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1. THE UNIMODALITY CONJECTURE

Although Gian-Carlo Rota did not publish much in matroid theory, his
influence on the subject is pervasive (see [1, 7]). Among the many conjec-
tures bearing his name in matroid theory, the unimodality conjecture is
perhaps the most intractable.

Let G be a combinatorial geometry (or simple matroid). The ith Whitney
number Wi (of the second kind ) is the number of rank-i flats in G. Thus, W1

is the number of points, W2 is the number of lines, and W3 is the number
of planes.

Rota's Unimodality Conjecture. Let G be a rank-n geometry. Then, the
sequence W0 , W1 , W2 , ..., Wn is unimodal, that is, there is a rank s such
that

W0�W1�W2� } } } �Ws and Ws+1�Ws+2� } } } �Wn .

One of Rota's motivation is that the Minkowski mixed volumes of a con-
vex set form a unimodal sequence (see [4, 7]). There might be a way to use
methods or ideas from convexity theory to prove the unimodality conjec-
ture.

In this paper, we present a partial result about the case n=5 of the
unimodality conjecture.

1.1. Theorem. Let G be a geometry of rank at least 5 in which all the
lines have the same number of points. Then

W2�W3 .
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There are many geometries in which all the lines have the same number
of points. Among them are the affine binary geometries, that is, sub-
geometries of AG(n&1, 2). In these geometries, every line has exactly two
points.

2. RADON TRANSFORMS

Let L(G) be the lattice of flats of the geometry G and let Lk(G) be the
set of rank-k flats in L(G). A function f defined from L(G) to the rational
numbers Q is supported on a set J of flats in L(G) if f (X) is zero unless X
is in J. The Radon transform T is the linear transformation on the vector
space of rational-valued functions on L(G) defined by

Tf (X )= :
Y : Y�X

f (Y).

The mass of a function f is the value of Tf at the maximum flat 1� of L(G),
that is,

mass( f )=Tf (1� )= :
Y : Y # L(G)

f (Y).

A function f : L(G) � Q is said to be reconstructible from its Radon trans-
form Tf restricted to a set M of flats if f is uniquely determined by the table
of values of Tf on M.

If every function supported on the set J is reconstructible from its Radon
transform restricted to the set M, then, by comparing dimensions of sub-
spaces, |J |�|M|. Hence, Theorem 1.1 follows from the following
reconstruction theorem.

2.1. Theorem. Let G be a geometry of rank at least 5 in which all the
lines have the same number of points and let f : L(G) � Q be a function sup-
ported on the lines of G. Then f is reconstructible from its Radon transform
Tf restricted to the planes.

The idea behind our proof of Theorem 2.1 is the following special case
of a result of Dowling and Wilson [3] (see also [5, 6]).

2.2. Theorem. Let G be a rank-5 geometry and let f : L(G) � Q be a
function supported on L0(G) _ L1(G) _ L2(G). Then f is reconstructible from
its Radon transform Tf restricted to L3(G) _ L4(G) _ L5(G).
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By Theorem 2.2 and the fact that geometric lattices can be truncated, we
can proved Theorem 2.1 by showing that the restriction of Tf to planes
gives sufficient information to reconstruct the Radon transform of f on the
rank-4 flats or spaces and the mass of f. In Section 3, we will show how the
space transforms can be reconstructed. The mass, however, cannot be
reconstructed directly. To get around this, we use the ``missing mass
method,'' which requires us to follow through an explicit reconstruction
algorithm given in [5, 6].

3. RECONSTRUCTING THE SPACE TRANSFORMS

We begin the proof of Theorem 2.1 by reconstructing the space trans-
form from the plane transform.

3.1. Lemma. Let H be a rank-4 geometry on the set S in which all the
lines have the same number c of points and let f : L(H) � Q be a function
supported on the lines. Then the mass of f can be reconstructed from its
Radon transform Tf restricted to the planes.

Proof. Let {i be the sum �l f (l) over all the lines l in H contained in
exactly i planes. Then

mass( f )= :
i�2

{i .

When we sum Tf (U) over all the planes U in H, the lines on exactly i
planes contribute i times to the sum. Hence,

:
U

Tf (U)= :
i�2

i{i
(1)

= :
i�2

(i&1) {i+mass( f ).

Next, consider the sum �U |U| Tf (U) over all planes. If U1 , U2 , ..., U i

are all the planes containing the line l, then the function value f (l) occurs
with coefficient |U1 |+|U2 |+ } } } +|Ui | in this sum. Because the sets
U1 "l, U2 "l, ..., Ui"l partition the set S"l of points not in l (by the
exchange property for closure),

|U1 |+|U2 |+ } } } +|Ui |= |S|+(i&1) |l|.
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Hence, by the hypothesis that every line contains exactly c points,

:
U

|U| Tf (U)= :
i�2

[|S|+(i&1) c] {i
(2)

=|S| mass( f )+c :
i�2

(i&1) {i .

Combining Eqs. (1) and (2), we obtain the reconstruction formula

mass( f )=
1

|S|&c \:
U

( |U|&c) Tf (U)+ .

We remark that the proof of Lemma 3.1 makes no use of the fact that
lines have rank 2. The lemma extends to functions supported on rank-k
flats, provided, of course, those flats all contain the same number of points.

Lemma 3.1 does not hold if the hypothesis on the lines of H is dropped.
A simple example is the direct sum U2, m �U2, m of two m-point lines.

4. MISSING MASS

To finish the reconstruction, we first reconstruct f from the given plane
transform, the reconstructed space transforms, and a ``variable'' mass, using
an algorithm given in [5, 6]. When this is done, we will derive the value
of the mass from the fact that f (<)=0.

We use the following Mo� bius function identity which first appeared in
[2, 3] (see [6] for a simple combinatorial proof).

4.1. Lemma. Let f : L � Q be a rational-valued function on a lattice L
and let X be a flat in L. Then

:
Y : X�Y�1�

+(Y, 1� ) Tf (Y)= :
Z : Z 6 X=1�

f (Z), (3)

where + is the Mo� bius function of L.

Let L be L(G; 5), the truncation of L(G) to rank 5, obtained from L(G)
by identifying all the flats in L(G) of rank at least 5. Choose the flat X in
Eq. (3) to be a line l. By the submodular inequality, all the flats Z on the
right hand side in Eq. (3) have rank greater than 2. Hence, as f is supported
on lines, f (Z) equals 0 for all such flats and the right hand sum is zero.
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Since the plane and space transforms are known and Tf (l)= f (l), we can
solve for f (l) in Eq. (3) to obtain

f (l)=&
1

+(l, 1� ) \M+ :
U : l<U<1�

+(U, 1� ) Tf (U)+ , (4)

where M is a variable standing for the unknown mass of f. Note that we
can divide by +(L, 1� ) since it is not zero by a theorem of Rota [8, p. 357].

To finish the proof, we use Eq. (3) with X the empty flat <. The maxi-
mum flat 1� is the only flat contributing to the right hand sum, and so the
right hand sum is again zero. Because Tf (<)=0, Tf ( p)=0 for any point,
and Tf (l)= f (l) for any line l, we have

\:
l

+(l, 1� ) f (l)++B+M=0,

where B is a linear combination of plane or space Radon transform values.
Substituting in the values of f (l) given in Eq. (4) and simplifying, we
obtain

M=
1

W2&1 \&B&:
l
\ :

U : l<U<1�

+(U, 1� ) Tf (U)++ .

Note that W2 , the number of lines in G, is an integer greater than 1. We
can now calculate M and finish the reconstruction. This completes the
proof of Theorem 2.1.

Rephrasing Theorem 2.1 in terms of matrices and using a standard deter-
minant argument (see [5]), we obtained the following corollary.

4.2. Corollary. Let G be a geometry of rank at least 5 in which every
line has the same number of points. Then, the line�plane incidence matrix has
maximum rank equal to the number of lines. In particular, there exists an
injection _ from the lines to the planes such that _(l)>l for all lines l.
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