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The notion of disjointly homogeneous Banach lattice is introduced. In these spaces every
two disjoint sequences share equivalent subsequences. It is proved that on this class
of Banach lattices the product of a regular AM-compact and a regular disjointly strictly
singular operators is always a compact operator.
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1. Introduction

This note is a continuation of a previous work by the authors [10] where it was proved that, on a wide class of Banach
lattices (which includes those with finite cotype), the product of a regular AM-compact operator and a regular disjointly
strictly singular operator is strictly singular and has invariant subspaces. In particular, if T is regular, AM-compact, and
disjointly strictly singular, then the square T 2 is strictly singular. Here we show that in a certain class of Banach lattices
better compactness properties can be obtained.

To this end, the notion of disjointly homogeneous Banach lattice is introduced. Namely, a Banach lattice E is called
disjointly homogeneous if for two arbitrary disjoint sequences in E there exist subsequences which are equivalent. This forms
a class of Banach lattices that includes for instance the spaces L p(μ) (1 � p � ∞), Lorentz spaces L p,q(μ) and some others.

For this class of Banach lattices, the following holds.

Theorem. Let E be a disjointly homogeneous Banach lattice. If T : E → E is regular, disjointly strictly singular, and AM-compact, then
T 2 is compact.

In particular, as a consequence of Lomonosov’s Theorem we get that under these hypotheses such operators have hyper-
invariant subspaces.
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We will routinely use the following well-known facts. Suppose that E is an order continuous Banach lattice with a weak
order unit. Then E can be represented as a Köthe function space over some probability measure space (Ω,Σ,μ) with
continuous inclusions:

L∞(μ) ↪→ E ↪→ L1(μ).

Moreover, the dual E∗ can be identified with the space of all μ-measurable functions g such that sup{∫
Ω

f g dμ:
‖ f ‖E � 1} < ∞, and the value taken by the functional corresponding to g at f ∈ E is

∫
Ω

f g dμ. See [14, Theorem 1.b.14] for
details.

Recall that, given ε > 0, the Kadec–Pełczyński set M(ε) is defined as follows:

M(ε) = {
x ∈ E: μ

(
σ(x, ε)

)
� ε

}
,

where σ(x, ε) = {t ∈ Ω: |x(t)| � ε‖x‖E }. It is known [14, Proposition 1.c.8] that ‖x‖1 � ε2‖x‖E for all x ∈ M(ε); hence the
norms ‖ · ‖E and ‖ · ‖1 are equivalent on every subspace of E contained in M(ε) for some ε > 0. On the other hand, if a
normalized sequence (xn) in E is not contained in any M(ε), then there is a subsequence (xnk ) and a disjoint (unconditional
basic) sequence (yk) in E equivalent to (xnk ) with ‖xnk − yk‖E → 0.

Recall that an operator T : E → E is positive if it maps positive elements to positive elements. Moreover, an operator is
regular if it is a difference of two positive operators. By [20, Theorem 2.2], every regular operator T : E → E can be extended
to a bounded operator T̃ : L1(μ) → L1(μ). It was shown in [10, Theorem 2.2] that T : E → E is AM-compact if and only if
T̃ : L1(μ) → L1(μ) is Dunford–Pettis.

Recall that a Banach lattice is weakly sequentially complete if and only if it does not contain a subspace which is
isomorphic to c0, if and only if it does not contain a sublattice which is lattice isomorphic to c0. Such a Banach lattice
is called a KB-space. Every KB-space is order continuous; a dual Banach lattice is a KB-space if and only if it is order
continuous. See [1] for more details.

2. Disjointly homogeneous Banach lattices

A Banach lattice E is said to be disjointly homogeneous if for every seminormalized sequences (xn) and (ym) with
|xi | ∧ |x j| = 0 and |yi| ∧ |y j| = 0 for i �= j, there exist equivalent subsequences, that is, there exist a constant C > 0 and
subsequences (nk), (mk) such that

C−1

∥∥∥∥∥
N∑

k=1

akxnk

∥∥∥∥∥ �
∥∥∥∥∥

N∑
k=1

ak ymk

∥∥∥∥∥ � C

∥∥∥∥∥
N∑

k=1

akxnk

∥∥∥∥∥,

for every scalars (ak)
N
k=1.

Observe that a Banach lattice E is disjointly homogeneous if for any pair of disjoint positive normalized sequences (xn)

and (yn), there exist subsequences which are equivalent.
Also note that the definition of a disjointly homogeneous Banach lattice depends on the lattice structure, that is, it is not

preserved under isomorphisms in general. For instance, for any 1 < p < ∞, p �= 2, the function space L p[0,1] is isomorphic
as a Banach space to the atomic Banach lattice H p given by the unconditional Haar basis (see, e.g., [13, p. 19]), and this
lattice has disjoint sequences equivalent to �2 and �p ; thus, with the atomic structure H p is not disjointly homogeneous.

Examples of disjointly homogeneous spaces include the spaces L p(μ) for 1 � p � ∞ and every measure μ, because
every normalized disjoint sequence in L p(μ) is equivalent to the unit vector basis of �p . Moreover, in [8] and [5] it was
shown that every disjoint normalized sequence in the Lorentz function spaces ΛW ,q(μ), or L p,q contains a subsequence
equivalent to the unit vector basis of �q (for q < ∞).

Motivated by these examples, we say that a Banach lattice is p-disjointly homogeneous if every normalized disjoint
sequence has a subsequence equivalent to the unit vector basis of �p (c0 in the case p = ∞). Clearly, the spaces �p(Xn)

where Xn is a sequence of finite-dimensional Banach lattices, are p-disjointly homogeneous. So are the Baernstein spaces
B p introduced by C. Seifert (see [3, p. 7]).

One could ask whether every disjointly homogeneous Banach lattice has to be p-disjointly homogeneous for some
p ∈ [1,∞]. The following example shows that this is not the case.

Example. Let T be Tsirelson’s space (see [19]). We claim that T with the lattice structure given by its unconditional basis
(tn) is disjointly homogeneous, and clearly does not contain any disjoint sequence equivalent to the unit vector basis of �p

or c0.

Proof. If x ∈ T with x = ∑∞
i=1 αiti , then we denote supp x = {i ∈ N: αi �= 0}. For x, y ∈ T we write supp x < supp y if i < j

whenever i ∈ supp x and j ∈ supp y. Given two normalized disjoint sequences in T , (xn) and (yn), we will show that they
have equivalent subsequences.
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By truncating each xn , we may assume by Proposition 1.a.9 of [13] that each xn has finite support. By passing to a
subsequence, we may further assume that supp xn < supp xn+1 for all n. Similarly, we may assume that supp yn < supp yn+1
for all n. Now it is easy to construct subsequences (xnk ) and (ynk ) so that

supp xn1 < supp yn1 < supp xn2 < supp yn2 . . . .

It follows from [3, Proposition II.4] that (xnk ) and (ynk ) are equivalent. �
Proposition 2.1. Suppose that E is a disjointly homogeneous Banach lattice. Then either E or E∗ (or both) is a KB-space. Precisely we
have that

(i) E is not a KB-space if and only if E is ∞-disjointly homogeneous.
(ii) E∗ is not a KB-space if and only if E is 1-disjointly homogeneous.

Proof. The equivalence in (i) follows immediately from the definition of a KB-space. [1, Theorem 14.21] asserts that E∗ is
not a KB-space iff E contains a lattice copy of �1, this yields the equivalence in (ii). Finally, since no subsequence of the unit
vector basis of c0 is equivalent to the unit vector basis of �1 and vice versa, the two pairs of conditions are incompatible,
hence at least one of the two spaces has to be a KB-space. �

A natural question in this setting is whether disjointly homogeneous spaces are stable under duality. In this direction we
have the following result.

Theorem 2.2. If E is an ∞-disjointly homogeneous Banach lattice, then E∗ is a 1-disjointly homogeneous Banach lattice.

Proof. Every disjoint sequence in E has a subsequence equivalent to the unit vector basis of c0. Note that E∗ is order
continuous, because otherwise E would have contained a lattice copy of �1 by [1, Theorem 14.21]. Let (x∗

n) be a normal-
ized disjoint positive sequence in E∗ . Consider a sequence (xn) of elements in E+ of norm one, such that x∗

n(xn) = 1. By
[15, Proposition 2.3.1], for any ε > 0 there exist a subsequence (kn) and a disjoint sequence (vn) ⊂ E+ such that vn � xkn

and x∗
kn

(vn) � 1 − ε. By hypothesis, there exist a constant C > 0 and a subsequence of (vn) which we still denote (vn) such
that

C−1 sup
n=1,...,m

|bn| �
∥∥∥∥∥

m∑
n=1

bn vn

∥∥∥∥∥ � C sup
n=1,...,m

|bn|.

Therefore, for any sequence of scalars (an)m
n=1 we have:∥∥∥∥∥

m∑
n=1

anx∗
kn

∥∥∥∥∥ =
∥∥∥∥∥

m∑
n=1

|an|x∗
kn

∥∥∥∥∥ = sup

{(
m∑

n=1

|an|x∗
kn

)
(y): y ∈ E, ‖y‖ � 1

}
�

(
m∑

n=1

|an|x∗
kn

)(
C−1

m∑
n=1

vn

)

� C−1
m∑

n=1

|an|x∗
kn

(vn) � C−1(1 − ε)

m∑
n=1

|an|.

Hence, it follows that

C−1(1 − ε)

m∑
n=1

|an| �
∥∥∥∥∥

m∑
n=1

anx∗
kn

∥∥∥∥∥ �
m∑

n=1

|an|.

This yields that every disjoint sequence in E∗ has a subsequence equivalent to the unit vector basis of �1. In particular E∗
is disjointly homogeneous. �

For general disjointly homogeneous spaces this duality is not true, as the following example shows.

Example. Given 1 < q < ∞, the Lorentz function space Lq,1(0,1) is disjointly homogeneous, but the dual L p,∞(0,1) is not
(where 1

p + 1
q = 1).

Proof. Indeed, every disjoint normalized sequence in Lq,1 has a subsequence equivalent to the unit vector basis of �1 (see
[5, Lemma 2.1]). In contrast, every disjoint sequence in the order continuous part of L p,∞ (the closed linear span of the
characteristic functions in L p,∞) has a subsequence equivalent to the unit vector basis of c0 (see [17]); yet L p,∞ contains
disjoint sequences spanning �p .
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Let us proof this last assertion. Consider the functions in [0,1] defined by

fn(t) = p − 1

p

(
t − 2−n)− 1

p χ(2−(n+1),2−n)(t).

We claim that the closed linear span [ fn] is isomorphic to �p .

Since ‖ f ‖Lp,∞ = sups>0 s(μ f (s))
1
p , where μ f (s) = μ{t ∈ (0,1): | f (t)| > s} is the distribution function, for each n ∈ N, we

have

μ fn (s) = μ

{
t ∈ (

2−(n+1),2−n)
:

p − 1

p

(
t − 2−n)− 1

p > s

}
= μ

{
t ∈ (

2−(n+1),2−n)
: t < 2−n +

(
p − 1

p

)p 1

sp

}

=

⎧⎪⎨⎪⎩
2−n − 2−(n+1) if s � p−1

p(2−n−2−(n+1))
1
p
,

(
p−1

p )p 1
sp if s >

p−1

p(2−n−2−(n+1))
1
p
.

This clearly implies that ( fn) is a seminormalized sequence in L p,∞ . Now, given scalars a,b let us see that ‖afi + bf j‖Lp,∞ ∼
(|a|p + |b|p)

1
p , for i �= j. Indeed, since f i and f j are disjoint, we have

‖afi + bf j‖Lp,∞ = sup
s>0

s

(
μ f i

(
s

|a|
)

+ μ f j

(
s

|b|
)) 1

p

� s0

(
μ f i

(
s0

|a|
)

+ μ f j

(
s0

|b|
)) 1

p

= s0

[(
p − 1

p

)p |a|p

sp
0

+
(

p − 1

p

)p |b|p

sp
0

] 1
p

= p − 1

p

(|a|p + |b|p) 1
p ,

where s0 is any number greater than

max

{ |a|p − 1

p(2−(i+1) − 2−i)
1
p

,
|b|p − 1

p(2−( j+1) − 2− j)
1
p

}
.

Moreover, since L p,∞ satisfies an upper p-estimate [7], we also get ‖afi + bf j‖Lp,∞ � C(|a|p + |b|p)
1
p for certain constant

C > 0. The statement that [ fn] is isomorphic to �p follows by induction. �
It remains as an open question whether every reflexive Banach lattice E is disjointly homogeneous if and only if E∗ is

disjointly homogeneous.

3. Regular operators on disjointly homogeneous Banach lattices

Recall that an operator on a Banach lattice is called disjointly strictly singular if its restriction to any subspace spanned
by a disjoint sequence is not an isomorphism [11]. This class contains the class of strictly singular operators but in general
they do not coincide.

Proposition 3.1. If an operator T : E → F from a Banach lattice E to a KB-space F is not an isomorphism on any subspace isomorphic
to �1 , then it is weakly compact. In particular, if T is disjointly strictly singular, then it is weakly compact as well.

Proof. Let (xn)n be a normalized sequence in E . If (T xn) has no weakly Cauchy subsequence, then by Rosenthal’s �1 theorem,
there exists a subsequence (T xnk )k equivalent to the unit vector basis of �1. Therefore, T preserves an isomorphic copy of �1,
which contradicts the hypothesis.

Hence, there is a weakly Cauchy subsequence (T xnk ) of (T xn). Since F is weakly sequentially complete, (T xnk ) is weakly
convergent.

Since F is order continuous, it follows from [6] (see, also, [10, Theorem 2.7]) that every operator preserving an isomorphic
copy of �1, also preserves a lattice copy of �1. Hence disjointly strictly singular operators into an order continuous Banach
lattice are never an isomorphism on a subspace isomorphic to �1. �

The following result improves the ones obtained in [2,10,16] in the setting of disjointly homogeneous Banach lattices.

Theorem 3.2. Suppose that E is a disjointly homogeneous Banach lattice with order continuous norm and a weak unit. Suppose that
S and T are two regular operators on E such that S is disjointly strictly singular and T is AM-compact.
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(i) If E∗ is order continuous then ST is compact.
(ii) If E∗ is not order continuous then TS is compact.

In particular, if R is disjointly strictly singular and regular, then STR is compact.

Proof. Since E is order continuous and has a weak unit, we can consider E is as an ideal in L1(μ) for some probability
measure μ, and extend T to a Dunford–Pettis operator T̃ : L1(μ) → L1(μ) (see [10]).

(i) Suppose that E∗ is order continuous but ST is not compact. Then there exists a normalized sequence (un) such that
(ST un) has no convergent subsequences. It follows that (un) has no convergent subsequences. Since E∗ is order continuous,
E does not contain a copy of �1, so by Rosenthal’s �1-theorem [18], we may assume that (un) is weakly Cauchy. Since
(ST un) has no convergent subsequences, we can assume by passing to a further subsequence that there exists an δ > 0
such that ‖ST un − ST um‖E > δ whenever m �= n. For every n ∈ N put xn = un+1 − un , yn = T xn , and zn = S yn = ST xn . Then
(zn) is seminormalized, hence (xn) and (yn) are seminormalized as well. Also, (xn) is weakly null, so that (yn) and (zn) are
weakly null as well.

Since (xn) is also weakly null in L1(μ), and T̃ is Dunford–Pettis, it follows that ‖yn‖1 → 0. However, (yn) is seminor-
malized in E , hence the sequence (yn) is not contained in any Kadec–Pełczyński set M(ε) for any ε > 0. After passing to a
subsequence of (xn) we may assume that (yn) is equivalent to a disjoint sequence (vn) and ‖yn − vn‖E → 0. By passing to
subsequences we may assume that ‖yn − vn‖E < 2−n .

Since S is regular, S̃ is bounded, so that ‖zn‖1 → 0. Similarly, we may assume that (zn) is equivalent to a disjoint
sequence (wn) and ‖zn − wn‖E → 0. Since (vn) and (wn) are disjoint seminormalized sequences and E is disjointly homo-
geneous, by passing to further subsequences we may assume that they are equivalent.

Since S is disjointly strictly singular, we can find a normalized block sequence (hk) of (vn) such that Shk → 0. Sup-
pose that hk = ∑mk+1

n=mk+1 αn vn . Since (vn) is a basic sequence, there exists a positive real C such that |αn| < C . Let

gk = ∑mk+1
n=mk+1 αn yn for all k, then

‖hk − gk‖E �
mk+1∑

n=mk+1

|αn|‖vn − yn‖ � C2−mk → 0,

so that ‖Sgk‖E � ‖Shk‖E + ‖S‖‖hk − gk‖E → 0. On the other hand, since (zn) and (wn) are equivalent, we have

‖Sgk‖E =
∥∥∥∥∥

mk+1∑
n=mk+1

αnzn

∥∥∥∥∥
E

� C1

∥∥∥∥∥
mk+1∑

n=mk+1

αn vn

∥∥∥∥∥
E

= ‖hk‖E = 1;

a contradiction.
(ii) Suppose that E∗ is not order continuous, hence not a KB-space. Then Proposition 2.1 yields that E is a KB-space

and is 1-disjointly homogeneous. Hence, S is weakly compact by Proposition 3.1. Since T̃ : L1 → L1 is Dunford–Pettis, the
composition

E
S→ E ↪→ L1(μ)

T̃→ L1(μ)

is a compact operator. If TS is not compact, there exists a normalized sequence (xn) in E such that the sequence (T S(xn))

is not contained in any M(ε). Therefore, (T (xn)) has a subsequence which is equivalent to a disjoint sequence in E . Hence,
this sequence must have a subsequence equivalent to the unit vector basis of �1, because E is 1-disjointly homogeneous.
However, this implies that TS must preserve an isomorphic copy of �1, which is impossible since S is weakly compact. �

Observe that Theorem 3.2(ii) remains valid in the case that S is not regular. Also, it remains valid if, instead of being
disjointly strictly singular, S is only assumed to be weakly compact.

Corollary 3.3. Let E be a disjointly homogeneous Banach lattice. If T : E → E is regular, disjointly strictly singular, and AM-compact,
then T 2 is compact.

Corollary 3.3 together with Lomonosov’s Theorem [12] immediately yield the following result.

Corollary 3.4. Let E be a disjointly homogeneous Banach lattice. If T : E → E is regular, disjointly strictly singular and AM-compact.
Then T has a hyperinvariant subspace.

A subset S of an order continuous Banach lattice of functions over a measure space (Ω,Σ,μ) is called equi-integrable if

sup
f ∈S

‖ f χA‖ → 0 when μ(A) → 0.

We will make use of the following well-known fact (see [9, Lemma 3.3] for a proof).
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Lemma 3.5. Let E be an order continuous Banach lattice which is continuously included, as a dense ideal, in L1(μ) for some probability
measure μ. A norm bounded sequence (gn) in E is convergent to zero if and only if (gn) is equi-integrable and convergent to zero in
the norm of L1 .

Recall that an order continuous Banach lattice E has the subsequence splitting property [21] if for every bounded
sequence ( fn) there exist a disjoint sequence (hk), an equi-integrable sequence (gk) and a subsequence ( fnk ) such that
fnk = gk + hk with gk and hk disjoint for all k. For positive operators on a disjointly homogeneous Banach lattice with the
subsequence splitting property, the conclusion of Corollary 3.3 can be improved as follows. Compare with the results in [4]
for L p spaces.

Theorem 3.6. Let E be a disjointly homogeneous Banach lattice with the subsequence splitting property, such that E∗ is order contin-
uous. If T : E → E is a regular operator which is disjointly strictly singular and AM-compact, then T is compact.

Proof. Let (xn) be a norm bounded sequence in E . Since E has the subsequence splitting property, passing to a subse-
quence we have xnk = gk + hk with (gk) equi-integrable and (hk) a disjoint sequence. Since (gk) is equi-integrable, for some
subsequence (still denoted (gk)) we must have gk → g weakly for some g ∈ E [1].

Since E∗ is order continuous, |hk| tends weakly to zero. Thus, so does |T |(|hk|) which is positive. Since E ↪→ L1, we have
that |T |(|hk|) tends to zero weakly in L1, hence ‖T hk‖L1 � ‖|T |(|hk|)‖L1 → 0.

Let us apply now Kadec–Pełczyński dichotomy to the sequence (T hk) in E [8]. Suppose first that (T hk) is not contained in
any M(ε), then there is a subsequence (T hk j ) equivalent to a disjoint sequence. Hence, since the sequence (hk) is disjoint,
and E is disjointly homogeneous, passing to a further subsequence we have that (T hk j ) and (hki ) are equivalent basic
sequences. This implies that T is an isomorphism when restricted to the span of (hki ). However, this is a contradiction,
because T is disjointly strictly singular.

Therefore, (T hk) is contained in some M(ε), but then ‖T hk‖E → 0 since ‖T hk‖1 → 0. Moreover, since T is AM-compact,
T gk → T g in L1(μ) [10, Theorem 2.2]. Now, since (T gk) is equi-integrable in E , by Lemma 3.5, it follows that T gk → T g
in E; thus, T xk = T hk + T gk → T g , so T is compact. �

Notice that Theorem 3.6 need not be true if E∗ is not order continuous, even if the operator is positive, as the following
example shows.

Example. There exists a positive operator T : L1 → L1 which is disjointly strictly singular and AM-compact, but not compact.

Proof. Let ( fn) be a sequence of pairwise disjoint, positive, normalized functions in L1(0,1). Clearly, the sequence ( fn)

generates a complemented subspace isomorphic to �1. Let P : L1(0,1) → �1 denote this projection, which is clearly positive.
Now consider the operator R :�1 → L2 defined by R(e2n) = r+

n and R(e2n+1) = r−
n , where (en) denotes the canonical basis of

�1 and (rn) denotes the Rademacher functions on (0,1). Let J : L2 → L1 denote the formal inclusion.
Let us consider the operator T = J R P , which is also positive. Since the order intervals in �1 are compact, and P is

positive, T is AM-compact. Moreover, T is disjointly strictly singular, because every disjoint sequence in L1 is equivalent
to �1 and T factors through L2. However, T is not compact because the sequence ( f2n − f2n+1) is norm bounded, and its
image T ( f2n − f2n+1) = rn does not have any convergent subsequence. �
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