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Although nonnegative matrix factorization (NMF) favors a sparse and part-based representation of

nonnegative data, there is no guarantee for this behavior. Several authors proposed NMF methods

which enforce sparseness by constraining or penalizing the ‘1-norm of the factor matrices. On the other

hand, little work has been done using a more natural sparseness measure, the ‘0-pseudo-norm. In this

paper, we propose a framework for approximate NMF which constrains the ‘0-norm of the basis matrix,

or the coefficient matrix, respectively. For this purpose, techniques for unconstrained NMF can be easily

incorporated, such as multiplicative update rules, or the alternating nonnegative least-squares scheme.

In experiments we demonstrate the benefits of our methods, which compare to, or outperform existing

approaches.

& 2011 Elsevier B.V. Open access under CC BY-NC-ND license.
1. Introduction

Nonnegative matrix factorization (NMF) aims to factorize a
nonnegative matrix X into a product of nonnegative matrices W
and H. We can distinguish between exact NMF, i.e. X¼WH, and
approximate NMF, i.e. X�WH. For approximate NMF, which
seems more relevant for practical applications, one needs to
define a divergence measure between the data X and its recon-
struction WH, such as the Frobenius norm or the generalized
Kullback–Leibler divergence [1]. Approaches using more general-
ized measures, such as Bregman divergences or the a-divergence,
can be found in [2,3]. In this paper, we focus on approximate NMF
using the Frobenius norm as objective. Let the dimensions of X, W
and H be D� N, D� K , and K � N, respectively. When the columns
of X are multidimensional measurements of some process, the
columns of W gain the interpretation of basis vectors, while H
contains the corresponding weights. The number of basis vectors
(or inner approximation rank) K is typically assumed to be
K5minðD,NÞ. Hence, NMF is typically used as compressive
technique.

Originally proposed by Paatero and Tapper under the term
positive matrix factorization [4], NMF became widely known due
to the work of Lee and Seung [5,1]. One reason for its popularity is
that the multiplicative update rules proposed in [1] are easy to
implement. Furthermore, since these algorithms rely only on
matrix multiplication and element-wise multiplication, they
are fast on systems with well-tuned linear algebra methods. The
main reason for its popularity, however, is that NMF tends to
z).

Y-NC-ND license.
return a sparse and part-based representation of its input data,
which makes its application interesting in areas such as computer
vision [5], speech and audio processing [6–9], document cluster-
ing [10], to name but a few. This naturally occurring sparseness
gives NMF a special status compared to other matrix factorization
methods such as principal/independent component analysis or
k-means clustering.

However, sparsity in NMF occurs as a by-product due to
nonnegativity constraints, rather than being a design objective
of its own. Various authors proposed modified NMF algorithms
which explicitly enforce sparseness. These methods usually pena-
lize [11,12] or constrain [13] the ‘1-norm of H or W, which is
known to yield a sparse representation [14,15]. An explanation for
the sparseness inducing nature of the ‘1-norm is that it can be
interpreted as a convex relaxation of the ‘0-(pseudo)-norm, i.e.
the number of non-zero entries in a vector. Indeed, the ‘0-norm is
a more intuitive sparseness measure, which allows to specify a
certain number of non-zero entries, while similar statements
cannot be made via the ‘1-norm. Introducing the non-convex
‘0-norm as constraint function typically renders a problem NP-
hard, requiring exhaustive combinatoric search. However, Vavasis
[16] has shown that NMF is NP-hard per se,1 so we have to accept
(most probably) that any algorithm for NMF is suboptimal. Hence,
a heuristic method for NMF with ‘0-constraints might be just as
appropriate and efficient as ‘1-sparse NMF.

Little work is concerned with ‘0-sparse NMF. The K-SVD
algorithm [17] aims to find an overcomplete dictionary for sparse
1 He actually has shown that the decision problem, whether an exact NMF of a

certain rank exists or not, is NP-hard. An optimal algorithm for approximate NMF

can be used to solve the decision problem. Hence NP-hardness follows also for

approximate NMF.
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representation of a set of training signals X. The algorithm
minimizes the approximation error between data X and its
reconstruction WH, where ‘0-constraints are imposed on the
columns of H. The nonnegative version of K-SVD [18] additionally
constrains all matrices to be nonnegative. Hence, nonnegative
K-SVD can be interpreted as NMF with sparseness constraints on
the columns of H. Probabilistic sparse matrix factorization (PSMF)
[19] is closely related to K-SVD, however, no nonnegative PSMF
was proposed so far. Morup et al. [20] proposed an approximate
NMF algorithm which constrains the ‘0-norm of the H columns,
using a nonnegative version of least angle regression and selec-
tion [21]. For the W update, they used the normalization-invar-
iant update rule described in [12]. In [22], a method for NMF was
described, which penalizes a smoothed ‘0-norm of the matrix H.
Using this smooth approximation of the ‘0-norm, they were able
to derive multiplicative update rules, similar as in [1]. More
details about prior art concerned with ‘0-sparse NMF can be
found in Section 2.4.

In this paper, we propose two generic strategies to compute an
approximate NMF with ‘0-sparseness constraints on the columns
of H or W, respectively. For NMF with constraints on H, the key
challenge is to find a good approximate solution for the non-
negative sparse coding problem, which is NP-hard in general [23].
For sparse coding without nonnegativity constraints, a popular
approximation algorithm is orthogonal matching pursuit (OMP)
[24], due to its simplicity and theoretic guarantees [25,26]. Here,
we show a close relation between OMP and the active
set algorithm for nonnegative least squares (NNLS) [27], which,
to the best of our knowledge, was overlooked in the literature so
far. As a consequence, we propose a simple modification of NNLS,
called sparse NNLS (sNNLS), which represents a natural integra-
tion of nonnegativity constraints in OMP. Furthermore, we pro-
pose an algorithm called reverse sparse NNLS (rsNNLS), which
uses a reversed matching pursuit principle. This algorithm shows
the best performance of all sparse coders in our experiments, and
competes with or outperforms nonnegative basis pursuit (NNBP).
Note that basis pursuit usually delivers better results than
algorithms from the matching pursuit family, while requiring
more computational resources [28,25]. For the second stage in our
framework, which updates W and the non-zero coefficients in H,
we show that the standard multiplicative update rules [1] can be
used without any modification. Also, we propose a sparseness
maintaining active set algorithm for NNLS, which allows to apply
an alternating least squares scheme for ‘0-sparse NMF.

Furthermore, we propose an algorithm for NMF with
‘0-constrained columns in W. As far as we know, no method
exists for this problem so far. The proposed algorithm follows a
similar approach as in ‘1-constrained NMF [13], projecting the
columns of W onto the closest vectors with desired sparseness
after each update step. In experiments, the algorithm runs much
faster than the ‘1-constrained method. Furthermore, the results of
the proposed method are significantly sparser in terms of the
‘0-norm while achieving the same reconstruction quality.

Throughout the paper, we use the following notation. Upper-case
boldface letter denote matrices. For sets we use Fraktur letters, e.g. P.
A lower-case boldface letter denotes a column vector. A lower-case
boldface letter with a subscript index denotes a specific column of
the matrix denoted by the same upper-case letter, e.g. xi is the ith
column of matrix X. Lower-case letters with subscripts denote
specific entries of a vector or a matrix, e.g. xi is the ith entry of x
and xi,j is the entry in the ith row and the jth column of X. A matrix
symbol subscripted with a set symbol denotes the submatrix
consisting of the columns which are indexed by the elements of
the set, e.g. WP is the sub-matrix of W containing the columns
indexed by P. Similarly, a vector subscripted by a set symbol is the
sub-vector containing the entries indexed by the set. With J � Jp,pZ1
we denote the ‘p-norm: JxJp ¼ ð
P

i9xi9
p
Þ
1=p. Further, J � J0 denotes

the ‘0-pseudo-norm, i.e. the number of non-zero entries in the

argument. The Frobenius norm is defined as JXJF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i,j9xi,j9

2
q

.

The paper is organized as follows. In Section 2 we discuss
NMF techniques related to our work. We present our framework
for ‘0-sparse NMF in Section 3. Experiments are presented in
Section 4 and Section 5 concludes the paper.
2. Related work

Let us formalize NMF as the following optimization problem:

minimize
W,H

JX�WHJF

subject to WZ0,

HZ0, ð1Þ

where Z denotes the element-wise greater-or-equal operator.

2.1. NMF via multiplicative updates

Lee and Seung [1] showed that JX�WHJF is nonincreasing
under the multiplicative update rules

H’H�
ðWT XÞ

ðWT WHÞ
ð2Þ

and

W’W�
ðXHT

Þ

ðWHHT
Þ
, ð3Þ

where � and / denote element-wise multiplication and division,
respectively. Obviously, these update rules preserve nonnegativ-
ity of W and H, given that X is element-wise nonnegative.

2.2. NMF via alternating nonnegative least squares

Paatero and Tapper [4] originally suggested to solve (1)
alternately for W and H, i.e. to iterate the following two steps:

H’arg min
H

JX�WHJF s:t: HZ0,

W’arg min
W

JX�WHJF s:t: WZ0:

Note that JX�WHJF is convex in either W or H, respectively, but
non-convex in W and H jointly. An optimal solution for each sub-
problem is found by solving a nonnegatively constrained least-
squares problem (NNLS) with multiple right hand sides (i.e. one
for each column of X). Consequently, this scheme is called
alternating nonnegative least-squares (ANLS). For this purpose,
we can use the well known active-set algorithm by Lawson
and Hanson [27], which for convenience is shown in Algorithm
1. The symbol y denotes the pseudo-inverse.

Algorithm 1. Active-set NNLS [27].
1:
 Z ¼ f1, . . . ,Kg,P ¼ |

2:
 h¼ 0

3:
 r¼ x�Wh

4:
 a¼WT r

5:
 while 9Z940 and ( iAZ : ai40 do
6:
 in ¼ arg max a

7:
 Z’Z\in
8:
 P’P [ in
9:
 zP ¼Wy

Px
10:
 zZ ¼ 0

11:
 while ( jAP : zjo0 do
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12:
2 T

lumn
a¼min
kAP

hk=ðhk�zkÞ
13:
 h’hþaðz�hÞ

14:
 Z’fi9hi ¼ 0g
15:
 P’fi9hi40g
16:
 zP ¼Wy

Px
17:
 zZ ¼ 0

18:
 end while

19:
 h’z

20:
 r¼ x�Wh

21:
 a¼WT r

22:
 end while
This algorithm solves NNLS for a single right hand side, i.e. it
returns arg minhJx�WhJ2, s:t: hZ0, for an arbitrary vector x.
The active set Z and the in-active set P contain disjointly the
indices of the h entries. Entries with indices in Z are held at zero
(i.e. the nonnegativity constraints are active), while entries with
indices in P have positive values. In the outer loop of Algorithm 1,
indices are moved from Z to P, until an optimal solution is
obtained (cf. [27] for details). The inner loop (steps 11–18)
corrects the tentative, possibly infeasible (i.e. negative) solution
z to a feasible one. Note that in is guaranteed to be an element of
Z in step 6, since the residual x�Wh is orthogonal to every
column in WP , and hence aP � 0. Lawson and Hanson [27]
showed that the outer loop has to terminate eventually, since
the residual error strictly decreases in each iteration, which
implies that no in-active set P is considered twice. Unfortunately,
there is no polynomial runtime guarantee for NNLS. However,
they report that the algorithm typically runs well-behaved.

For ANLS, one can apply Algorithm 1 to all columns of X
independently, in order to solve for H.2 However, a more efficient
variant of NNLS with multiple right hand sides was proposed
in [29]. This algorithm executes Algorithm 1 quasi-parallel for all
columns in X, and solves step 16 (least-squares) jointly for all
columns sharing the same in-active set P. Kim and Park [30]
applied this more efficient variant to ANLS-NMF. Alternatively,
NNLS can be solved using numerical approaches, such as the
projected gradient algorithm proposed in [31]. For the remainder
of the paper, we use the notation h¼NNLSðx,WÞ to state that x is
approximated by Wh in NNLS sense. Similarly, H¼NNLSðX,WÞ
denotes the solution of an NNLS problem with multiple right
hand sides.

2.3. Sparse NMF

Various extensions have been proposed in order to incorporate
sparsity in NMF, where sparseness is typically measured via some
function of the ‘1-norm. Hoyer [11] proposed an algorithm to
minimize the objective JX�WHJ2

Fþl
P

ij9Hij9, which penalizes the
‘1-norm of the coefficient matrix H. Eggert and Koerner [12] used
the same objective, but proposed an alternative update which
implicitly normalizes the columns of W to unit length. Further-
more, Hoyer [13] defined the following sparseness function for an
arbitrary vector x:

sparsenessðxÞ ¼

ffiffiffiffi
D
p
�JxJ1=JxJ2ffiffiffiffi

D
p
�1

, ð4Þ

where D is the dimensionality of x. Indeed, sparsenessðxÞ is 0, if all
entries of x are non-zero and their absolute values are all equal,
and 1 when only one entry is non-zero. For all other x, the
o solve for W, one transposes X and H and executes the algorithm for each

of XT .
function smoothly interpolates between these extreme cases.
Hoyer provided an NMF algorithm which constrains the sparse-
ness of the columns of W, the rows of H, or both, to any desired
sparseness value according to (4). There are further approaches
which aim to achieve a part-based and sparse representation,
such as local NMF [32] and non-smooth NMF [33].

2.4. Prior art for ‘0-sparse NMF

As mentioned in the Introduction, relatively few approaches
exist for ‘0-sparse NMF. The K-SVD algorithm [17] aims to
minimizeW,HJX�WHJF , subject to JhiJ0rL,8i, where LAN is the
maximal number of non-zero coefficients per column of H. Hence, the
nonnegative version of K-SVD (NNK-SVD) [18] can be considered as
an NMF algorithm with ‘0-sparseness constraints on the columns of
H. However, the sparse coding stage in nonnegative K-SVD is rather
an ad hoc solution, using an approximate version of nonnegative basis
pursuit [28]. For the W update stage, the K-SVD dictionary update is
modified, by simply truncating negative values to zero after each
iteration of an SVD approximation.

In [20], an algorithm for NMF with ‘0-sparseness constraints
on the H columns was proposed. For the sparse coding stage, they
used a nonnegative version of least angle regression and selection
(LARS) [21], called NLARS. This algorithm returns a so-called
solution path of the ‘1-regularized objective Jx�WhJ2

FþlJhJ1

using an active-set algorithm, i.e. it returns several solution
vectors h with varying l. For a specific column x out of X, one
takes the solution h with desired ‘0-sparseness (when there are
several such vectors, one selects the solution with smallest
regularization parameter l). Repeating this for each column of
X, one obtains a nonnegative coding matrix with ‘0-sparseness on
its columns. To update W, the authors used the self-normalizing
multiplicative update rule described in [12].

In [22], the objective Jx�WhJ2
Fþa

P
i

P
jf sðhi,jÞ is considered,

where f sðhÞ ¼ expð�h2=2s2Þ. For s-0, the second term in the
objective converges to a times the number of non-zero entries in
H. Contrary to the first two approaches, which constrain the
‘0-norm, this method calculates an NMF which penalizes the
smoothed ‘0-norm, where penalization strength is controlled
with the trade-off parameter a. Therefore, the latter approach
proceeds similar as the NMF methods which penalize the ‘1-norm
[11,12]. However, note that a trade-off parameter for a penaliza-
tion term is generally not easy to choose, while ‘0-sparseness
constraints have an immediate meaning.
3. Sparse NMF with ‘0-constraints

We now introduce our methods for NMF with ‘0-sparseness
constraints on the columns of W and H, respectively. Formally, we
consider the problems

minimize
W,H

JX�WHJF

subject to WZ0,HZ0,

JhiJ0rL, 8i ð5Þ

and

minimize
W,H

JX�WHJF

subject to WZ0,HZ0,

JwiJ0rL, 8i: ð6Þ

We refer as NMF‘0-H and NMF‘0-W to problems (5) and (6),
respectively. Parameter LAN is the maximal allowed number of
non-zero entries in wi or hi.

For NMF‘0-H, the sparseness constraints imply that each
column in X is represented by a conical combination of maximal
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L nonnegative basis vectors. When we interpret the columns of W
as features, this means that each data sample is represented by
maximal L features, where typically L5K . Nevertheless, if the
reconstruction error is small, this implies that the extracted
features are important to some extend. Furthermore, as noted in
the Introduction, for unconstrained NMF it is typically assumed
that K5minðD,NÞ. We do not have to make this restriction for
NMF‘0-H, and can even choose K4D, i.e. we can allow an
overcomplete basis matrix W (however, we require KoN).

For NMF‘0-W, the sparseness constraints enforce basis vectors
with limited support. If for example the columns of X contain
image data, sparseness constraints on W encourage a part-based
representation.

NMF algorithms usually proceed in a two stage iterative
manner, i.e. they alternately update W and H (cf. Section 2). We
apply the same principle to NMF‘0-H and NMF‘0-W, where we
take care that the sparseness constraints are maintained.

3.1. NMF‘0-H

A generic alternating update scheme for NMF‘0-H is illustrated
in Algorithm 2. In the first stage, the sparse coding stage, we aim
to solve the nonnegative sparse coding problem. Unfortunately,
the sparse coding problem is NP-hard [23], and an approximation
is required. We discuss several approaches in Section 3.1.1. In the
second stage we aim to enhance the basis matrix W. Here we
allow that non-zero values in H are adapted during this step, but
we do not allow that zero values become non-zero, i.e. we require
that the sparse structure of H is maintained. We will see in
Section 3.1.2 that all NMF techniques discussed so far can be used
for this purpose. Dependent on the methods used for each stage,
we can derive different algorithms from the generic scheme. Note
that NNK-SVD [18] and the ‘0-constrained NMF proposed by
Morup et al. [20] also follow this framework.

Algorithm 2. NMF‘0-H.
1:
 Initialize W randomly

2:
 for i¼ 1 : numIter do

3:
 Nonnegative Sparse Coding: Sparsely encode data X, using

fixed basis matrix W, resulting in a sparse, nonnegative
matrix H.
4:
 Basis Matrix Update: Enhance basis matrix W and coding
matrix H, maintaining the sparse structure of H.
5:
 end for
3.1.1. Nonnegative sparse coding

The nonnegative sparse coding problem is formulated as

minimize
H

JX�WHJF

subject to HZ0,

JhiJ0rL, 8i: ð7Þ

Without loss of generality, we assume that the columns of W are
normalized to unit length. A well known and simple sparse coding
technique without nonnegativity constraints is orthogonal match-
ing pursuit (OMP) [24], which is shown in Algorithm 3. OMP is a
popular technique, due to its simplicity, its low computational
complexity, and its theoretical optimality bounds [25,26].

Algorithm 3. Orthogonal matching pursuit (OMP).
1:
 r’x

2:
 h¼ 0

3:
 P ¼ |

4:
 for l¼1:L do

5:
 a¼WT r
6:
 in ¼ arg max9a9

7:
 P’P [ fing

8:
 hP’Wy

Px
9:
 r’x�WPhP

10:
 end for
In each iteration, OMP selects the basis vector which reduces
the residual r most (steps 6 and 7). After each selection step, OMP
projects the data vector into the space spanned by the basis
vectors selected so far (step 8).

Several authors proposed nonnegative variants of OMP
[26,34,35], where all of them replace step 6 with in ¼ arg max
a, i.e. the absolute value function is removed in order to select a
basis vector with a positive coefficient. The second point, where
nonnegativity can be violated, is in step 8, the projection step.
Bruckstein et al. [26] used NNLS [27] (Algorithm 1) instead of
ordinary least squares, in order to maintain nonnegativity.
Since this variant is very slow, we used the multiplicative NMF
update rule for H (cf. (2)), in order to approximate NNLS [35].
Yang et al. [34] left step 8 unchanged, which violates nonnega-
tivity in general.

However, there is a more natural approach for nonnegative
OMP: Note that the body of the outer loop of the active-
set algorithm for NNLS (Algorithm 1) and OMP (Algorithm 3)
perform identical computations, except that OMP selects
in ¼ arg max9a9, while NNLS selects in ¼ arg max a, exactly as in
the nonnegative OMP variants proposed so far. NNLS additionally
contains the inner loop (11–18) to correct a possibly negative
solution. Hence, a straightforward modification for nonnegative
sparse coding, which we call sNNLS (which equally well can be
called nonnegative OMP), is simply to stop NNLS, as soon as L

basis vectors have been selected (i.e. as soon as 9P9¼ L in
Algorithm 1). Note that NNLS can also terminate before it selects
L basis vectors. In this case, however, the solution is guaranteed to
be optimal [27]. Hence, sNNLS guarantees to find either a
nonnegative solution with exactly L positive coefficients, or an optimal

nonnegative solution with less than L positive coefficients. Note
further that OMP and NNLS have been proposed in distinct commu-
nities, namely sparse representation versus nonnegatively con-
strained least squares. It seems that this connection has been
missed so far. The computational complexity of sNNLS is upper
bounded by the original NNLS algorithm [27] (see Section 2.2), since
it only contains an additional stopping criterion (9P9¼ L).

We further propose a variant of matching pursuit, which does
not only apply to the nonnegative framework, but generally to the
matching pursuit principle. We call this variant reverse matching
pursuit: instead of adding basis vectors to an initially empty set,
we remove basis vectors from an optimal, non-sparse solution.
For nonnegative sparse coding, this method is illustrated in
Algorithm 4, to which we refer as reverse sparse NNLS (rsNNLS).
The algorithm starts with an optimal, non-sparse solution in
step 1. While the ‘0-norm of the solution is greater than L, the
smallest entry in the solution vector is set to zero and its index is
moved from the in-active set P to the active set Z (steps 4–7).
Subsequently, the data vector is approximated in NNLS sense by
the remaining basis vectors in P, using steps 9–19 of Algorithm 1
(inner correction loop), where possibly additional basis vectors
are removed from P. For simplicity, Algorithm 4 is shown for a
single data vector x and corresponding output vector h. An
implementation for data matrices X, using the fast combinatorial
NNLS algorithm [29], is straightforward. Similar as for sNNLS,
the computational complexity of rsNNLS is not worse than for
active-set NNLS [27] (Section 2.2), since in each iteration one
index is irreversibly removed from P. The NNLS algorithm (step 1)
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needs at least the same number of iterations to build the non-
sparse solution. Hence, rsNNLS needs at most twice as many
operations as NNLS.

Algorithm 4. Reverse sparse NNLS (rsNNLS).
1:
 h¼NNLSðx,WÞ

2:
 Z ¼ fi9hi ¼ 0g,P ¼ fi9hi40g
3:
 while JhJ04L do

4:
 j¼ arg min

iAP
hi
5:
 hj’0
6:
 Z’Z [ fjg

7:
 P’P\fjg

8:
 Perform steps 9–19 of Algorithm 1.

9:
 end while
3 We used the MATLAB implementation available under http://www2.imm.

dtu.dk/pubdb/views/edoc_download.php/5523/zip/imm5523.zip.
The second main approach for sparse coding without non-
negativity constraints is basis pursuit (BP) [28], which relaxes the
‘0-norm with the convex ‘1-norm. Similar as for matching pur-
suit, there exist theoretical optimality guarantees and error
bounds for BP [36,15]. Typically, BP produces better results than
OMP [28,25]. Nonnegative BP (NNBP) can be formulated as

minimize
h

Jx�WhJ2þlJhJ1

subject to hZ0, ð8Þ

where l controls the trade-off between reconstruction quality
and sparseness. Alternatively, we can formulate NNBP as

minimize
h

JhJ1

subject to Jx�WhJ2rE,
hZ0, ð9Þ

where E is the desired maximal reconstruction error. Formulation (9)
is more convenient than (8), since the parameter E is more intuitive
and easier to choose than l. Both (8) and (9) are convex optimization
problems and can readily be solved [37]. To obtain an ‘0-sparse
solution from a solution of (8) or (9), we select the L basis vectors
with the largest coefficients in h and calculate new, optimal coeffi-
cients for these basis vectors, using NNLS. All other coefficients are set
to zero. The whole procedure is repeated for each column in X, in
order to obtain a coding matrix H for problem (7). NNK-SVD follows
this approach for nonnegative sparse coding, using the algorithm
described in [11] as approximation for problem (8).

3.1.2. Enhancing the basis matrix

Once we have obtained a sparse encoding matrix H, we aim to
enhance the basis matrix W (step 4 in Algorithm 2). We also allow
the non-zero values in H to vary, but require that the coding
scheme is maintained, i.e. that the ‘‘zeros’’ in H have to remain
zero during the enhancement stage.

For this purpose, we can use a technique for unconstrained
NMF as discussed in Section 2. Note that the multiplicative update
rules (2) and (3) can be applied without any modification, since
they consist of element-wise multiplications of the old factors with
some update term. Hence, if an entry in H is zero before the
update, it remains zero after the update. Nevertheless, the multi-
plicative updates do not increase JX�WHJF , and typically reduce
the objective. Therefore, step 4 in Algorithm 2 can be implemen-
ted by executing (2) and (3) for several iterations.

We can also perform an update according to ANLS. Since there are
no constraints on the basis matrix, we can proceed exactly as in
Section 2.2 in order to update W. To update H, we have to make some
minor modifications of the fast combinatorial NNLS algorithm [29], in
order to maintain the sparse structure of H. Let Z be the set of indices
depicting the zero-entries in H after the sparse coding stage. We have
to take care that these entries remain zero during the active
set algorithm, i.e. we simply do not allow that an entry, whose index
is in Z , is moved to the in-active set. The convergence criterion of the
algorithm (cf. [27]) has to be evaluated considering only entries
whose indices are not in Z . Similarly, we can modify numerical
approaches for NNLS such as the projected gradient algorithm [31].
Generally, the W and H matrices of the previous iteration should be
used as initial solution for each ANLS iteration, which significantly
enhances the overall speed of NMF‘0-H.
3.2. NMF‘0-W

We now address problem NMF‘0-W (6), where we again follow a
two stage iterative approach, as illustrated in Algorithm 5. We first
calculate an optimal, unconstrained solution for the basis matrix W
(with fixed H) in step 3. Next, we project the basis vectors onto the
closest nonnegative vector in Euclidean space, satisfying the desired
‘0-constraints. This step is easy, since we simply have to delete all
entries except the L largest ones. Step 7 enhances H, where also the
non-zero entries of W can be adapted, but maintaining the sparse
structure of W. As in Section 3.1.2, we can use the multiplicative
update rules due to their sparseness maintaining property. Alterna-
tively, we can also use the ANLS scheme, similar as in Section 3.1.2.
Our framework is inspired by Hoyer’s ‘1-sparse NMF [13], which
uses gradient descent to minimize the Frobenius norm. After each
gradient step, the algorithm projects the basis vectors onto the
closest vector with desired ‘1-sparseness (cf. (4)).

Algorithm 5. NMF‘0-W.
1:
 Initialize H randomly

2:
 for i¼ 1 : numIter do

3:
 WT

¼NNLSðXT ,HT
Þ

4:
 for j¼ 1 : K do

5:
 Set D�L smallest values in wj to zero
6:
 end for

7:
 Coding Matrix Update: Enhance the coding matrix H and

basis matrix W, maintaining the sparse structure of W.

8:
 end for
4. Experiments

4.1. Nonnegative sparse coding

In this section we empirically compare the nonnegative sparse
coding techniques discussed in this paper. To be able to evaluate the
quality of the sparse coders, we created synthetic sparse data as
follows. We considered random overcomplete basis matrices with
D¼100 dimensions and containing KAf200;400,800g basis vectors,
respectively. For each K, we generated 10 random basis matrices
using isotropic Gaussian noise; then the sign was discarded and each
vector was normalized to unit length. Further, for each basis matrix,
we generated ‘‘true’’ K � 100 sparse encoding matrices H with
sparseness factors LAf5;10, . . . ,50g, i.e. we varied the sparseness
from L¼5 (very sparse) to L¼50 (rather dense). The values of the
non-zero entries in H were the absolute value of samples from a
Gaussian distribution with standard deviation 10. The sparse syn-
thetic data X is generated using X¼WH. We executed NMP [35],
NNBP, sNNLS, rsNNLS and NLARS3 [20] on each data set. For NNBP
we used formulation (9), where E was chosen such that an SNR of
120 dB was achieved, and we used an interior point solver [38] for

http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/5523/zip/imm5523.zip
http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/5523/zip/imm5523.zip
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optimization. All algorithms were executed on a quad-core processor
(3.2 GHz, 12 GB memory).

Fig. 1 shows the performance of the sparse coders in terms of
reconstruction quality (SNR¼ 10 log10JXJ2

F=JX�WHJ2
F dB), per-

centage of correctly identified basis vectors, and runtime, aver-
aged over the 10 independent data sets per combination of K

and L, where the SNR was averaged in the linear domain (i.e.
arithmetic mean). Curve parts outside the plot area correspond to
SNR values larger than 120 dB (which we considered as perfect
reconstruction). NLARS shows clearly the worst performance,
while requiring the most computational time after NNBP. sNNLS
performs consistently better than NMP, while being approxi-
mately as efficient in terms of computational requirements. The
proposed rsNNLS clearly shows the best performance, except that
it selects slightly less correct basis vectors than NNBP for K¼800
and L440. Note that NNBP requires far the most computational
time,4 and that the effort for NNBP depends heavily on the
number of basis vectors K. rsNNLS is orders of magnitude faster
than NNBP.

We repeated the experiment, where we added positive, uni-
formly distributed noise to the synthetic sparse data, such that
SNR¼ 10 dB. Note that the choice of E for NNBP is now more
difficult: A too small E renders problem (9) infeasible, while a too
large E delivers poor results. Therefore, for each column in X, we
initially selected E according to SNR¼ 19 dB. For the case where
problem (9) turned out to be infeasible, we relaxed the SNR
constraint by �3 dB until a feasible problem was obtained. The
results of the experiment with noisy data is shown in Fig. 2.
4 For NNBP we used a Cþþ implementation [38], while all other algorithms

were implemented in MATLAB. We also tried an implementation using the

MATLAB optimization toolbox for NNBP, which was slower by a factor of 3–4.
As expected, all sparse coders achieve a lower reconstruction quality
and identify less correct basis vectors than in the noise-free case.
The proposed rsNNLS shows the best performance for noisy data.

4.2. NMF‘0-H applied to spectrogram data

In this section, we compare methods for the update stage in
NMF‘0-H (Algorithm 2). As data we used a magnitude spectro-
gram of 2 min of speech from the database by Cooke et al. [39].
The speech was sampled at 8 kHz and a 512 point FFT with an
overlap of 256 samples was used. The data matrix finally had
dimensions 257�3749. We executed NMF‘0-H for 200 iterations,
where rsNNLS was used as sparse coder. We compared the update
method from NNK-SVD [18], the multiplicative update rules [1]
(Section 3.1.2), and ANLS using the sparseness maintaining
active-set algorithm (Section 3.1.2). Note that these methods are
difficult to compare, since one update iteration of ANLS fully
optimizes first W, then H, while one iteration of NNK-SVD or the
multiplicative rules only reduce the objective, which is signifi-
cantly faster. Therefore, we proceeded as follows: we executed 10
(inner) ANLS iterations per (outer) NMF‘0-H iteration, and
recorded the required time. Then we executed the versions using
NNK-SVD and the multiplicative updates, respectively, where
both were allowed to update W and H for the same amount of
time as ANLS in each outer iteration. Since NNK-SVD updates the
columns of W separately [18], we let NNK-SVD update each
column for a kth fraction of the ANLS time.

For the number of basis vectors K and sparseness value L, we used
each combination of KAf100;250,500g and LAf5;10,20g. Since the
error depends strongly on K and L, we calculated the root mean
square error (RMSE) of each update method relative to the error of
the ANLS method, and averaged over K and L: RMSErelðiÞ ¼
1
9

P
K ,LJX�WðK ,L,iÞHðK ,L,iÞJF=JX�WANLSðK ,L,iÞHANLSðK , L,iÞJF , where
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Fig. 3. Averaged relative RMSE (compared to ANLS update) of multiplicative

update rules (MU) and nonnegative K-SVD (NNK-SVD) over number of NMF‘0-H

iterations. The shaded bars correspond to standard deviation.
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i denotes the iteration number of NMF‘0-H, WðK ,L,iÞ and HðK ,L,iÞ are
the factor matrices of the method under test in iteration i, for
parameters K and L. Similarly, WANLSðK ,L,iÞ and HANLSðK ,L,iÞ are the
factor matrices of the ANLS update method. Fig. 3 shows the
averaged relative RMSE for each update method, as a function of i.
The ANLS approach shows the best performance. The multiplicative
update rules are a constant factor worse than ANLS, but perform
better than NNK-SVD. After 200 iterations, the multiplicative update
rules and NNK-SVD achieve an average error which is approximately
1.35% and 1.9% worse than the ANLS error, respectively. NNK-SVD
converges slower than the other update methods in the first 50
iterations.
4.3. NMF‘0-W applied to face images

Lee and Seung [5] reported that NMF returns a part-based
representation, when applied to a database of face images.
However, as noted by Hoyer [13], this effect does not occur when
the face images are not aligned, like in the ORL database [40]. In
this case, the representation happens to be rather global and
holistic. In order to enforce a part-based representation, Hoyer
constrained the basis vectors to be sparse. Similarly, we applied
NMF‘0-W to the ORL database, where we constrained the basis
vectors to have sparseness values L corresponding to 33%, 25%
and 10% of the total pixel number per image (denoted as
sparseness classes a, b and c, respectively) As in [13], we trained
25 basis vectors per sparseness value. We executed the algorithm
for 30 iterations, using 10 ANLS coding matrix updates per
iteration. In order to compare our results to ‘1-sparse NMF [13],
we calculated the average ‘1-sparseness (using (4)) of our basis
vectors. We executed ‘1-sparse NMF on the same data, where we
required the basis vectors to have the same ‘1-sparseness as our
NMF‘0-W basis vectors. We executed the algorithm for 2500
iterations, which were necessary for convergence. Fig. 4 shows
the resulting basis vectors returned by NMF‘0-W and ‘1-sparse
NMF, where dark pixels indicate high values and white pixels
indicate low values.

We see that the results are qualitatively similar, and that the
representation becomes a more local one, when sparseness is
increased (from left to right). We repeated this experiment 10
times and calculated the ‘0-sparseness (in % of non-zero pixels),
the SNR¼ 10 log10JXJ2

F=JX�WHJ2
F dB and measured the runtime



Fig. 4. Top: basis images trained by NMF‘0-W. Bottom: basis images trained by

‘1-sparse NMF. Sparseness: 33% (a), 25% (b), 10% (c), 52.4% (d), 43% (e), 18.6% (f) of

non-zero pixels.

Table 1

Comparison of ‘0-sparseness (in percent of non-zero pixels), ‘1-sparseness (cf. (4)),

reconstruction quality in terms of SNR, and runtime for ‘1-sparse NMF [13] and

NMF‘0-W. SNRn denotes the SNR value for ‘1-NMF, when the same ‘0-sparseness as

for NMF‘0-W is enforced.

Method ‘0 (%) ‘1 SNR (dB) SNRn (dB) Time (s)

‘1-NMF 52.4 0.55 15.09 14.55 2440

NMF‘0-W 33 0.55 15.07 – 186

‘1-NMF 43 0.6 14.96 14.31 2495

NMF‘0-W 25 0.6 14.94 – 164

‘1-NMF 18.6 0.73 14.31 13.52 2598

NMF‘0-W 10 0.73 14.33 – 50
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for both methods. The averaged results are shown in Table 1,
where the SNR was averaged in the linear domain.

We see that the two methods achieve de facto the same
reconstruction quality, while NMF‘0-W uses a significantly
lower number of non-zero pixels. One might ask if the larger
portion of non-zeros in ‘1-NMF basis vectors stems from over-
counting entries which are extremely small, yet numerically non-
zero. Therefore, Table 1 additionally contains a column showing
SNRn for ‘1-NMF, which denotes the SNR value when the target
‘0-sparseness is enforced, i.e. all but the 33%, 25%, 10% of pixels
with largest values are set to zero. We see that when a strict
‘0-constraint is required, NMF‘0-W achieves a significantly better
SNR (at least 0.5 dB in this example). Furthermore, NMF‘0-W is
more than an order of magnitude faster than ‘1-sparse NMF in
this setup.
5. Conclusion

We proposed a generic alternating update scheme for
‘0-sparse NMF, which naturally incorporates existing approaches
for unconstrained NMF, such as the classic multiplicative update
rules or the ANLS scheme. For the key problem in NMF‘0-H, the
nonnegative sparse coding problem, we proposed sNNLS, whose
interpretation is twofold: it can be regarded as sparse nonnega-
tive least-squares or as nonnegative orthogonal matching pursuit.
From the matching-pursuit perspective, sNNLS represents a
natural implementation of nonnegativity constraints in OMP.
We further proposed the simple but astonishingly well perform-
ing rsNNLS, which competes with or outperforms nonnegative
basis pursuit. Generally, ‘0-sparse NMF is a powerful technique
with a large number of potential applications. NMF‘0-H aims to
find a (possibly overcomplete) representation using sparsely
activated basis vectors. NMF‘0-W encourages a part-based repre-
sentation, which might be particularly interesting for applications
in computer vision.
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