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a b s t r a c t

By transforming nonsymmetric linear systems to the extended skew-symmetric ones,
we present the skew-symmetric methods for solving nonsymmetric linear systems with
multiple right-hand sides. These methods are based on the block and global Arnoldi
algorithm which is formed by implementing orthogonal projections of the initial matrix
residual onto a matrix Krylov subspace. The algorithms avoid the tediously long Arnoldi
process and highly reduce expensive storage. Numerical experiments show that these
algorithms are effective and give better practical performances than global GMRES for
solving nonsymmetric linear systems with multiple right-hand sides.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Consider solving nonsymmetric linear systems with the same coefficient matrix and different right-hand sides

Ax(i) = b(i) i = 1, . . . , s. (1.1)

When all the b(i) are available simultaneously, Eq. (1.1) can be written as the matrix equation

AX = B, (1.2)

where A is an N×N real nonsymmetric matrix, B and X are N× s rectangular matrices whose columns are b(1), b(2), . . . , b(s)
and x(1), x(2), . . . , x(s), respectively. In practice, s is of moderate size s� N .
For nonsymmetric linear systems, some block Krylov subspace methods have been developed during the last years. The

well-known works include the global FOM and global GMRES algorithms [2], the block biconjugate gradient (BI-BCG) [4],
the block generalized minimal residual (BGMRES) algorithm [6], the block quasi-minimum residual (BI-QMR) algorithm
[1,3], etc. Recently, the left conjugate direction (LCD) method [7] was presented for solving the matrix equation (1.2). The
method reduces to the usual CG-type method when A is symmetric positive definite.
Let E = MN,s denote the vector space on the filed R, of rectangular matrices of dimension N × s. For X , Y ∈ E, the inner

product is defined by (X, Y )F = tr(XTY ), where tr(Z) denotes the trace of the square matrix Z and ZT denotes the transpose
of thematrix Z . The associated norm is thewell-known Frobenius normdenoted by ‖.‖F . Let V be anN×s rectangularmatrix
and the matrix Krylov subspace Km(A, V ) = span{V , AV , . . . , Am−1V }. A system of vectors of E is said to be F-orthogonal if
it is orthogonal with respect to the scalar product (., .)F .
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For Vi ∈ E, i = 1, 2, . . . , k, let Vk = [V1, V2, . . . , Vk], and let Hk denote an k× kmatrix, H.,j denote the jth column of the
matrix Hk. For α = (α1, . . . , αk)T ∈ Rk, we use the notation ∗ for the following product [2]

Vk ∗ α =
k∑
i=1

αiVi,

and

Vk ∗ Hk = [Vk ∗ H.,1,Vk ∗ H.,2, . . . ,Vk ∗ H.,k].

It is easy to see that the following relations are satisfied

V ∗ (α + β) = (V ∗ α)+ (V ∗ β) and (V ∗ Hk) ∗ α = V ∗ (Hkα),

where α and β are two vectors of Rk.
This paper is organized as follows. Section 2 presents a global Arnoldi algorithm for solving skew-symmetric systemswith

multiple right-hand sides. Section 3 constructs a newglobal Arnoldi algorithmby transformingnonsymmetric linear systems
to the extended skew-symmetric ones. Section 4 improves the skew-symmetric method obtained via QR factorization for
nonsymmetric linear systems. Section 5 discusses the convergence of the global Arnoldi process which ismuch simpler than
global Arnoldi process in [2]. Section 6 gives some numerical experiments.

2. Global and block Arnoldi process for skew-symmetric systems

Consider the skew-symmetric system

AX = B, (2.1)

where A is an N × N real skew-symmetric matrix, i.e. AT = −A, B and X are N × s rectangular matrices. Choose an initial
matrix X0 and define the residual

R0 = B− A ∗ X0.

Then, for Q1 = R0/‖R0‖F , an orthonormal basis Q1,Q2, . . . ,Qm can be obtained by the global Arnoldi process

A ∗ Qk = −hk,k−1 ∗ Qk−1 + hk+1,k ∗ Qk+1 for k = 1, 2, . . . ,m, (2.2)

where Q0 is a zero matrix. The algorithm is described as follows:

Algorithm 1. Global Arnoldi algorithm for skew-symmetric matrix equation in (2.1)

1. Choose an N × smatrix Q1 such that‖Q1‖F = 1, h1,0 = 0.
2. For k = 1, 2, . . . ,m
W = A ∗ Qk + hk,k−1 ∗ Qk−1,
hk+1,k = ‖W‖F ,
if hk+1,k = 0 stop, else Qk+1 = w/hk+1,k.

Proposition 1. If A is a skew-symmetric matrix, then

hj,k = (A ∗ Qk,Qj)F = 0 for j = 1, 2, . . . , k− 2, k

and

hk.k+1 = −hk+1,k.

Proof. In terms of (2.2), for j = 1, 2, . . . , it follows that

hj,k = (A ∗ Qk,Qj)F = (Qk, AT ∗ Qj)F = −(Qk, A ∗ Qj)F
= −(Qk,−hj,j−1 ∗ Qj−1 + hj+1,j ∗ Qj+1)F = 0,

hk,k+1 = (A ∗ Qk+1,Qk)F = −(Qk+1, A ∗ Qk)F
= −(Qk+1,−hk,k−1 ∗ Qk−1 + hk+1,k ∗ Qk+1)F
= −hk+1,k. �

Proposition 2. Let θm = [Q1,Q2, . . . ,Qm], where the N × s matrices Qi, i = 1, , 2, . . . ,m, are produced by Algorithm 1. Then

‖θm ∗ α‖F = ‖α‖2, (2.3)

where α is a vector of Rm.
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The proof for (2.3) is similar to the one given in [2]. Let Zm+1 = (Q1,Q2, . . . ,Qm+1), Zm = (Q1,Q2, . . . ,Qm), and let

Tm =


0 −h21
h21 0 −h32

. . .
. . .

. . .

hm−1,m−2 0 −hm,m−1
hm,m−1 0

 , Tm+1 =
[

Tm
0, . . . , 0, hm+1,m

]
.

Theorem 1. Let Z2m, Z2m+1, T2m and T2m+1 be given above. Then using the product ∗, the following relations hold

A ∗ Zm = Zm ∗ Tm + hm+1,m[0N×s, 0N×s, . . . ,Qm+1],

and

A ∗ Zm = Zm+1 ∗ Tm+1. (2.4)

Let the approximate solution of Eq. (2.1) be

Xm = X0 + Zm ∗ f (2.5)

with f = (f1, f2, . . . , fm)T. Then, themth residual Rm of Eq. (2.1) can be expressed as

Rm = B− A ∗ Xm = R0 − A ∗ Zm ∗ f = R0 − Zm+1 ∗ Tm+1 ∗ f ,

which leads to

‖Rm‖F = min
f∈Rm×1

‖‖R0 ‖F e1 − Tm+1 ∗ f ‖2

= ‖‖R0 ‖F e1 − Tm+1 ∗ f
∗
‖2. (2.6)

Introduce a real error tolerance satisfying |ε| = tol and rewrite (2.6) as the linear equation

[
Tm

0, 0, . . . , 0, hm+1,m

]
∗



f 1
f 2
...
fm−2
fm−1
fm

 =


‖R0‖F
0
...
0
0
ε

 , (2.7)

wherem is a even number, and

[
Tm

0, 0, . . . , 0, hm+1,m

]
∗



f 1
f 2
...
fm−2
fm−1
fm

 =


‖R0‖F
0
...
0
ε
0

 ,

wherem is an odd number. In the following we only discuss the case of even number.
Solve Eq. (2.7) to get

−h21f2 = ‖R0‖F
h21f1 − h32f3 = 0
h32f2 − h43f4 = 0
· · ·

hm−1,m−2fm−2 − hm−4,m−3fm−4 = 0
hm,m−1fm−1 = 0
hm+1,mfm = ε.

(2.8)

From (2.8) we obtain the minimization solution g∗m = (f2
∗, f4∗, . . . , f ∗m)

T which can be explicitly expressed as
f ∗2i−1 = 0 for i = 1, 2, . . . ,m/2
f ∗2 = −‖R0‖F/h21
f ∗2i = f

∗

2i−2h2i−1,2i−2/h2i,2i−1, for i = 2, 3, . . . , (m− 2)/2
f ∗m = ε/hm+1,m.

(2.9)
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From (2.8) and (2.9), we have

‖R̃m‖F = ‖‖R0 ‖F e1 − T̃2m+1 ∗ f
∗
‖2 = |hm+1,mf ∗m| = |ε|.

By (2.5) the iterative solution Xm and Xm−1 in (2.9) can be written as, respectively,

Xm = X0 +
m/2∑
i=1

f ∗2iQ2i (2.10)

and

Xm−1 = X0 +
(m−2)/2∑
i=1

f ∗2iQ2i. (2.11)

Comparing the iterative relation (2.11) with (2.10) leads to

Xm = Xm−1 + f ∗mQm.

Thus, we present a new global Arnoldi algorithm for the iteration solution Xm in (2.1) for skew-symmetric systems as
follows:

Algorithm 2. Global Arnoldi algorithm for skew-symmetric systems

1. Choose X0, and compute R0 = B− AX0,Q1 = R0/‖R0‖F .
2. For i = 1, 2, . . . construct Q1,Q2, . . . by Algorithm 1.
3. Compute f ∗2 = −‖R0‖F/h21, for i = 2, 3, . . . and compute

f ∗2i = f
∗

2i−2h2i−1,2i−2/h2i,2i−1.

4. Xm = Xm−1 + Qmf ∗m.
5. Given a tol > 0, if |ε| = tol, stop; otherwise continue.

3. Skew-symmetric method with global Arnoldi algorithm solving for nonsymmetric linear systems

We go back to the matrix equation (1.2) and construct a new matrix system

ÃX̃ = B̃, (3.1)

where

Ã =
[
0 A
−AT 0

]
, B̃ =

[
B
C

]
, X̃ =

[
Y
X

]
. (3.2)

Notice that thematrix Ã is a skew-symmetricmatrix.Moreover, Eq. (3.1) becomes the two equations: AX = B and ATY = −C
with the given matrix C . In this way, solving the matrix equation (1.2) is equivalent to solving the matrix, Eq. (3.1). Since
Ã is a skew-symmetric matrix, the global Arnoldi process can be used to solve the nonsymmetric linear equations which is
much simpler than the global Arnoldi process in [2]. Choose an initial N × smatrix

X̂0 =
[
Y0
X0

]
such that ATY0 = −C . For R0 = B− AX0, the residual of the Eq. (3.1) is denoted by

R̃0 = B̃− ÃX̃0 =
[
R0
0

]
.

Suppose that R0 6= 0, otherwise X0 is a solution of (3.1). As in Section 2, the global Arnoldi process is presented as follows:

(i) Set Q̃1 =
R̃0
‖R̃0‖F
=

[
Q1
0

]
with Q1 =

R0
‖R0‖ F

.

(ii) Set β0 = 0, and

βjQ̃j+1 = ÃQ̃j + βj−1Q̃j−1 for j = 1, 2, . . . , 2m (3.3)

with

βj = ‖ÃQ̃j + βj−1Q̃j−1‖F .
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The following relations can be gained by induction

β2k−1 = ‖ − ATQ2k−1 + β2k−2Q2k−2‖F , if β2k−1 6= 0, then

Q̃2k =
[
0
Q2k

]
, Q2k = (−ATQ2k−1 + β2k−2Q2k−2)/β2k−1;

β2k = ‖AQ2k + β2k−1Q2k−1‖F , if β2k 6= 0, then

Q̃2k+1 =
[
Q2k+1
0

]
, Q2k+1 = (AQ2k + β2k−1Q2k−1)/β2k for k = 1, 2, . . . ,m.

From the above discussions the global Arnoldi algorithm is summarized as follows:

Algorithm 3. Global Arnoldi algorithm for nonsymmetric matrix in (1.2)

1. Choose an N × smatrix Q1 such that‖Q1‖F = 1.
2. For k = 1, 2, . . . ,m
W = −ATQ2k−1 + β2k−2Q2k−2,
β2k−1 = ‖W‖F ,
if β2k−1 = 0 stop, else Q2k = w/β2k−1;
W = AQ2k + β2k−1Q2k−1,
β2k = ‖W‖F ,
if β2k = 0 stop, else Q2k+1 = W/β2k.

Let Z̃2m+1 = (Q̃1, Q̃2, . . . , Q̃2m+1), Z̃2m = (Q̃1, Q̃2, . . . , Q̃2m), and let

T̃2m =


0 −β1
β1 0 −β2

. . .
. . .

. . .

β2m−2 0 −β2m−1
β2m−1 0

 , T̃2m+1 =
[

T2m
0, 0, . . . , 0, β2m

]
.

Theorem 2. Let Z̃2m, Z̃2m+1, T̃2m and T̃2m+1 be as given above. Then using the product ∗, the following relations hold

ÃZ̃2m = Z̃2m ∗ T̃2m + β2m[0N×s, 0N×s, . . . , Q̃2m+1],

and

ÃZ̃2m = Z̃2m+1 ∗ T̃2m+1. (3.4)

Let the approximate solution of Eq. (3.1) be

X̃m =
[
Ym
Xm

]
= X̃0 + Z̃2m ∗ f (3.5)

with f = (f1, f2, . . . , f2m)T. Then, themth residual Rm of Eq. (3.1) can be expressed as

R̃m = B̃− Ã ∗ X̃m =
[
B
C

]
− Ã ∗ X̃m

= R̃0 − Ã ∗ Z̃2m ∗ f

= R̃0 − Z̃2m+1 ∗ T̃2m+1 ∗ f

= ‖R0‖F Q̃1 − Z̃2m+1 ∗ T̃2m+1 ∗ f . (3.6)

From (3.4) we get

‖R̃m‖F = min
f∈R2m×1

‖‖R0 ‖F e1 − T̃2m+1 ∗ f ‖2

= ‖‖R0 ‖F e1 − T̃2m+1 ∗ f
∗
‖2 (3.7)

with the minimization solution f ∗.
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In the same way, introduce a real error tolerance satisfying |ε| = tol and rewrite (3.7) as the linear equation

0 −β1
β1 0 −β2

. . .
. . .

. . .

β2m−2 0 −β2m−1
β2m−1 0

β2m

 ∗


f 1
f 2
...

f2m−2
f2m−1
f2m

 =


‖R0‖F
0
...
0
0
ε

 . (3.8)

Solve Eq. (3.8) to get

−β1f2 = ‖R0‖F
β1f1 − β2f3 = 0
β2f2 − β3f4 = 0
· · ·

β2m−2f2m−2 − β2m−3f2m−4 = 0
β2m−1f2m−1 = 0
β2mf2m = ε.

(3.9)

On the basis of (3.9) we obtain the minimization solution f ∗m = (f2∗, f4∗, . . . , f ∗2m)
T of (3.7) which can be explicitly

expressed as
f ∗2i−1 = 0 for i = 1, 2, . . . ,m
f ∗2 = −‖R0‖F/β1
f ∗2i = f

∗

2i−2β2i−2/β2i−1 for i = 2, 3, . . . ,m− 1
f ∗2m = ε/β2m.

(3.10)

From (3.7) and (3.10), we have

‖R̃m‖F = ‖‖R0 ‖F e1 − T̃2m+1 ∗ f
∗
‖2 = |β2mf ∗2m| = |ε| = tol.

Then, the approximation solution in (1.2) can be expressed as

Xm = Xm−1 + f ∗2mQ2m.

Now a new global skew-symmetric method for the iteration solution Xm in (1.2) can be given as follows:

Algorithm 4. Global Arnoldi algorithm for nonsymmetric linear systems in (1.2)

1. Choose X0, and compute R0 = B− AX0,Q1 = R0/‖R0‖F .
2. For i = 1, 2, . . . construct Q1,Q2, . . . by Algorithm 3.
3. Compute f ∗2 = −‖R0‖F/β1, for i = 2, 3, . . . and compute

f ∗2i = f
∗

2i−2β2i−2/β2i−1.

4. Xm = Xm−1 + Q2mf ∗2m.
5. Given a tol > 0, if |ε| ≤ tol, stop; otherwise continue.

4. Skew-symmetric method with QR factorization solving for nonsymmetric linear systems

We start to improve the skew-symmetric method obtained via QR factorization for nonsymmetric linear system (1.2). As
stated in Section 3, the same matrix equation (3.1) will be formed. Choose an initial N × smatrix

X̂0 =
[
Y0
X0

]
such that ATY0 = −C . The residual of Eq. (3.1) is denoted by

R̃0 = B̃− ÃX̃0 =
[
B− AX0
0

]
=

[
Q1R
0

]
,

where Q1R is a QR factorization of B− AX0, and Q1 is an N × s orthonormal matrix and R is s× s upper-triangular. The block
Arnoldi process is defined by

(i) Set Q̃1 =
[
Q1
0

]
.
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(ii) Set R0 = [0]s×s, Q̃0 = [0]N×s and

Q̃j+1Rj = ÃQ̃j + Q̃j−1RTj−1, j = 1, 2, . . . , 2m (Q̃ R factorization). (4.1)

The following relations can be shown by induction

Q̃2k =
[
0
Q2k

]
, Q2kR2k−1 = −ATQ2k−1 + Q2k−2RT2k−2 (QR factorization),

Q̃2k+1 =
[
Q2k+1
0

]
, Q2k+1R2k = AQ2k + Q2k−1RT2k−1 (QR factorization), k = 1, 2, . . . ,m.

Algorithm 5. Block Arnoldi algorithm for nonsymmetric matrix in (1.2)
1. Choose an N × smatrix X0 and compute Q1R = B− A ∗ X0. Let R0 = [0]s×s.
2. For k = 1, 2, . . . ,m
W = −ATQ2k−1 + Q2k−2RT2k−2,
Q2kR2k−1 = W (QR factorization);
W = AQ2k + Q2k−1RT2k−1,
Q2k+1R2k = W (QR factorization).

For the block Arnoldi algorithm, we have the similar results as in Section 3.
Let Z̃2m+1 = (Q̃1, Q̃2, . . . , Q̃2m+1), Z̃2m = (Q̃1, Q̃2, . . . , Q̃2m), and let

T̃2m =


0 −RT1
R1 0 −RT2

. . .
. . .

. . .

R2m−2 0 −RT2m−1
R2m−1 0

 , T̃2m+1 =
[

T2m
0, 0, . . . , 0, R2m

]
.

Theorem 3. Let Z̃2m, Z̃2m+1, T̃2m and T̃2m+1 be as given above. Then using the product ∗, the following relations hold

ÃZ̃2m = Z̃2m ∗ T̃2m + [0N×s, 0N×s, . . . , Q̃2m+1]R2m,

and

ÃZ̃2m = Z̃2m+1 ∗ T̃2m+1.

According to (3.7) and (3.8), we have

0 −RT1
R1 0 −RT2

. . .
. . .

. . .

R2m−2 0 −RT2m−1
R2m−1 0

R2m

 ∗


F1
F2
...

F2m−2
F2m−1
F2m

 =


RIs×s
0
...
0
0
εIs×s

 , (4.2)

in which |ε| = tol/s is given as real error tolerance and Fi is a series of s× smatrices.
Use (4.2) to obtain the minimization solution g∗m = (F2

∗, F4∗, . . . , F∗2m)
T which can be explicitly expressed as

F∗2i−1 = 0 for i = 1, 2, . . . ,m
F∗2 = −R

−T
1 R

F∗2i = R
−T
2i−1R2i−2F

∗

2i−2 for i = 2, 3, . . . ,m− 1
F∗2m = εR

−T
2m .

(4.3)

Then, we have
‖R̃m‖F = ‖RE1 − T̃2m+1 ∗ F∗‖F = ‖R2mF∗2m‖F = |ε|s = tol,

and
Xm = Xm−1 + Q2mF∗2m.

Thus, a new block skew-symmetric method for the iteration solution Xm in (1.2) can be summarized as follows:

Algorithm 6. Block Arnoldi algorithm for nonsymmetric linear systems in (1.2)
1. Choose X0, and compute Q1 (QR factorization of B− A ∗ X0).
2. For i = 1, 2, . . . construct Q1,Q2, . . . by Algorithm 5.
3. Compute F∗2 = −R

−T
1 R and F

∗

2i = R
−T
2i−1R2i−2F

∗

2i−2, for i = 2, 3, . . . ,m− 1.
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4. Xm = Xm−1 + Q2mF∗2m.
5. Given an tol > 0, if |ε| = tol/s, stop; otherwise continue.
We assume that the Ri are nonsingular in Algorithm 6, otherwise, the algorithm will stop.

5. Convergence theorem

In this section, we will give the residual evaluation of global Arnoldi Algorithm 4 and block Arnoldi Algorithm 6. To get
the convergence theorem of Algorithm 4, we need the following lemmas.

Lemma 1. Let Rm = [r
(1)
m , r

(2)
m , . . . , r

(s)
m ], where Rm are the residual of Eq. (1.2). Then

‖Rm‖F ≤
√
s max
i=1,2,...,s

‖r (i)m ‖2.

Proof. It is clear that we obtain

‖Rm‖F =

√√√√ s∑
i=1

‖r (i)m ‖22 ≤
√
s max
i=1,2,...,s

‖r (i)m ‖2. �

Lemma 2. For all Qi produced by Algorithm 3, then the following relations hold

Q2m−1 =
m−1∑
k=0

d(m)k (AAT)kR0, (5.1)

Q2m =
m−1∑
k=0

D(m)k A
T(AAT)kR0, (5.2)

where d(m)k and D(m)k are constant numbers which can be expressed by each other.

Proof. It is readily derived from Algorithm 3 that

Q1 =
R0
‖R0‖ F

= d(1)0 R0

d(1)0 = 1/‖R0‖F , and

Q2 = −ATQ1/β1 = D
(1)
0 A

TR0,

where D(1)0 = −1/‖R0‖Fβ1. Suppose that (5.1) and (5.2) hold for i = 1, 2, . . . , s. For i = s+ 1, it follows that

Q2s+1 = (AQ2s + β2s−1Q2s−1)/β2s

=

[
A
s−1∑
k=0

D(s)k A
T(AAT)kR0 + β2s−1

s−1∑
k=0

d(s)k (AA
T)kR0

]/
β2s

=

[
A
s−1∑
k=0

D(s)k A
T(AAT)kR0 + β2s−1

s∑
k=1

d(s)k (AA
T)kR0

]/
β2s

=

s∑
k=0

d(s+1)k (AAT)kR0,

and

Q2s+2 = (−ATQ2s+1 + β2sQ2s)/β2s+1

=

[
−AT

s∑
k=0

D(s+1)k AT(AAT)kR0 + β2s
s−1∑
k=0

d(s)k A
T(AAT)kR0

]/
β2s+1

=

s∑
k=0

D(s+1)k AT(AAT)kR0,

where

d(s+1)s = 1/β2sD
(s)
s−1 and D(s+1)s = −1/β2s+1d(s+1)s . �
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Theorem 4. The residual of the solution Xm in Algorithm 4 satisfies

‖Rm‖F ≤ max
i=1,2,...,s

‖r (i)0 ‖2
√
s

Tm
(
δ2n+δ

2
1

δ2n−δ
2
1

) (5.3)

and

‖X∗ − Xm‖F ≤ max
i=1,2,...,s

‖A−1‖F‖r
(i)
0 ‖2
√
s

Tm
(
δ2n+δ

2
1

δ2n−δ
2
1

) , (5.4)

where X∗ is the exact solution of (1.2).

Proof. It is not difficult to find that

‖Rm‖F = min
f2i
‖R0 −

m∑
i=1

f2iAQ2i‖F .

From (5.2) we get

AQ2m = D
(m)
m−1(AA

T)mR0 + D
(m)
m−2(AA

T)m−1R0 + · · · + D
(m)
0 (AAT)R0.

Let Qm be the set of all polynomials Pm(λ) of degree≤ m and Pm(0) = 1. From Lemma 1 it follows that

‖Rm‖F = min
f2i
‖R0 −

m∑
i=1

f2iAQ2i‖F

= min
Pm∈Qm

‖Pm(AAT)R0‖F

≤
√
s max
i=1,2,...,s

min
Pm∈Qm

‖Pm(AAT)r
(i)
0 ‖2.

Let z1, z2, . . . , zn be the unit orthogonal eigenvectors of AAT, and let δ21, δ
2
2, . . . , δ

2
n be the corresponding eigenvalues,

where δi are the singular values of the matrix A. Then

min
Pm∈Qm

‖Pm(AAT)r
(i)
0 ‖2 ≤ minPm∈Qm

max
[δ21 ,δ

2
n ]
|Pm(λ2)|2‖r

(i)
0 ‖2, (5.5)

where δ1 and δn are the smallest and largest singular values of A, respectively. The Chebyshev polynomial of degree m can
be expressed by

Tm(x) =
1
2
[(x+ 2

√
x2 − 1)m + (x− 2

√
x2 − 1)m].

Let

P(X) = Tm

(
2x

δ2n − δ
2
1
−
δ2n + δ

2
1

δ2n − δ
2
1

)/
Tm

(
δ2n + δ

2
1

δ2n − δ
2
1

)
,

with P(x) ∈ Qm. It follows from (5.5) that

min
Pm∈Qm

‖Pm(AAT)r
(i)
0 ‖2 ≤ max

[δ21 ,δ
2
n ]
|P(x)|‖r (i)0 ‖2

=
‖r (i)0 ‖2

Tm
(
δ2n+δ

2
1

δ2n−δ
2
1

) . (5.6)

In terms of (5.6) we have

‖Rm‖F ≤
√
s max
i=1,2,...,s

min
Pm∈Qm

‖Pm(AAT)r
(i)
0 ‖2

≤ max
i=1,2,...,s

‖r (i)0 ‖2
√
s

Tm
(
δ2n+δ

2
1

δ2n−δ
2
1

) ,
which accomplishes the proof of the relation (5.3).
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Table 1
The number of iterations and CPU time

Matrix n Method s
4 8 16 20 24

sherman 5 3312 Algorithm 6 8079(91.34) 3162(75.86) 1430(81.53) 1374(124) 1282(166)
block GMRES 328(924) 192(825) 104(563) 85(498) 71(421)
Algorithm 4 32306(339) 32403(561) 32641(1110) 32918(1750) 33016(2210)

cdde5 961 Algorithm 6 323(1.06) 172(1.26) 92(1.4) 78(1.71) 69(1.71)
block GMRES 97(11) 60(11.812) 32(8.1) 26(6.95) 23(7.14)
Algorithm 4 1003(6.98) 1026(12.81) 1027(25.57) 1030(43.53) 1040(82.75)

rdb1048 2048 Algorithm 6 362(3.04) 347(5.7) 248(10.12) 214(14.7) 169(14.57)
block GMRES 82(13.37) 73(44.62) 43(40.57) 33(29.12) 26(21.9)
Algorithm 4 1003(6.98) 1026(12.81) 1027(25.57) 1030(43.53) 1040(82.75)

sherman 4 1104 Algorithm 6 268(0.7) 120(0.7) 57(0.84) 49(0.95) 49(1.35)
block GMRES 64(2.82) 47(5.2) 33(9.45) 29(10.51) 25(10.04)

cavity07 1182 Algorithm 6 7372(102) 2759(57.6) 971(35.62) 678(31.81) 570(33.62)
block GMRES 228(332) 121(141) 67(105) 56(98.65) 47(84.73)

pde2961 2961 Algorithm 6 873(13.56) 503(16.46) 301(19.56) 250(22.5) 214(32.25)
block GMRES 149(108) 116(228) 89(507) 83(660) 80(995)

tols2000 2000 Algorithm 6 4274(35.46) 1215(19.73) 367(14.87) 262(13.29) 195(14.37)
block GMRES 206(237) 106(136) 56(87.9) 45(75.12) 39(123)

Since X∗ − Xm = A−1Rm and R0 = A(X∗ − X0), from the above result, we obtain that

‖X∗ − Xm‖F ≤ ‖A−1‖F‖Rm‖F

≤ max
i=1,2,...,s

‖A−1‖F‖r
(i)
0 ‖2
√
s

Tm
(
δ2n+δ

2
1

δ2n−δ
2
1

) . �

We use ‘‘block’’ Krylov subspaces Km(A, R0) = span{R0, AR0, . . . , Am−1R0}, where the block is defined such that

Bm =

{
m−1∑
k=0

AkR0γk : γkεRs×s
}
,

and use ‘‘global’’ Krylov subspaces Km(A, R0) = span{R0, AR0, . . . , Am−1R0}, where the block is defined such that

B∆m =

{
m−1∑
k=0

γkAkR0 : γkεR

}
.

The search space B∆m has only m dimension, while Bm has ms
2 dimension [5]. Note that Algorithm 4 requires least scalar

work, but the dimension of its search space is s2 which is smaller than that of Algorithm 6.

6. Numerical examples

All the numerical experiments presented are computed in double precision with some Matlab 6.5 codes. For all the
examples the initial guess X0 is taken to be the zero matrix. The right-hand sides B are chosen such that the exact solution
X is a matrix of order n × s whose all entries are equal to one. We will use the above algorithms to test some numerical
example. We pick nonsymmetric matrices from theMatrix Market. For all the experiments, the initial guess was taken to be
zero. The tests were stopped as soon as (‖Rm‖F/‖R0‖F ) � 10−8. Fig. 1 shows the convergence of residuals for Algorithm 6
andblockGMRESwith fidap004 in the case of s = 8. From the following figure it is not difficult to show that Algorithm6gives
a higher practical performance than block GMRES. The following numerical experiments show that the algorithms avoid the
tediously long Arnoldi process and highly reduce expensive storage which are produced by the block GMRES (see Table 1).
By carrying out many numerical experiments, we find that ‘‘breakdown’’ does not appear in Algorithm 4 and that

Algorithm 6 gives a higher performance than block GMRES. Moreover, we only need four spaces to store less variables in
the computation. Therefore the two given algorithms avoid the tediously long Arnoldi process and highly reduce expensive
storage. They are really attractive algorithms for solving nonsymmetric linear equation systems.

7. Conclusion

In this paper we present the skew-symmetric system methods for solving nonsymmetric linear systems with multiple
right-hand sides. These methods are based on the global Arnoldi Algorithm 4 and the block Arnoldi Algorithm 6. Many
numerical experiments verify that Algorithm 6 and Algorithm 4 are attractive for solving nonsymmetric linear systems
with multiple right-hand sides.
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Fig. 1. Algorithm 6 and block GMRES. This figure shows the behaviour of the Frobenius residual norms.
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