
Physics Letters B 723 (2013) 196–200
Contents lists available at SciVerse ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Implications of a matter-radius measurement for the structure of Carbon-22

B. Acharya a, C. Ji a,b, D.R. Phillips a,∗
a Department of Physics and Astronomy, Ohio University, Athens, OH 45701, USA
b TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada 1

a r t i c l e i n f o a b s t r a c t

Article history:
Received 1 April 2013
Received in revised form 25 April 2013
Accepted 25 April 2013
Available online 29 April 2013
Editor: W. Haxton

Keywords:
Efimov states
Effective field theory
Few-body systems
Halo nuclei

We study Borromean 2n-halo nuclei using effective field theory. We compute the universal scaling
function that relates the mean-square matter radius of the 2n halo to dimensionless ratios of two- and
three-body energies. We use the experimental value of the rms matter radius of 22C measured by Tanaka
et al. (2010) [3] to put constraints on its 2n separation energy and the 20C–n virtual energy. We also
explore the consequences of these constraints for the existence of excited Efimov states in this nucleus.
We find that, for 22C to have an rms matter radius within 1–σ of the experimental value, the two-
neutron separation energy of 22C needs to be below 100 keV. Consequently, this three-body halo system
can have an excited Efimov state only if the 20C–n system has a resonance within 1 keV of the scattering
threshold.

© 2013 Elsevier B.V. All rights reserved.
In the last twenty years several nuclei where the neutron dis-
tribution extends far beyond that of the protons have been discov-
ered. These nuclei, such as 11Li and 12Be thus have neutron “halos”
(see Refs. [1,2] for early reviews). Understanding the way in which
nuclear structure changes in these neutron-rich systems may pro-
vide important clues to the behavior of nuclei far from the N = Z
line.

The most neutron-rich isotope of Carbon yet produced, 22C,
has recently been identified as another example of a halo system.
Tanaka et al. measured the reaction cross-section of 22C on a hy-
drogen target and, using Glauber calculations, deduced a 22C rms
matter radius of 5.4 ± 0.9 fm [3]. Their measurement implies that
the two valence neutrons in 22C preferentially occupy the 1s1/2 or-
bital and are weakly bound [3]. This conclusion is supported by
data on high-energy two-neutron removal from 22C [4]. Since 21C
is unbound [5], this suggests that 22C is an s-wave Borromean halo
nucleus with two neutrons orbiting a 20C core.

In this work, we implement such a description of 22C in an
effective field theory (EFT) for systems with short-range interac-
tions. This EFT was developed to study few-nucleon systems with
scattering length much larger than the interaction range (see Refs.
[6,7] for reviews). It was then applied to the α–n system in Refs.
[8,9], extended to study three-body systems in Ref. [10], and ap-
plied to 2n-halo nuclei in Refs. [11,12]. At leading order (LO) in
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the theory the only inputs to the equations that describe a 2n halo
are the energies of the neutron-core resonance/bound-state, Enc ,
and the nn virtual bound state, Enn , as well as the binding en-
ergy, B , of the halo nucleus.2 All other properties of the nucleus
are predicted once these (together with the core-neutron mass ra-
tio A) are specified. Here we use the EFT to compute the function
that describes the mean-square matter radius of an arbitrary Bor-
romean 2n halo.

We then focus on exploring properties of 22C, treated as a
2n-halo nucleus with a 20C core. For 22C, neither Enc nor B is well-
known [13–17]. We therefore use EFT to find constraints in the
(B, Enc) plane using Tanaka et al.’s value of the rms matter radius.
A similar strategy was recently pursued in Ref. [17], although there
a simpler model of 22C’s structure was employed. The connec-
tion between the binding energy and several low-energy properties
of 22C, including the rms matter radius, has also been explored in
a three-body model by Ershov et al. [18].

Yamashita and collaborators investigated such correlations in
halo nuclei already in 2004 [19] (see also Ref. [20] for a review). In
2011 Yamashita et al. [21] attempted to apply EFT to analyze the
experiment of Ref. [3]. However, as we shall discuss further below,
an additional assumption was made in Ref. [21] which renders the
results of Yamashita et al. model-dependent. The results we obtain
here therefore differ—both in principle and in practice—from those
of Ref. [21].

2 The binding energy of 22C treated as a three-body system is equal to the two-
neutron separation energy of the nucleus, S2n .
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The EFT description of three-body systems developed in
Ref. [10] also provides insights into the Efimov effect [22] (see
Ref. [23] for a review). This phenomenon occurs in the three-body
system when the two-body interaction generates a scattering
length, a, that is large compared to its range. For sufficiently large
a there is a sequence of three-body states whose properties are re-
lated by discrete scale transformations. Refs. [11,12,20,24] explore
the possibility of finding excited Efimov states in several 2n-halo
nuclei, including 20C and 22C. We use our constraint on the bind-
ing energy of 22C to discuss the possibility that such states occur
there.

1. Halo EFT at LO

Effective field theory is a powerful tool to study few-body sys-
tems at low energies, because long-distance properties of the sys-
tem are insensitive to the details of the underlying short-range
interactions. In the case of the effective field theory for halo nuclei
(“Halo EFT”) the breakdown scale of the EFT, Λ0, is of the order of
the inverse of the range of the two-body interactions, and this is
much larger than Q , the generic low-momentum scale of the sys-
tem. Q can represent either the momentum of the process p, or
1/a. At LO, we ignore terms suppressed by Q /Λ0, which amounts
to approximating the two-body potentials to be zero-range. The
results of LO EFT calculations are, therefore, universal in the sense
that they are independent of the short-distance physics. The “range
effects” can be systematically taken into account order-by-order
in the Q /Λ0 expansion [25–33]. However, even in an LO calcu-
lation, one can estimate the uncertainty due to these neglected
higher-order terms. This feature of EFT allows us to account for its
theoretical uncertainty, and makes it uniquely suited to constrain-
ing B and Enc of 22C from the matter-radius measurement.

2. Faddeev equations

The two-body virtual energies, Enx , are related to the scattering
lengths, anx , by

Enx = 1

2μnxa2
nx

+ · · · , (1)

where, x = n or c, μnx is the reduced mass of the corresponding
two-body system, and the ellipses indicate higher-order correc-
tions. Throughout this Letter, we work in units with h̄ = c = 1.

Following Refs. [10,11], we write the Faddeev equations for the
spectator functions, Fx(q), which describe the relative motion of
the spectator particle, x, and the center of mass of the other two
particles for an s-wave three-body bound state of two neutrons of
mass m each, and a core of mass Am.
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The two-body t-matrices are
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To solve the Faddeev equations, an ultraviolet cutoff, Λ, needs
to be introduced to the integrals. The three-body contact interac-
tion, H(Λ), is then required to cancel the cutoff-dependence [10].
H(Λ) scales as mh(Λ)/Λ2 where h(Λ) ∼ O(1). We have verified
that one three-body counter term, added to Gn

0 in Eq. (2), is suffi-
cient to renormalize Eqs. (2) and (3). Furthermore, all the results in
this Letter can also be replicated by adding a three-body counter
term to each of the Green’s functions in Eqs. (2) and (3).

In Ref. [11], Gaussian regulators were introduced in the two-
body potential to regularize the effects of the short-range inter-
actions on the two and three-body observables at a cutoff scale
Λ. This is equivalent to our zero-range approximation up to cor-
rections of order Q /Λ in the EFT. In Refs. [19–21] a subtraction
was performed on the equations for the spectator functions. The
subtraction functions were then set by assuming that the Born
approximation holds for an appropriate subtraction point. This as-
sumption is, however, not valid for the integral equations which
are employed here [34,35].

The three-body wave function in the Jacobi representation with
the neutron as the spectator is

Ψn(p,q) = Gn
0(p,q; B)

{
tn(q; B)Fn(q)

+ 1

2

1∫
−1

d(p̂.q̂) tn
(
π ′

nn(�p, �q); B
)

Fn
(
π ′

nn(�p, �q)
)

+ tc
(
π ′

nc(�p, �q); B
)

Fc
(
π ′

nc(�p, �q)
)}

, (11)

and with the core as the spectator is
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Fig. 1. The dimensionless function f (0,0; A), defined by Eq. (20), versus A.
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The one-body form factors are then given by
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where the wave functions Ψx are normalized so that Fx(0) = 1.
The mean-square distance of the neutron from the center of mass
of the core and the other neutron, 〈r2

n−nc〉, can be extracted from
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(
k2) = 1 − 1

6
k2〈r2

n−nc

〉 + · · · , (17)

and the mean-square distance of the core from the center of mass
of the neutrons, 〈r2

c−nn〉, from
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3. A two-neutron halo nucleus with a point-like core

Based on geometrical arguments, we obtain the following for-
mula for the mean-square matter radius of a two-neutron halo in
the point-like core approximation, 〈r2

0〉:
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At LO in Halo EFT, the quantity mB〈r2
0〉 depends on all the variables

featuring in the Faddeev equations: Enn , Enc , B and A. But, being
dimensionless itself, it can only depend on dimensionless ratios of
these four parameters. Thus it is convenient to define the function
f (Enn/B, Enc/B; A), as [19]:

mB
〈
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〉 ≡ f

(
Enn

B
,

Enc

B
; A

)
. (20)

We calculated mB〈r2
0〉 at the unitary limit Enn = Enc = 0. It is

plotted in Fig. 1 as a function of A. These results are in qual-
itative agreement with those of Ref. [19], but our value of f is
lower, which means that Yamashita et al. overpredict the unitary
limit 〈r2

0〉 for a given B . The discrepancy is approximately 15% for
A = 20.
Fig. 2. f (Enn/B, Enc/B;20) versus (Enn/B, Enc/B).

4. Implications for 22C

The function f can be calculated for any value of A, but spe-
cializing now to the case of interest for 22C, Fig. 2 shows a three-
dimensional plot of f (Enn/B, Enc/B;20) in the (Enn/B, Enc/B)

plane. The disagreement with the results of Ref. [21] appears to
be worse at finite values of Enc and Enn than the 15% we found in
the limit Enn = Enc = 0.

Fig. 2 gives us the results we need in order to set a model-
independent constraint on the binding energies of 21C and 22C.
First, though, we must account for the fact that, when applied to
this system, Halo EFT only reliably predicts the difference between
the 22C matter radius and that of 20C. We account for the finite
spatial extent of the core by including that effect in our expression
for the mean-square matter radius of the two-neutron halo:

〈
r2〉 = 〈

r2
0

〉 + A

A + 2

〈
r2〉

core. (21)

Here 〈r2〉core is the mean-square radius of the core, which we take
from the 20C rms radius of (2.98 ± 0.05) fm measured by Ozawa
et al. [36]. In subsequent calculations we also use the value of Enn

obtained from ann = (−18.7 ± 0.6) fm [37].
To calculate the cutoff of our EFT, we approximate the range of

the neutron-core interaction by the size of the 20C rms radius. We
then estimate the relative error of our calculation by

√
mEnn/Λ0,√

2mEnc/Λ0 or
√

2mB/Λ0, whichever is the largest. The spectrum
of 20C has also been measured [38]. It contains one bound 2+ state
which lies 1.588 MeV above the ground state. We have not used
this energy scale in assessing the breakdown of Halo EFT for 22C,
since the 2+ state can affect s-wave scattering processes only via
higher-dimensional operators which do not enter the calculation at
next-to-leading order.

More generally, one might be concerned about the impact of
neutrons in d-wave states on the structure of 22C. The LO EFT be-
ing used here does not preclude the existence of such states in
either 20C or 22C, it only assumes that their primary effect on
long-distance dynamics can be subsumed into the neutron-core
and neutron–neutron-core contact interactions which appear in
the leading-order calculation.

4.1. Constraints on Enc and B

In Fig. 3, we plot the sets of (B , Enc) values that give
√〈r2〉 =

4.5 fm, 5.4 fm and 6.3 fm, along with the theoretical error bands.
All sets of B and Enc values in the plotted region that lie within
the area bounded by the edges of these bands give an rms mat-
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Fig. 3. Plots of
√〈r2〉 = 5.4 fm (blue, dashed), 6.3 fm (red, solid), and 4.5 fm (green,

dotted), with their theoretical error bands, in the (B, Enc) plane. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this Letter.)

ter radius within the combined (1–σ ) experimental and theoretical
error of the value extracted by Tanaka et al. The figure shows
that, regardless of the value of the 20C–n virtual energy, Tanaka
et al.’s experimental result puts a model-independent upper limit
of 100 keV on the 2n separation energy of 22C.

Since Yamashita et al. obtain an LO matter radius that is too
large for a given binding energy, their constraints on the maximum
possible value of B are about 20% weaker than ours. We also reiter-
ate that their results are based on an incorrect assumption regard-
ing the high-energy behavior of the integral-equation kernel. Our
result for the maximum binding energy of 22C is a factor of two
smaller than that found by Fortune and Sherr [17]. Ref. [17] postu-
lated that a simple extension of the model-independent relation-
ship between B and 〈r2

0〉 that prevails in a one-neutron halo [39]
applies to two-neutron halos. Our calculation suggests that the re-
lationship proposed in Ref. [17] does not accurately capture the
three-body dynamics of the 2n-halo system.

4.2. Implications for existence of an excited Efimov state

Following Refs. [11,12], we construct a region in the (B, Enc)
plane within which an excited Efimov state in 22C could occur. In
Fig. 4 the purple region is that which allows at least one excited
Efimov state above the ground state in an A = 20 Borromean nu-
cleus. In the same plot, we also show the boundary curves that
enclose the sets of Enc and B values which are consistent with an
rms matter radius of 5.4 ± 0.9 fm once the theoretical errors are
taken into account, i.e. those already displayed in Fig. 3.

The Efimov-excited-state-allowed and rms-radius-constraint re-
gions do not overlap for a 20C–n virtual energy larger than a keV.
(The 22C radius can be computed accurately for 20C–n virtual-state
energies very close to threshold, but the computation of the ex-
istence of an Efimov state becomes numerically delicate here.) In-
deed, as long as the trend in Fig. 4 continues, Efimov states seem
to be precluded for values of Enc well below 1 keV. However, we
cannot make a stronger statement than this, since an Efimov state
is present if we take Enc = 0, as a consequence of the fact that
there are two 20C–n pairs in the 22C system [23]. Therefore, while
we cannot categorically rule out the existence of an Efimov state
in 22C, we can say that the 21C system would need to be tuned
very close to the unitary limit in order for one to be present.

5. Conclusion

We used Halo EFT at leading order to examine the behav-
ior of the rms matter radius of s-wave Borromean halo nuclei
in the (Enn/B, Enc/B) plane. We computed the universal func-
Fig. 4. The region in the (B, Enc) plane that allows excited Efimov states (purple),
and the region that encloses values consistent with the experimental rms matter
radius of 5.4 ± 0.9 fm (with same color-coding as in Fig. 3). (For interpretation of
the references to color in this figure legend, the reader is referred to the web ver-
sion of this Letter.)

tion f which describes this behavior in a model-independent fash-
ion. We then applied these results to 22C, and put constraints on
the (B, Enc) parameter space using the experimental value of the
22C matter radius. In contrast to previous works [17,18,21] which
examined this problem, our constraint makes very few assump-
tions about the structure of 22C. We use only the experimentally
well-supported idea that it can be treated as a three-body system
composed of 20C and two neutrons. Furthermore, our result incor-
porates the anticipated theoretical uncertainty of the leading-order
Halo EFT calculation based on this cluster picture. Even after this
uncertainty, and the experimental (1–σ ) error bar, are taken into
account we find that B < 100 keV for all values of Enc . This rules
out the possibility of an excited Efimov state in the 22C nucleus
unless the 20C–n system has a virtual state with an energy much
smaller than 1 keV.
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