, E935, E9351, E9352, E9353, E9354, E9355, E9356, E9357, E9358, E9359, E936, E9360, E9361, E9362, E9363, E9364, E937,
E9370, E9371, E9372, E9373, E9374, E9375, E9376, E9378, E9379, E938, E9380, E9381, E9382, E9383, E9384, E9385, E9386, E9387, E9389,
E939, E9390, E9391, E9392, E9393, E9408, E9409, E941, E9410, E9411, E9412, E9413, E9419, E942, E9420, E9394, E9395, E9396, E9397,
E9398, E9399, E940, E9400, E9401, E9421, E9422, E9423, E9424, E9425, E9426, E9427, E9428, E9429, E943, E9430, E9431, E9432, E9433,
E9434, E9435, E9436, E9438,

Alcohol abuse 2948, 30390, 30391, 30393, 30500, 30501, 30502, 30503, V113
Amniotic infection 65840, 65841, 65843, 65931
Asthma 49302, 49381, 49390, 49392
Breech presentation 65220, 65221, 65223
Complicated labor 65983
Congenital uterine anomaly 65401, 65403, 7522, 7523
Cardiovascular disease 3004, 3643, 3940, 3941, 3942, 3949, 3963, 3968, 3969, 3970, 3971, 3979, 39890, 39891, 4101, 4102, 4111, 41411, 416, 4168, 4239, 4240,

4241, 4243, 42490, 4254, 4258, 4260, 42613, 4263, 4264, 4266, 4267, 42682, 4270, 4271, 42731, 42732, 42741, 42742, 42761, 42769,
42781, 42789, 4279, 42831, 42971, 42989, 4299, 5300, 64851, 64853, 64861, 64862, 64863, 66811, 67321, 67322, 67323, 67451, 67452,
7454, 7455, 74602, 7463, 7464, 74687, 74689, 7469, 74710, 7473, 7475, 74762, 74763, 7593, 7603, 785, 7851, 7852, 78551, 79431, 99674,
9971, V151, V422, V433, V4501, V4509, V452

Diabetes 25000, 25001, 25002, 25003, 25010, 25011, 25040, 25041, 25051, 25053, 25060, 25061, 25080, 25081, 25083, 25090, 25091, 25092, 25093,
2535, 36201, 36202, 64801, 64802, 64803, 64881, 64882, 64883, 64884, 79029

Maternal age >35 65951, 65953, 65961, 65963, V2381, V2382
Failed induction 65901, 65910, 65911, 66061
Fetal distress 65571,65631, 65633, 65970, 65971, 65973, 66321, 76381
Uterine fibroids 2180, 2181, 2182, 2189, 65411, 65412, 65413
Genito urinary infection 1121, 1122, 11289, 1129, 13101, 1319, 541, 5411, 59010, 59080, 5909, 6142, 61610, 61611, 6162, 6164, 6169, 64651, 64661, 64662, 64663,

64701, 64711, 64723, 7810, 7811, 794, 7998, 920, 980, 9950, 9953, 9954, 9955, 9959, 999
Hemorrhage 2851, 2879, 4590, 64193, 66602, 66612, 66614, 66624, 99811
Herpex infection 5410, 5412, 5419, 549
Hypertension 36211, 4010, 4011, 4019, 40599, 4293, 4372, 64201, 64202, 64203, 64211, 64213, 64221, 64222, 64223, 64271, 64273, 64291, 64292,

64293, 7962
Uterine inertia 66101, 66103, 66121, 66123
Infection 1103, 1105, 1120, 1123, 1125, 1140, 1190, 1309, 1320, 1330, 1398, 3229, 340, 3570, 3682, 38010, 38013, 3810, 3842, 388, 389, 4109, 4119,

412, 413, 414, 4184, 4189, 419, 431, 460, 4619, 462, 4659, 4660, 46619, 4732, 4733, 4739, 4781, 4822, 48230, 48282, 4829, 4830, 4838, 485,
486, 490, 5400, 5401, 5409, 542, 5551, 56722, 5990, 64731, 64733, 64761, 64763, 64781, 64782, 64791, 64792, 65921, 65923, 67202,
67511, 6868, 6869, 71, 73090, 7806, 7819, 78552, 7907, 7988, 845, 9162, 9181, 958, 9951, 99592, 99662, 998, 9993, V0259, V1200, V1209

Intrauterine death 65641, 65643, V271
IUGR 65651, 65653
Legal abortion 63591, 63592
Prolonged labor 66201, 66211, 66221, 66223
Macrosomia 65661, 65663, 7660
Abnormal fetal presentation 65201, 65203,65231, 65233, 65241, 65243, 65271, 65281, 65283, 65291, 65293, 66001, 66003, 66522, 66961,7617
Benign tumor 2141, 2158, 2166, 2168, 2169, 217, 220, 221, 326, 61172
Viral infection 4809, 4871, 4878, 528, 529, 539, 5449, 5479, 548, 5679, 64762, 7030, 7070, 75, 7799, 7989, 7999, 88 29383, 29384, 29389, 29534, 29570,

29590, 29620, 29623, 29626, 29630, 29632, 29633, 29634, 29640, 29650, 29653, 29660, 2967, 29680, 29682, 29689, 29690, 29699, 2979,
2989, 30000, 30001, 30002, 30009, 30015, 30021, 30022, 30029, 3003, 3009, 3010, 30113, 3017, 30183, 3019, 3061, 30651, 3069, 3071,
30750, 30751, 3080, 3082, 3083, 3089, 3090, 30921, 30924, 30928, 3094, 30981, 30989, 311, 31400, 317, 319, 64841, 64842, 64843, 66901,
78050, 78052, 78071, 7830, 7992, E9538, V110, V111, V119, V409, V610, V624, V6284, V6289

Mental alteration

Multiple gestation 64513, 65101, 65103, 65111, 65113, 65121, 65131, 65133, 65141, 65143, 65151, 65171, 65261, 65263, 66231, V272, V273, V274, V275,
V276, V277

Obesity 27800, 27801, 64611, 64612, 64613, V8535, V854
Obstructed labor 3314, 65991, 66011, 66021, 66023, 66091, 66191
Occiput posterior 66031
Oligohydramious 65801, 65803
Pregnancy induced 64231,64232, 64233, 64234, 64241, 64242, 64243, 64244, 64251, 64252, 64253
Severe pregnancy induced

hype
64261, 64262, 64263

Placenta previa 64100, 64101, 64103, 66351, 7620
Polyhydrramnios 65701,65703
Postdates 64511, 64521, 64523
Precipitaded labor 66131, 66133
Preterm pregnancy 64400, 64403, 64413, 64420, 64421
Previous cesarean 65421, 65423
Premature rupture of

membrane
65810, 65811, 65813

Prolonged PROM 65821, 65823, 65831
Shoulder dystocia 66041
Streptococcal infection 380, 4100, 4104, V0251
Thyroid disease 2409, 2410, 2419, 24200, 24221, 24280, 24290, 24291, 243, 2441, 2443, 2448, 2449, 2459, 2462, 2468, 2469, 2749, 64811, 64812, 64813,

7945, V1087
Tobacco use 3051, V1582

(continued on next page)
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Table 1 (continued)

Comorbidity ICD9 DX CD

Maternal trauma 3543, 72210, 7605, 80500, 80505, 80506, 8054, 8088, 81341, 81504, 81601, 8248, 83100, 83650, 8439, 8449, 84500, 8460, 8470, 8472, 8479,
87341, 87364, 8821, 9051, 9070, 9072, 9075, 9100, 9110, 9130, 9221, 92321, 9243, 9331, 94203, 94213, 94423, 94536, 9478, 94800, 9532,
9571, 95901, 95919, 9925, 99581, E8120, E8121, E8129, E8147, E8160, E8161, E8190, E8191, E8198, E8199, E8490, E8495, E8496, E8497,
E8498, E8499, E8809, E8844, E8859, E887, E8888, E8889, E9179, E918, E9248, E9288, E9289, E9290, E9293, E9298, E9299, E9600, E9670,
V5417, V714

Uterine anomaly 2198, 6159, 6212, 6215, 6218, 65431, 65441, 65442, 65443, 66143
Venous thrombotic disease 4439, 45341, 4538, 4549, 4550, 4552, 4553, 4554, 4555, 4556, 4557, 4558, 4565, 4568, 45981, 67101, 67102, 67103, 67111, 67112, 67113,

67121, 67122, 67131, 67133, 67142, 67151, 67152, 67181, 67182, 67191, 67192, 67193, V1251, V1252

Selected comorbidities.

Table 2
Methods for validation of ICD9 codes

Method Result

Manual and electronic revision of ICD9 codes included in the clinical classification All ICD9 codes found in the dataset were included in the clinical classification
Comparison of disease incidence from ICD9 coding system and Utah Department of Health

reporting system
The disease incidence found with both methods was the same

Paired sample t test for comparison of number of drugs used in patients with identified
codes for adverse drug events and the control population

ADE group Mean number of drugs used 14 no-ADEMean l0
p < .001 for number of drugs used in both groups.

Use of Kappa statistic for agreement between the classification based on ICD9 codes and
text from the electronic medical record at the point of care

Kappa statistic: .65–.73 for agreement between free text in the medical record
and ICD9 codesa

Manual revision of free text notes from the electronic medical record and the ICD9 codes
classification

Kappa statistic: .55–.75 for agreement between free text in the medical record
and ICD9 codes for ADE, trauma, hypertension

a The disease incidence found by manual revision was higher when reported by ICD9 codes than in the electronic record. The disagreement is attributed to the fact that
coding billing and reporting is done based both on electronic and paper records.

360 L.M. Taft et al. / Journal of Biomedical Informatics 42 (2009) 356–364
generated by our experiments can eventually be used to create
electronic applications, the results were clinically analyzed by
two of the authors both specialists in obstetrics and gynecology.
The purpose was to determine if the risk factors and comorbidities
in the predictive models are likely to be associated with a higher
risk of ADE.

The statistical comparison for the performance of the classifiers
was done with the results of the three tests in the SAS output of the
univariate procedure: Student’s t test, Wilcoxon and signed rank
test. Although the t test is the most common one found in the
data-mining literature for this purpose, there is evidence that
non-parametric tests are more reliable when the number of data-
sets to compare is 30 or less and there is no assumption of normal
distribution [28]. The statistical reason in favor of non-parametric
tests for this purpose is beyond the scope of the present report. We
refer the reader to the paper published by Demsar on Statistical
Comparison of Classifiers over Multiple Data Sets [28] for this
purpose.

2.4.5. Software packages
MySQL V5.0 Open Source database management system was

used for data preparation and transformation. WEKA Machine
Learning Tools version 3.5.5. Open Source system and SAS software
Release 9.1 and SAS Enterprise Miner Release 4.3. were used for
data analysis and construction of the predictive models.

2.4.6. IRB approval
Institutional Review Board approval was obtained from both

Intermountain Health Care and the University of Utah.

3. Results

There were 106,480 cases that met the inclusion criteria and
371 ADE were identified based on the clinical classification previ-
ously described.

The demographic maternal characteristics as well as fetal out-
comes showed no significant variation on ADE as indicated by
the Eigenvalues of the PC. Surgical procedures (cesarean section
and forceps) had the highest variation. Fifty-five independent
comorbidities were identified and accounted for explaining 80%
of the variation in the dataset and were used in the final model.

3.1. Performance measures

Figs. 1 and 2 show the increments in the number of new syn-
thetic ADE cases obtained after each SMOTE procedure. Each time
the algorithm was applied 371 new synthetic cases were added to
the original dataset. Fig. 1 shows the improved performance of the
evaluation metrics with the minority class boosted datasets on the
J48 decision tree. The original dataset showed a TPR of .32 and an
AUC of .78. In the first synthetic dataset the TPR increased to .59
and the AUC to .81. A small increment of the evaluation metrics
was observed as the number of synthetic cases increased. Fig. 2
shows the results for the evaluation metrics for the Naïve Bayes
classification algorithm. With the initial 100% boosting there was
a slight decrease in the AUC and the TPR remained unchanged.
However, after 200% boosting there was an immediate improve-
ment of the performance measures. After the initial increment,
the performance measures slightly improved until the 900%
SMOTE point was reached. There was no further increased perfor-
mance beyond the 1000% increase of the synthetic cases.

3.2. Validity of results and clinical interpretation

An analysis of the structure of the synthetic datasets was done
by comparison of the principal components. The principal compo-
nents of the original dataset and of those with synthetic cases
remained the same. There was a non-significant variation in the
Eigenvalues and the percentage of variation explained by each
principal components did not vary. Thus, we believe that SMOTE
was effectively able to counter the highly sparse nature of the data
by increasing the density of points that enabled the classifiers to
discriminate between the two classes.

The decision trees in all the models were similar in structure.
The first split in the decision tree occurred in patients with exter-
nal trauma followed by anomalies of the cervix, genito-urinary



Fig. 1. Performance of the evaluation matrics in the decision tree.

Fig. 2. Performance of the evaluation matrics in the Naive Bayes classification algorithm.
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infections and chorioamnionitis. The next split occurred at severe
pregnancy induced hypertension followed by history of previous
cesarean and preterm birth labor. The main difference in the struc-
ture of the decision trees is in the number of leaves and granularity
of the divisions for each rule. While a greater granularity in the
decision trees is not necessarily a sign of improvement in the pre-
diction model and can be attributed to overfitting, the increased
number of leaves in the boosted models facilitates the ability of
domain experts to determine if the comorbidities and risk factors
found could be associated with patients with ADE. Fig. 3 shows
the difference in structure and decision paths obtained with the
decision tree classification algorithm in the raw dataset and the
900% boosted dataset.

Table 3 shows the results of the test statistics used for compar-
ison of the performance of the two classifiers on the raw dataset
and the SMOTED datasets. The results indicate a statistical



Fig. 3. Comparision of the Structure of the decision trees before and after the SMOTE process.

Table 3
Statistical comparison of classifiers for Kappa statistic and AUC for Naive Bayes and
decision trees

Test Statistic Value p value

Student’s t t 29.66 <0001
Sign M 10.5 <0001
Signed rank S 115.5 <0001

Student’s t t �2.3 <0.0321
Sign M �10.5 <0001
Signed rank S �115.5 <0001

The results show the value for parametric and non-parametric tests. The p value
indicates a statistical significant difference between the raw dataset and the
SMOTED datasets. The table on the right shows the values for Kappa, the one on the
left for AUC. The p values for non-parametric tests show greater significance for the
AUC. Non-parametric tests are statistically safer in samples of 30 or less when the
assumption of normal distribution is violated.
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significant difference for the Kappa statistics both with parametric
and non-parametric tests. The p value from the t statistic for the
comparison of the AUC shows a level of significance <0.0321. How-
ever, the sign test and the ranked signed test indicate a p < .0001.
The number of datasets for evaluation was 21 and with a t statistic
within levels of significance we conclude that the evaluation met-
rics are indeed significantly different as confirmed by the non-
parametric tests.

4. Discussion

The importance of developing automatic detection tools for ADE
has been widely emphasized [29]. The current low ADE reporting
rate creates unbalanced datasets that are very difficult to analyze
and use for automatic rule extraction. Electronic methods used
for knowledge extraction are likely to fail as demonstrated by the
evaluation of the classifiers in the raw dataset. Alternative data
manipulation methodologies are a subject of current research in
disciplines outside of medicine where it is also necessary to
develop knowledge bases to predict rare occurrences of an event
[12]. Sparse data sets that would otherwise be useless can be used
to create the starting point of evidence based electronic systems.
Predictive models created in this manner can be used to develop
evidence based ADE monitoring systems with the potential to
increase ADE detection.. Increased detection of patients at risk
for ADE can lead to changes in patient care protocols and improve
patient safety and quality of care. One role of biomedical informat-
ics is to evaluate these methodologies and determine the usability
in the clinical arena [20,30–33].

The use of ICD9 coded data for clinical research has been con-
troversial. However, multiple research studies have demonstrated
its usefulness [14,27]. In addition Yasmeen et al. proved the reli-
ability of reports of disease incidence using such classification. It
should be kept in mind that the resulting clinical classification is
a general classification of risk factors and comorbidities with the
limitations and short comings of a system as inespecific as ICD9.
Nonetheless, it can be used to create useful predictive models to
automatically detect those patients at higher risk for ADE and even
as an automatic method to detect disease incidence or study pop-
ulations for further research.

Obstetric indicators report severe pregnancy induced hyperten-
sion, embolism and infection as the three leading causes for severe
maternal morbidity and mortality [34,35]. Our results show severe
hypertension and wound infection as two of the leading factors for
variability in the dataset. It is unclear to us why ‘‘trauma” appears
as the leading factor for variability since the incidence of trauma is
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extremely low. We can only speculate that it is because these
patients are at higher risk for obstetrical complications such as
embolism, infections and hemorrhage as reported in the literature
[36].

As noted in the introduction, existing methodologies for detec-
tion of ADE and AE in general are insufficient, under-reporting is
suspected at all levels. We believe that the introduction of machine
learning methods could have a promising future in this arena if we
are able to create predictive models that could deal with clinical
factors of low incidence like ADE. Machine learning methods are
capable of detecting associations that are not evident when the
prevalence is low. Clinical data are numerous, complex, can be con-
founding and noisy, as a consequence datasets of this nature are
likely to be sparse and difficult to analyze. The introduction of
boosting algorithms like SMOTE where the original structure of
the data is maintained is promising and future research is neces-
sary. However, for an real time automatic detection method to be
reliable, the clinical data of interest would have to be coded in real
time. Existing real time reports of Natural Language processing and
detection of antidote drugs for ADE are promising [37,38].

4.1. Study limitations

In the present study, we found important discordance between
the coded data and the text reports in the electronic medical record
(Table 2). ICD9 coding for billing and reporting is done based on
both electronic and paper records. Therefore higher agreement
could be expected if the validation of the ICD9 codes were done
including both sources. Nonetheless, our data indicated similar dis-
ease incidence when comparing the study population to that of the
State of Utah. Likewise, based on the validation study published by
Yasmeen et al. [20] we can conclude that the ICD9 coding system is
accurate for clinical classification of obstetrical diagnosis.

Another limitation of the ICD9 coding system and more so of
the way it is used for billing and reporting, is the impossibility to
determine the timing of the comorbidity in relation to the time
of delivery and patient admission. The ICD9 codes are included in
the electronic record after patient discharge and account for all
the events that accompanied the patient during the hospital stay
and are not stratified by date or time. This could be a problem if
specific comorbidity analysis is done. We can only conclude that
patients with certain comorbidities are prone to ADE but we can
not determine the timing of the appearance of the comorbidity
in relation to the maternity admission or the ADE. Also, the nature
of the data makes it impossible to differentiate among those
patients with preventable and non-preventable ADE. The clinical
classification used in the present study could be used to classify
patients in general categories of comorbidities, procedures and to
identify risk factors. A classification like this could be useful to
identify groups of patients with shared clinical trends. However,
a real time monitoring system could not be implemented since
the ICD9 codes are not assigned until days after the patient is dis-
charge from the hospital.

The disadvantages of using sampling and classification tech-
niques with all types of datasets are overfitting or over-training.
Oversampling leads to overfitting, while random under-sampling
does not necessarily provide new information. The data are opti-
mized in such a way that the classifiers have an excellent perfor-
mance in the training and testing sets but can have poor
performance in the validation sets. In this case, the normal distri-
bution of the individual variables is altered. Oversampling tech-
niques often involve making exact copies of the majority class,
resulting in overfitting and does not solve the problem of sparse
data. It can on the other hand increase the computational expense
without improving the performance in the validation sets. Under-
sampling can discard useful information and therefore decrease
classifier performance [16,17]. The SMOTE algorithm creates syn-
thetic cases based on the values of the variables of the nearest
neighbors. This approach maintains the original distribution and
therefore the overfitting problem is avoided. In the present study,
we were able to verify this t by comparison of the Eigenvalues of
the principal components in the raw dataset with those that
included the synthetic cases.

It could be argued that the improvement of the evaluation
throughout the experiment is evident but that it does not show
dramatic changes. We demonstrated statistical significant differ-
ences with the use of both parametric and non-parametric statis-
tics in the evaluation metrics of both classifiers. The differences
of the structure of the decision trees do change and shows addi-
tional split areas that can be used in practical applications through
identification of patients at higher risk for ADE. These models can
be used as a starting point in future research to focus attention
on factors that might be shared by the cases present in the models.

Although precise clinical conclusions can not be drawn from the
results of the present study, the decision trees allow clinical valida-
tion of the results. The decision tree in the raw dataset has one split
at the beginning and does not allow discrimination between differ-
ent groups of patients that may have similar risk for ADE than oth-
ers. By displaying the risk factors in this manner, it is impossible to
discern if there are groups that could share a similar risk for ADE
and not the same diagnosis. On the other hand, the tree resulting
from the SMOTED datasets allowed the visualization of different
groups at the same level of risk for ADE and that do not share diag-
nosis (Fig. 3). The left hand side figure (tree resulting from the raw
data) shows trauma, severe pregnancy induced hypertension,
wound infection in decreasing levels of importance. The right hand
side of the figure (tree resulting from 900% SMOTED dataset)
shows trauma, severe pregnancy induced hypertension and wound
infection as parent nodes at the same level. Through this graphical
display we can see how patients with different diseases receiving
completely different set of medication can share a similar risk for
ADE.

4.2. Future studies

The ICD9 classification system used in the present study is gen-
eral and unspecific for the study of individual diseases. We believe
that if a similar methodology to the ones used in this report were
to be applied by replacing ICD9 codes with clinical events, signs,
symptoms and data from the actual medical record, there would
be more success in developing predictive models that could be
used in real time electronic systems. It is also of importance to
study the types of drugs associated with ADE in the pregnant pop-
ulation. The pharmacopeia in obstetrics is limited and it is likely
that a sparse dataset can be encountered when analyzing drugs
likely to cause ADE. Further research is necessary in order to deter-
mine which drugs are associated with ADE and also to determine
which drug combinations are likely to produce ADE and drug–drug
interactions.

In addition, it would be desirable to compare the performance
of the classifiers among the subsets selected with additional vari-
able selection techniques as advised by Hall et al. [19].

5. Conclusions

The use of knowledge extraction techniques in clinical applica-
tions with sparse data is prone to failure without further data
manipulation. Enhanced performance from classification algo-
rithms can be attained with the use of SMOTE in the clinical setting
as demonstrated in this study and previously reported by other
clinical specialties [14]. Models obtained through this methodol-
ogy can be used as starting points to develop prediction models
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for future experiments that will ultimately aid in the development
of automatic reporting tools.
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