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Abstract

Let ϕ be an isometric automorphism of the non-commutative disc algebra An for n � 2. We show that
every contractive covariant representation of (An,ϕ) dilates to a unitary covariant representation of (On,ϕ).
Hence the C∗-envelope of the semicrossed product An ×ϕ Z+ is On ×ϕ Z.
© 2010 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we continue our study of the semicrossed product An ×ϕ Z+ of Popescu’s non-
commutative disk algebra An [30], by an isometric automorphism ϕ. These semicrossed products
were introduced by the authors in [8] as universal algebras for the contractive covariant repre-
sentations of (An,ϕ). There it was shown that the isomorphic class of An ×ϕ Z+ is determined
by the analytic conjugacy class of ϕ. Recall that An is the universal operator algebra generated
by n-isometries with orthogonal ranges and that the isometric automorphisms of An come from
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the natural action of Aut(Bn) on the character space Bn of An. (Here Aut(Bn) denotes the group
of conformal automorphisms of the unit ball Bn of Cn.)

The universality of An ×ϕ Z+ allows for a rich representation theory and this was a key
component for classifying these algebras. On the other hand, it is the universality of An ×ϕ Z+
that raises the problem of finding concrete faithful representations. This is the main theme of this
paper. As we shall see, the C∗-envelope of An ×ϕ Z+ is On ×ϕ Z, where On denotes the Cuntz
algebra [6], with generators going to generators. Using the theory of gauge invariant uniqueness
for C∗-crossed product C∗-algebras, we obtain a concrete faithful representation for An ×ϕ Z+.

The proof of this fact relies on a dilation theorem. We show first that every completely con-
tractive representation of An ×ϕ Z+ dilates to a unitary system in which the image of the row of
generators [L1 . . .Ln] of An is a row isometry and the intertwining operator implementing the
automorphism is unitary. This is not sufficient for our purposes, because the C∗-algebra generated
by a row isometry is either On or the Cuntz–Toeplitz algebra En. We need to further dilate the
latter representations to unitary dilations of Cuntz type. We thereby show that these are the only
maximal representations of the semicrossed product. So using the Dritschel and McCullough
approach [14] to the C∗-envelope, we are able to obtain the desired conclusion.

Using a result of Kishimoto [20], we show that in the case where ϕ is aperiodic, the C∗-algebra
On ×ϕ Z is simple. In that case, An ×ϕ Z+ is completely isometrically isomorphic with the norm-
closed operator algebra generated by An and the Voiculescu unitary Uϕ implementing ϕ on An

(Corollary 5.4).
There is an extensive body of work studying dynamical systems via an associated operator

algebra going back to work of von Neumann. The use of nonself-adjoint operator algebras in this
area begins with seminal work of Arveson [1] and Arveson and Josephson [4]. This was put into
the abstract setting of semicrossed products by Peters [26]. See [7] for an overview of some of
the recent work in this area.

There is also a large literature on dilation theory for operators and various nonself-adjoint
operator algebras. The dilation theory for a single contraction is summarized in the classical
monograph of Sz. Nagy and Foias [24]. The dilation theory for row contractions is more recent
and is vital for our work here. It includes a Wold decomposition for row isometries [15,28], a
(unique) minimal isometric dilation for row contractions [5,15,28] and Popescu’s commutant
lifting theorem [28,16]. Solel [32] has recently extended Popescu’s commutant lifting theorem
to a broader context and we make good use of that result as well. Arveson [2] has established
dilation theory as an essential tool for studying arbitrary nonself-adjoint operator algebras.

Work on abstract semicrossed products began with work of Peters [26]. He concentrated on
the action of an endomorphism on a C∗-algebra, and here the theory works well. Specifically
one can define a family of natural orbit representations and show that these produce a faithful
(completely isometric) representation of the semicrossed product. This can be used to find ex-
plicit information about the C∗-envelope. See Peters [27] for the one variable case and [13] for
the C∗-envelope a multivariable dynamical system.

Muhly and Solel developed an extensive theory of certain nonself-adjoint operator algebras
called tensor algebras of a C∗-correspondences [21–23]. They showed, under certain hypotheses,
that the C∗-envelope of the tensor algebra is the Cuntz–Pimsner C∗-algebra built from the corre-
spondence. This result was extended by Fowler, Muhly and Raeburn [17] to the case when the left
action is faithful and strict. Finally the second author and Kribs [19] removed those restrictions.

The semicrossed product of An has a lot in common with these tensor algebras. However,
since the semicrossed product is defined as the universal operator algebra for a family of covariant
representations, one needs to prove a dilation theorem in order to decide whether or not this
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algebra sits inside a Cuntz–Pimsner algebra completely isometrically. This is, in fact, where all
of the difficulty lies.

It is perhaps worth mentioning that classical counterexamples in dilation theory point to the
difficulties that might arise in general. The bidisk algebra A(D2) sits inside C(T2), which is its
C∗-envelope by Ando’s theorem. Consider the identity automorphism id. Ando’s theorem also
shows that the completely contractive representations of A(D2) are determined by an arbitrary
pair T1, T2 of commuting contractions. A covariant representation of (A(D2), id) is given by
such a pair and a third contraction T3 which commutes with T1 and T2. If it were true that the
C∗-envelope of this system was C(T2)×id Z � C(T3), then it would be true that every commuting
triple of contractions has a unitary dilation. This was disproven in a famous paper by Varopolous.
See Paulsen’s book [25, Chapter 5] for a treatment of these topics. Thus when such unitary
dilations are possible, we must see this as an important but special phenomenon.

2. Preliminaries

Consider the left regular representation λ of the free semigroup F+
n acting on Fock space,

�2(F+
n ). Let Li = λ(i). The non-commutative disc algebra An, for n � 2, is the nonself-adjoint

unital operator algebra generated by L1, . . . ,Ln. It sits as a subalgebra of the Cuntz–Toeplitz
C∗-algebra En = C∗({L1, . . . ,Ln}). However the quotient map onto the Cuntz algebra On is
completely isometric on An. So An may be considered as the subalgebra of On generated by
the standard generators s1, . . . , sn. Moreover the operator algebra generated by any n-tuple of
isometries S1, . . . , Sn with pairwise orthogonal ranges is completely isometrically isomorphic
to An. These algebras were introduced by Popescu [29,30] as a natural multivariable general-
ization of disc algebra A(D). The Frazho–Bunce–Popescu dilation theorem [15,5,28] shows that
any row contractive n-tuple T = [T1, . . . , Tn] dilates to an n-tuple of isometries S = [S1, . . . , Sn]
with pairwise orthogonal range. Hence given any such n-tuple T , there is a unique completely
contractive homomorphism of An into the algebra A(T1, . . . , Tn) taking generators to genera-
tors. Popescu [29] used this to establish a natural analogue of the von Neumann inequality for
row contractive n-tuples.

If ϕ is an automorphism for an operator algebra A, then a contractive (resp. isometric or
unitary) covariant representation for (A, ϕ) consists of a completely contractive (resp. completely
isometric) representation π : A → B(H) and a contraction (resp. isometry or unitary) U ∈ B(H)

so that π(A)U = Uπ(ϕ(A)). If A happens to be a C∗-algebra, then completely contractive maps
are ∗-homomorphisms.

Each element A ∈ An determines a function Â on the character space, and this is a bounded
holomorphic function on Bn which extends to a continuous function on Bn. An automorphism ϕ

of An induces an automorphism ϕ̂ of the character space Bn via Â(ϕ̂(z)) = ϕ̂(A)(z). The map ϕ̂

is biholomorphic, and thus is a conformal automorphism [9]. These maps are given by fractional
linear transformations (cf. Rudin [33]).

Each of these conformal maps is induced by a unitarily implemented automorphism of En

which fixes the subalgebra An. Indeed, Voiculescu [35] constructs a unitary representation of
the Lie group U(n,1) which contains the scalar unitaries, and U(n,1)/T � Aut(Bn), such that
adU implements the corresponding automorphism. In [10], the first author and Pitts study the
automorphism of the weak operator closed algebra Ln = AWOT

n . The case of An is similar but
more elementary. See Popescu [31] for an interesting new approach.
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Definition 2.1. Let Aut(An) denote the group of completely isometric automorphisms of An,
and let ϕ ∈ Aut(An). A covariant representation (π,K) of (An,ϕ) is a completely contractive
representation π of An on a Hilbert space H and a contraction K ∈ B(H) so that

π(A)K = Kπ
(
ϕ(A)

)
for all A ∈ An.

The semicrossed product An ×ϕ Z+ is the universal operator algebra generated by a copy of An

and a contraction u so that Au = uϕ(A) for all A ∈ An.

In other words, An ×ϕ Z+ is the operator algebra generated by a (completely isometric) copy
of An and a contraction u with the property that every covariant representation of (An,ϕ) induces
a completely contractive representation π × K of An ×ϕ Z+ on H, which on polynomials is
defined as

(π × K)
(∑

unAn

)
=
∑

Knπ(An).

The norm may be defined by as the supremum over all covariant representations:

∥∥∥∑unAn

∥∥∥= sup
(π,K)

∥∥∥(π × K)
(∑

unAn

)∥∥∥.
A completely contractive representation of An sends the generators L = [L1, . . . ,Ln] to a row

contraction A = [A1, . . . ,An]. Conversely, the Frazho–Bunce–Popescu dilation theorem [15,5,
28] shows that any row contraction dilates to a row isometry. Thus by Popescu’s von Neumann
inequality [29], there is a completely contractive representation π of An with π(Li) = Ai for
1 � i � n. If we take π = idAn

and U = 0, we see that the imbedding of An into An ×ϕ Z+ is
completely isometric.

In [8], we identified several such representations which are worth repeating.

Example 2.2. For any ϕ ∈ Aut(An), consider the unitary Uϕ constructed by Voiculescu [35] on
the Fock space �2(F+

n ) which implements the action of ϕ on the Cuntz–Toeplitz C∗-algebra En

by U∗
ϕAUϕ = ϕ(A), and fixes An. For any λ ∈ T, this provides a covariant pair (idEn

, λUϕ) for
(En,ϕ). Therefore it produces a representation idEn

× λUϕ of En ×ϕ Z. Since An is invariant for
adUϕ , this provides a covariant representation (id, λUϕ) of (An,ϕ) by restriction. This yields a
representation id × λÛϕ of An ×ϕ Z+ which is completely isometric on An and λUϕ is unitary.

Similarly, by taking a quotient by K(�2(F+
n )), the compact operators on �2(F+

n ), we obtain a
covariant representation (πOn

, λÛϕ) for (On,ϕ) and therefore representations for both On ×ϕ Z

and An ×ϕ Z+, inside the Calkin algebra, which we denote as πOn
× λÛϕ .

Example 2.3. Let π be any completely contractive representation of An on a Hilbert space H.
Define π̃ on H ⊗ �2 by

π̃(a) =
⊕∑

πϕk(a) and U = IH ⊗ S
k�0
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where S is the unilateral shift. This is easily seen to yield a completely contractive representa-
tion π̃ of An and a contraction U so that π̃ ×ϕ U yields a representation of An ×ϕ Z+.

These are called orbit representations. When A is a C∗-algebra, Peters [26] showed that the
direct sum of all orbit representations π̃ ×ϕ U , as π runs over the ∗-representations of A, yields
a completely isometric representation of A ×ϕ Z+. For general operator algebras, this is not the
case.

Example 2.4. Let ϕ ∈ AutAn. Consider the non-commutative disc algebra An+1 acting on the
Fock space �2(F+

n+1) and define an ideal

J = 〈
LiLn+1 − Ln+1ϕ(Li): 1 � i � n

〉
.

The WOT-closure J of J is an ideal of Ln+1, and these ideals were studied in [10,11]. In particular,
it is shown in [10] that J is determined by its range, which is a subspace invariant for both Ln+1
and its commutant Rn+1. Then in [11], it is shown that Ln+1/J is completely isometrically
isomorphic to the compression to Mϕ = Ran(J)⊥. Since

RanJ = span
{
A
(
LiLn+1 − Ln+1ϕ(Li)

)
�2(F+

n+1

)
: i = 1,2, . . . , n

}
is evidently orthogonal to ξ∅, we see that Mϕ is non-empty. The compression of An to Mϕ is
a completely contractive homomorphism ρ, and the compression B of Ln+1 is also a contrac-
tion. Therefore (ρ,B) is a covariant representation of (An,ϕ), and thus determines a completely
contractive representation An ×ϕ Z+.

Example 2.5. Any representation of An produces a representation of An ×ϕ Z+ by simply taking
U = 0. In [8], we contructed various finite dimensional representations of An ×ϕ Z+ which
allowed us to classify them as algebras.

3. Unitary covariant representations

The purpose of this section is to show that a contractive representation of our covariant system
always dilates to a unitary covariant system. The proof requires a number of known dilation
theorems.

We call a representation π of an algebra A on a Hilbert space K ⊃ H an extension of
a representation σ of A on H if H is invariant for π(A) and π(A)|H = σ(A) for A ∈ A;

i.e., π(A) �
[

σ(A) ∗
0 ∗

]
. Likewise, π is a co-extension of σ if H is co-invariant for π(A) and

PHπ(A)|H = σ(A) for A ∈ A; i.e., π(A) � [ ∗ ∗
0 σ(A)

]
. Finally, we say that π is a dilation of σ if

PHπ(A)|H = σ(A) for A ∈ A. By a result of Sarason [34], H is semi-invariant and so

π(A) �
[∗ ∗ ∗

0 σ(A) ∗
0 0 ∗

]
.

The main result of this section will be established by a sequence of lemmas.
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Theorem 3.1. Let ϕ be an isometric automorphism of the non-commutative disc algebra An,
n � 2. Then, any contractive covariant representation of (An,ϕ) dilates to a unitary covariant
representation of (En,ϕ), where En denotes the Cuntz–Toeplitz C∗-algebra.

According to the commutant lifting theorem of Frazho [16] and Popescu [28], if S,T are row
contractions and K another contraction intertwining them, i.e., S(i)K = KT (i) for all 1 � i � n,
then K co-extends to a contraction K ′ that intertwines the minimal isometric dilations VS and VT

of S and T respectively. A dual result can be obtained from a recent dilation of Solel [32]. (See
also [12].) Solel’s result says that if S and T are as above, then we can co-extend the contractions
S,T and K to isometries WS,WT and WK , which still satisfy W

(i)
S WK = WKW

(i)
T . This leads to

the following.

Lemma 3.2. Assume that S = [S(1), . . . , S(n)], T = [T (1), . . . , T (n)] are row contractions and K

is a contraction on H so that

S(i)K = KT (i), 1 � i � n.

Let V be an isometric dilation of K , acting on a Hilbert space H′. Then there exist row
contractions S′ = [S′ (1), . . . , S′ (n)], T ′ = [T ′ (1), . . . , T ′ (n)] on H′, which co-extend S and T

respectively, and satisfy

S′ (i)V = V T ′ (i), 1 � i � n.

Proof. Let VK be the minimal isometric dilation of K . Then we can decompose V � VK ⊕ V ′.
So if we can dilate S and T to S′ and T ′ intertwining VK , then we can extend further to all of H′
by adding zero summands to S′ and T ′.

By Solel’s result, S,T and K co-extend to intertwining isometries WS,WT and WK , acting
on a Hilbert space H′′. Let H′ =∨

j�0 W
j
K H be the smallest invariant subspace of WK contain-

ing H. Clearly, H′ is reducing for WK and the restriction of WK on H′ is (unitarily equivalent
to) the minimal dilation VK . The result now follows by setting

S′ (i) = PH′S(i)
∣∣

H′ and T ′ (i) = PH′T (i)
∣∣

H′ for 1 � i � n. �
Lemma 3.3. Let ϕ ∈ Aut(An) and let A = [A(1), . . . ,A(n)] and K be contractions satisfying
the covariance relations A(i)K = Kϕ(A)(i) for 1 � i � n. Then there exist isometries TA =
[T (1)

A , . . . , T
(n)
A ] and TK , dilating A and K respectively, so that

T
(i)
A TK = TKϕ(TA)(i) for 1 � i � n.

Proof. Notice that if VA is the minimal isometric dilation of A, then ϕ(VA) is the minimal
isometric dilation of ϕ(A) = [ϕ(A)(1), . . . , ϕ(A)(n)] (see, for instance, [31, Proposition 4.2]).
Therefore, by applying commutant lifting to the covariance relations, we obtain a contraction K1
on a Hilbert space H1, satisfying

V
(i)

K1 = K1ϕ(VA)(i).
A
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Let SK1 be the Schaeffer dilation of K1 on H(∞)
1 by

SK1 �

⎡
⎢⎢⎢⎢⎣

K1 0 0 0 . . .

DK1 0 0 0 . . .

0 I 0 0 . . .

0 0 I 0 . . .
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎦

where DK1 = (I − K∗
1 K1)

1/2. We apply Lemma 3.2, with S = VA, T = ϕ(VA), K = K1 and its
isometric dilation SK1 to obtain row contractions Â1 and B̂1, which co-extend VA and ϕ(VA),
and satisfy

Â
(i)
1 SK1 = SK1B̂

(i)
1 for 1 � i � n.

Because V
(i)
a are already isometries, these dilations have the form

Â
(i)
1 =

[
V

(i)
A 0

0 [X(i)
jk ]j,k�1

]
and B̂

(i)
1 =

[
ϕ(V

(i)
A ) 0

0 [Y (i)
jk ]j,k�1

]
.

By comparing (2,1)-entries in the covariance relation, we obtain

X
(i)
11 DK1 = DK1ϕ

(
V

(i)
A

)
for 1 � i � n.

For simplicity, write Xi = X
(i)
11 . Note that X = [X1, . . . ,Xn] is a row contraction, and so ϕ(X)

is meaningful. For 1 � i � n, we now define

A
(i)
1 =

⎡
⎢⎢⎢⎢⎣

V
(i)
A 0 0 0 . . .

0 Xi 0 0 . . .

0 0 ϕ(X)(i) 0 . . .

0 0 0 (ϕ ◦ ϕ)(X)(i) . . .
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎦ .

We obtain a row contraction A1 = [A(1)
1 , . . . ,A

(n)
1 ] on a Hilbert space H2 so that

A
(i)
1 SK1 = SK1ϕ(A1)

(i) for 1 � i � n.

Continuing in this fashion, we obtain a sequence

(A,K), (VA,K1), (A1, SK1), (VA1 ,K2), (A2, SK2) . . .

of pairs of operators acting on Hilbert spaces H ⊆ H1 ⊆ H2 . . . , co-extending A and K and
satisfying the covariance relations. Let H = ∨

j Hj , and consider these pairs of operators as
acting on H by extending them to be zero on the complement. Let

TA = SOT –limAj = SOT –limVAj

and
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TK = SOT –limSKj
= SOT –limKj .

These limits evidently exist as in each case, one of the sequences consists of isometries which
decompose as infinite direct sums. In particular, TA is a row isometry and TK is an isometry.
Multiplication is SOT-continuous on the ball, hence the covariance relations hold in the limit. �

We now extend this to a unitary representation. The proof uses the “one step extension” tech-
nique.

Lemma 3.4. Let ϕ ∈ Aut(An) and let S = [S(1), . . . , S(n)] be a row isometry and let V be an
isometry acting on a Hilbert space H and satisfying the covariance relations

S(i)V = V ϕ(S)(i) for 1 � i � n.

Then there exist a row isometry S̃ = [S̃(1), . . . , S̃(n)] and an isometry Ṽ , acting on a Hilbert space
H̃ ⊃ H, extending S and V respectively and satisfying

(i) S̃(i)Ṽ = Ṽ ϕ(S̃)(i) for 1 � i � n,
(ii) Ṽ (H̃) = H.

Proof. Let K = (I −V V ∗)H and set H′ = H ⊕ K. Define a unitary operator U ∈ B(H ⊕ K, H)

by

U(x,y) = V x + y for x ∈ H and y ∈ K.

Set

Ṽ = U∗V U and S̃(i) = U∗ϕ−1(S)(i)U for i = 1, . . . , n.

Notice that U∗(x) = (V x, (I − V V ∗)x) and so

Ṽ (x, y) = (V x + y,0) for x ∈ H and y ∈ K.

Therefore Ṽ extends V and maps H′ onto H.
To show that S̃ extends S, note that the covariance relations imply that

ϕ−1(S)(i)V = V S(i) for 1 � i � n.

Hence, for any x ∈ H we have for x ∈ H,

ϕ−1(S)(i)U(x,0) = ϕ−1(S)(i)V x = V S(i)x = U
(
S(i)x,0

)
.

Hence S̃(i)|H = S(i). Finally, this same calculation shows that

S̃(i)Ṽ = U∗ϕ−1(S)(i)V U = U∗V S(i)U = Ṽ ϕ(S̃)(i)

and the conclusion follows. �
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We can now complete the proof of the main result.

Proof of Theorem 3.1. Let A = [A(1), . . . ,A(n)] and K be contractions on a Hilbert space H
satisfying

A(i)K = Kϕ(A)(i), 1 � i � n.

Using Lemma 3.3, we dilate A and K to isometries S and V satisfying S(i)U = Uϕ(S)(i) for
1 � i � n. Making repeated use of Lemma 3.4, we now produce a sequence {(Sj ,Vj )}∞j=1 of
extensions consisting of a row isometry Sj extending Sj−1 and an isometry Vj extending Vj−1,
acting on an increasing sequence of Hilbert spaces Hj , which satisfy the covariance relations
and have Vj Hj = Hj−1. If we set S = SOT –limSj and U = SOT –limVj , then condition (ii)
in Lemma 3.4 implies that U is a unitary while (i) shows that S and U satisfy the covariance
relations. �
4. Maximal covariant representations and the C∗-envelope of An ×ϕ ZZZ+

There is a question left open in Theorem 3.1, which is whether the row isometry in the unitary
dilation generates the Cuntz algebra or the Cuntz–Toeplitz algebra. It is not hard to see that in
the former case, there is no sensible way to dilate further. But in the Cuntz–Toeplitz case, there
is a gap, since

∑n
i=1 SiS

∗
i < I , that may allow a proper dilation. In fact this occurs, and in this

section we will deal with this issue.
The Dritschel–McCullough proof [14] of Hamana’s theorem [18] proving the existence of

Arveson’s C∗-envelope [2] is based on the notion of a maximal representation. This is a com-
pletely contractive representation ρ of an operator algebra with the property that the only
(completely contractive) dilations have the form ρ ⊕ σ . They establish that every representa-
tion dilates to a maximal one, and that maximal representations extend to ∗-representations of
the C∗-envelope. In this manner, they were able to establish the existence of the C∗-envelope
without taking Hamana’s route via the injective envelope. The upshot for dilation theory is to
focus attention on maximal dilations.

In our case, Theorem 3.1 shows that the maximal dilations must send the generators of An

to a row isometry S and the operator implementing the automorphism must be unitary. In the
case when this representation is of Cuntz type, meaning that SS∗ = I , it is evident that this
representation is maximal. So we are left to deal with the other case.

We first show that the Wold decomposition of S decomposes U as well. (Compare with [31,
Proposition 4.2].) Recall that the Wold decomposition uniquely splits the Hilbert space into H =
H0 ⊕ H1 so that Si |H0 � L

(α)
i is pure, and Ti := Si |H1 has Cuntz type.

Lemma 4.1. Suppose S = [S1, . . . , Sn] is a row isometry and U is a unitary on a Hilbert space H
satisfying the covariance relations SiU = Uϕ(Si) for 1 � i � n. Then the Wold decomposition
reduces U , thereby decomposing the representation of An ×ϕ Z+ into a pure part and a Cuntz
part.

Proof. Let σ be the representation of An ×ϕ Z+ with σ(Li) = Si and σ(u) = U . Let M =
Ran(I − SS∗) = Ran(I − ∑n

i=1 SiS
∗
i ). Then H0 = σ(An)M . Now [ϕ(S1) . . . ϕ(Sn)] is also a

row isometry, and we let N = Ran(I −∑n
ϕ(Si)ϕ(Si)

∗). Since Si � L
(α) ⊕ Ti , we see that
i=1 i
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ϕ(Si) = ϕ(Li)
(α) ⊕ ϕ(Ti). Thus the Wold decomposition of ϕ(S) decomposes H in the same

way as S. Therefore σ(An)N = H0.
Now we use the fact that U implements ϕ to see that N = UM and so

U H0 = Uσ(An)M = σ(An)UM = σ(An)N = H0.

Therefore H0 reduces U as claimed. �
Next we show how ϕ is implemented on H0.

Lemma 4.2. Let ϕ ∈ Aut(An) and let Uϕ be the Voiculescu unitary on �2(F+
n ) which imple-

ments ϕ. Then the only unitaries on B(�2(F+
n )

(α)
) which implement ϕ on A

(α)
n have the form

Uϕ ⊗ W .

Proof. Clearly Uϕ ⊗ Iα implements ϕ. If V is another unitary implementing ϕ on A
(α)
n , then

(U∗
ϕ ⊗ Iα)V commutes with A

(α)
n . By Fuglede’s theorem, it commutes with C∗(A(α)

n )′′ =
B(�2(F+

n )) ⊗ CIα . Therefore it lies in C∗(A(α)
n )′ = CI�2(F+

n ) ⊗ B(H) where dim H = α, say
(U∗

ϕ ⊗ Iα)V = I ⊗ W . �
Now W is unitary, and so has a spectral resolution. So essentially every pure representation

(id(α),U) of the covariance relations is a direct integral of the representations (id, λUϕ) as λ

runs over the unit circle T. Thus it suffices to show how to dilate (id,Uϕ) to a Cuntz type unitary
dilation.

To accomplish this, we need to consider the map ϕ̂ in Aut(Bn). We refer to [33, Chapter 2]
for details. We distinguish two cases. In the first case, ϕ̂ has a fixed point inside Bn. Because
Aut(Bn) acts transitively on Bn, ϕ̂ is biholomorphically conjugate to a map which fixes 0. Such
an equivalence yields a completely isometric isomorphism of the semicrossed products. So we
may assume that ϕ̂(0) = 0 without loss of generality. But then ϕ̂ is a unitary matrix U0 ∈ U (n),
ϕ is the gauge automorphism it induces, and

Uϕ =
⊕∑

i�0

U⊗i
0 .

In the second case, ϕ̂ fixes one or two points on the unit sphere. Again Aut(Bn) acts transitively
on the sphere, so we may suppose that e1 = (1,0, . . . ,0) is a fixed point. We will deal with these
two cases separately.

In both cases, we will dilate to atomic representations of the Cuntz algebra. These are
∗-representations in which the generators permute an orthonormal basis up to scalar multiples.
These representations were defined and classified in [9]. In the first case, we use representations
of inductive type. Beginning with an infinite tail, i.e., an infinite word x = i1i2 . . . in the alpha-
bet {1, . . . , n}, define a sequence of Hilbert spaces Hk , for k � 0, as follows. Each Hk naturally
identified with Fock space �2(F+

n ), and this determines the action of F+
n on Hk by the left regular

representation, which extends to a ∗-representation λk of the Cuntz–Toeplitz algebra En. Imbed
Hk−1 into Hk by the isometry Vkξ

k−1
w = ξk

wik
, where with basis {ξk

w: w ∈ F+
n } is the standard

basis for Hk . Effectively, Vk is unitarily equivalent to Ri , the right multiplication operator by the

k
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symbol ik . Since this lies in the commutant of the left regular representation, it is evident that Vk

intertwines λk−1 and λk . The inductive limit of these representations, denoted λx, on the Hilbert
space Hx = lim Hk , is a ∗-representation of En onto the Cuntz algebra because in the limit, the
sum of the ranges of λx(si ) for 1 � i � n is the whole space.

Theorem 4.3. Let ϕ ∈ Aut(An) such that ϕ̂ has a fixed point in Bn. Then (id,Uϕ) has a unitary
dilation of Cuntz type.

Proof. As noted before the proof, ϕ is biholomorphically conjugate to an automorphism which
fixes the origin, and hence is a gauge automorphism. So we start by assuming that ϕ has this
form. So ϕ is determined by the unitary ϕ̂ = U0 on span{ξi : 1 � i � n}.

Since unitary matrices are diagonalizable, the map ϕ̂ is biholomorphically conjugate to a
diagonal unitary. Thus it suffices to assume that U0 is diagonal, say U0ξi = μiξi for scalars
μi ∈ T. Let us write μ = (μ1, . . . ,μn) ∈ Tn. It is easy to verify that Uϕ is the diagonal operator
Uϕξw = w(μ)ξw , for all w ∈ F+

n .
Now let x = i1i2 . . . be any infinite tail, and consider the construction indicated before this

proof. Set xk = i1i2 . . . ik for k � 1. Define unitaries Vk on Hk by Vkξ
k
w = xk(μ)w(μ)ξk

w . It is
easy to see that since this is a scalar multiple of Uϕ , conjugation by Vk implements ϕ on λk(En).
Moreover the scalar xk(μ) is chosen so that Vk|Hk−1 = Vk−1 for k � 1. Thus the inductive limit
yields the representation σx and a unitary operator V on Hx implementing ϕ. Thus (σx,V ) is the
desired dilation.

Note that the discussion prior to the theorem implies now that any representation of An ×ϕ Z+
dilates to a Cuntz-type representation, provided that ϕ is a gauge automorphism.

In case of an arbitrary ϕ, we want to prove the existence of a Cuntz-type dilation for (id,Uϕ).
As in the discussion prior to the theorem, there exist a biholomorphic automorphism α and a
gauge automorphism ϕ′ so that ϕ′ ◦ α = α ◦ ϕ. By the previous paragraph, (id, ϕ′) has a unitary
Cuntz dilation (σx,V ). We claim that (σxα,V ) provides a unitary Cuntz dilation of (id, ϕ). It
suffices to verify the covariance relations:

σxα(A)W = Wσx
(
ϕ′(α(A)

))= Wσxα
(
ϕ(A)

)
. �

For the second case, we use a special case of the ring representations [9]. Let Hj = �2(F+
n )

with basis {ξj
w: w ∈ F+

n } for 2 � j � n. Let H = Cζ ⊕∑n
j=2 ⊕Hj . Let σ1 denote the represen-

tation determined by

σ1(L1)ζ = ζ, σ1(Lj )ζ = ξ
j

∅ for 2 � j � n,

σ1(Li)ξ
j
w = ξ

j
iw for 1 � i � n, 2 � j � n, w ∈ F+

n .

This is evidently a Cuntz representation. Moreover, Cζ is coinvariant and thus the compression
to Cζ is a multiplicative functional ψ such that

ψ(A) = 〈
σ1,μ(Li)ζ, ζ

〉= δi1 = L̂i(e1).

Hence 〈σ1(A)ζ, ζ 〉 = Â(e1) for all A ∈ An.
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Theorem 4.4. Let ϕ ∈ Aut(An) such that ϕ̂ has a fixed point on the boundary of Bn. Then
(id,Uϕ) has a unitary dilation of Cuntz type.

Proof. As in the previous proof, we may suppose that ϕ̂ has e1 as a fixed point.
First we show that ϕ is unitarily implemented on (σ1, H). Let ψ(A) = 〈σ1(A)ζ, ζ 〉 = Â(e1).

Define a unitary W = 1 ⊕ U
(n−1)
ϕ , and consider Si = W ∗σ1(Li)W . Then

Si |(Cζ )⊥ = ϕ(Li)
(n−1) for 1 � i � n.

Also

〈Siζ, ζ 〉 = ψ(Li) = δi1 = L̂i(e1) = L̂i ϕ̂(e1) = ϕ̂(Li)(e1).

In particular,

〈S1ζ, ζ 〉 = 1 = 〈
σ1
(
ϕ(L1)

)
ζ, ζ

〉
.

Since both S1 and σ1(ϕ(L1)) = ϕ(σ1(L1)) are isometries, we conclude that S1ζ = ζ =
σ1(ϕ(L1))ζ . Both agree with ϕ(L1)

(n−1) on (Cζ )⊥, and therefore

S1 = 1 ⊕ ϕ(L1)
(n−1) = σ1

(
ϕ(L1)

)
.

On the other hand, Sj ζ is orthogonal to ζ for 2 � j � n. Because these are isometries with
pairwise orthogonal ranges, Sj ζ is also orthogonal to

(
n∑

i=1

ϕ(Li)�
2(F+

n

))(n−1)

=
(

U∗
ϕ

n∑
i=1

LiUϕ�2(F+
n

))(n−1)

= (
(Cν)⊥

)(n−1)

where ν = U∗
ϕ ξ∅. Observe that exactly the same is true for the isometries σ1(ϕ(Lj )) because

σ1(ϕ(Lj ))|(Cζ )⊥ = ϕ(Li)
(n−1) also. Therefore there is a unitary V on (Cν)(n−1) so that

V Sj ζ = σ1
(
ϕ(Lj )

)
ζ for 2 � j � n.

Considering V as an operator on Cn−1, we define V ′ = I�2(F+
n ) ⊗ V in the commutant of A

(n−1)
n

extending V to all of (Cζ )⊥. Define W ′ = (1 ⊕ V ′)∗W . Then

W ′∗σ1(Li)W
′ = σ1

(
ϕ(Li)

)
for 1 � i � n.

Pick a unit eigenvector y ∈ Cn−1 for the unitary matrix V , say Vy = βy. Then H = �2(F+
n )⊗

Cy is an invariant subspace for σ1(An) which is also invariant for W ′, and W ′|H = βUϕ . Thus
it is clear that (σ1,W

′) is a unitary dilation of (λ,βUϕ). Thus (σ1, βW ′) is a unitary dilation of
(λ,Uϕ). �
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Remark 4.5. Arveson [2] defines a boundary representation of an operator algebra A to be an
irreducible ∗-representation π of C∗(A) so that π |A has a unique completely positive extension
to C∗(A). These are just the maximal representations of A which are irreducible [3]. So it is of
interest to know when we can obtain irreducible dilations. In Theorem 4.3, the representation λx
is already irreducible provided that x is not eventually periodic, and the representation σ1 is also
irreducible [9]. So we obtain boundary representations.

An immediate consequence of these dilation theorems, Theorem 3.1 together with Theo-
rems 4.3 and 4.4, are the following crucial facts.

Corollary 4.6. Let ϕ ∈ Aut(An). Then every row contractive covariant representation has a
unitary dilation of Cuntz type. Conversely, every covariant pair (σ,U), where σ is a ∗-extendible
representation of An such that σ(L1), . . . , σ (Ln) generate a copy of On and U is a unitary
satisfying the covariance relations σ(A)U = Uσ(ϕ(A)) for all A ∈ An determines a maximal
representation of An ×ϕ Z+.

Corollary 4.7. C∗
env(An ×ϕ Z+) = On ×ϕ Z.

5. Concrete representations for An ×ϕ ZZZ+

One of the motivations for the present paper was to provide concrete faithful representations
for An ×ϕ Z+. Corollary 4.7 essentially reduces this to the (self-adjoint) problem of finding
faithful representations for On ×ϕ Z. We know one construction of a representation of On ×ϕ Z.
Just take the canonical map onto C∗(En,Uϕ)/K. When On×ϕ Z is simple, this is an isomorphism.
We show that this is the case when ϕ is aperiodic.

Theorem 5.1. The only unitaries in On which conjugate An into itself are scalars.

Proof. Suppose that U is a unitary in On such that UAnU
∗ = An.

Consider the atomic representation σi on H = Cζ ⊕ �2(F+
n )

(n−1)
, where the �2(F+

n )
(n−1) =⊕{Hk: 1 � k �= i � n} and Hk has standard basis ξk

w for w ∈ F+
n . We define

σi(sj )ζ =
{

ζ if j = i,

ξ
j

∅ if j �= i

and

σi(sj )ξ
k
w = ξk

jw for k �= i, w ∈ F+
n .

The significance of this representation is that Cζ is the unique minimal invariant subspace for
σi(A

∗
n). Hence it must be fixed by σi(U). It follows that σi(UsiU

∗)ζ = ζ . But it is immediately
apparent that the only elements of An which take ζ to itself are of the form hi(σi(si )) where
hi ∈ A(D) and hi(1) = 1. Thus UsiU

∗ = hi(si ).
Likewise there are representations σij with a unique minimal invariant subspace for σi(A

∗
n)

which is one dimensional Cζ satisfying σij ((si + sj )/
√

2 )ζ = ζ . The same argument shows that
there is an hij ∈ A(D) so that U((si + sj )/

√
2 )U∗ = hij ((si + sj )/

√
2 ). Therefore
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hi(si ) + hj (sj ) = √
2hij

(
(si + sj )/

√
2
)
.

It is easy to see from this that hi = hj = hij = λz. Since hi(1) = 1, we see that λ = 1. Therefore
U lies in the centre of On; whence U is scalar. �
Corollary 5.2. The non-trivial Voiculescu automorphisms of On are outer.

Kishimoto [20, Theorem 3.1] showed that if A is a simple C∗-algebra and α ∈ Aut(A) such
that α is aperiodic, i.e., αn is outer for all n �= 0, then A ×α Z is simple. Thus we obtain:

Corollary 5.3. If ϕ ∈ Aut(An) is aperiodic, then On ×ϕ Z is simple, and thus is isomorphic to
C∗(En,Uϕ)/K. Therefore the representation πOn

× Ûϕ of Example 2.2 is a faithful representation
of An ×ϕ Z.

We will now observe that the other representation of Example 2.2, i.e., id ×Uϕ is also faithful
for An ×ϕ Z, provided that ϕ is aperiodic. This is of course a feature of the nonself-adjoint theory,
since id × Uϕ comes from a representation of En ×ϕ Z.

Corollary 5.4. If ϕ ∈ Aut(An) is aperiodic, then the representation id × Uϕ of Example 2.2 is a
faithful representation of An ×ϕ Z.

Proof. Consider the diagram

An ×ϕ Z+ id×Uϕ−−−−→ B
(
�2(F+

n

)) q−−→ B
(
�2(F+

n

))/
K
(
�2(F+

n

))
,

where q denotes the Calkin map. By Corollary 5.3, the composition q ◦ (id × Uϕ) = πOn
× Ûϕ

is isometric, and therefore id × Uϕ is isometric as well. �
When ϕ is periodic, it may be necessary to use a family of representations. A natural choice is

(id, λUϕ) for λ ∈ T. Form H = �2(F+
n ) ⊗ L2(T). Consider (id(∞),Uϕ ⊗ Mz) where id(∞)(A) =

A ⊗ I and Mz is multiplication by z on L2(T). Clearly this is a covariant representation. Let
Rμ denote the operator of rotation by μ ∈ T on L2(T). Then ad I ⊗ Rμ fixes id(∞)(En) and
conjugates Mz to μMz. Consequently integration with respect to μ yields a faithful expectation
of B = C∗(id(∞)(En),Uϕ ⊗ Mz) onto the copy id(∞)(En) of En. A standard gauge invariant
uniqueness argument shows that B � En×ϕ Z. Modding out by the ideal J generated by id(∞)(K)

yields a covariant representation of On ×ϕ Z which has a faithful expectation onto On. Thus this
also yields a faithful representation of the crossed product. To summarize, we have established
that:

Proposition 5.5. The crossed product On ×ϕ Z is isomorphic to B/J, where B = C∗(id(∞)(En),

Uϕ ⊗ Mz) and J is the ideal generated by id(∞)(K).
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