
Computers Math. Applic. Vol. 23, No. 12, pp. 83-94, 1992 0097-4943/92 $5.00 + O.O0
Printed in Great Britain. All fights reserved Copyright~)1992 Pergamon Press Ltd

A M O D I F I E D G E N E T I C A L G O R I T H M
F O R O P T I M A L C O N T R O L P R O B L E M S

ZBIGNIEW MICHALEWICZ

Department of Computer Science, University of North Carolina, Charlotte, NC 28223, U.S.A.

CEZARY Z. JANIKOW

Department of Computer Science, University of North Carolina, Chapel Hill, NC, 27599-3175, U.S.A.

JACEK B. KRAWCZYK*
Faculty of Commerce and Administration, Quantitative Studies Group

Victoria University of Wellington, PO Box 600, Wellington, New Zealand

(Received September 1991)

Abstract - - This paper studies the application of a genetic algorithm to discrete-time optimal
control problems. Numerical results obtained here are compared with ones yielded by GAMS, a
system for construction and solution of large and complex mathematical programming models. V~l.~e
GAMS appears to work well only for linear quadratic optimal control problems or problems with
short horizon, the genetic algorithm applies to more general problems equally well.

1. I N T R O D U C T I O N

In this paper we study the numerical optimization of discrete-time dynamic control systems 1. In
general, the task of designing and implementing algorithms for the solution of optimal control
problems is a difficult one. The highly touted dynamic programming is a mathematical technique
that can be used in variety of contexts, particularly in optimal control [2]. However, this algorithm
breaks down on problems of moderate size and complexity, suffering from what is called "the curse
of dimensionality" [3].

The optimal control problems are quite difficult to deal with numerically. Some numerical
dynamic optimization programs available for general users are typically offspring of the static
packages [4] and they do not use dynamic-optimization specific methods. Thus the available
programs do not make an explicit use of the Hamiltonian, transversality conditions, etc. On the
other hand, if they did use the dynamic-optimization specific methods, they would be even more
difficult to be handled by a layman.

Genetic algorithms (GAs, Section 2) require little knowledge of the problem itself. Therefore,
computations based on these algorithms are attractive to users without the numerical optimiza-
tion background. Genetic algorithms have been quite successfully applied to static optimization
problems like wire routing, scheduling, transportation problem, traveling salesman problem, etc.,
[5-i0].

On the other hand, to the best of authors' knowledge, only recently GAs have been applied
to optimal control problems [1]. We believe that previous GA implementations were too weak to
deal with problems where high precision was required. In this paper we present our modification
of a GA designed to enhance its performance in dynamic optimization problems, and we show its
quality and applicability by a comparative study. As a reference, we use a standard computational
package used for solving such problems: the Student Version of General Algebraic Modeling
System [4]. We use the MINOS version of the optimizer [11]; in the rest of the paper this system
is referred to briefly as GAMS.

*This research was supported by a grant from the North Carolina Supercomputing Center.
1This paper is an extended version of [1] which was presented at the 29th CDC (December, 1990).

84 Z. MIOHALEWIOZ et el.

The remainder of this paper is organized as follows. Section 2 gives an overview of genetic
algorithms and Section 3 presents our modifications to the classical design. In Section 4 three
optimal control problems with available analytical solutions are formulated, so that the reference
points for comparisons are available. In Section 5 the results of application of the genetic algo-
rithm to the control problems are presented. In Section 6 the genetic algorithm's performance
is compared with that of GAMS. Section 7 provides some concluding remarks and directions for
future work.

2. GENETIC A L G O R I T H M S

Genetic algorithms [6,12] are a class of probabilistic algorithms which begin with a popula-
tion of randomly generated candidates and "evolve" towards a solution by applying "genetic"
operators, modeled on genetic processes occurring in nature. As stated in [13]:

".. . the metaphor underlying genetic algorithms is that of natural evolution. In evolu-
tion, the problem each species faces is one of searching for beneficial adaptations to a
complicated and changing environment. The 'knowledge' that each species has gained
is embodied in the makeup of the chromosomes of its members. The operations that
alter this chromosomal makeup are applied when parents reproduce; among them
are random mutation, inversion of chromosomal material, and crossover cxchange
of chromosomal material between two parents' chromosomes."

For a given optimization problem (optimization of function f(x)), at each iteration t of a
genetic algorithm we maintains a population of solutions P(t) = {x~,.. ., xnt }, where z~t is a
feasible solution, t is an iteration number and n is arbitrarily chosen length of the population. This
population would undergo "natural" evolution. In each generation relatively "good" solutions
reproduce; the relatively "bad" solutions die out, and are replaced by the offsprings of the former
ones. To distinguish between the "good" and "bad" solutions f(x~) is used, which plays a role
of the environment (see Figure 1).

procedure genetic algorithm begin
initialize P(t)

evaluate P(t)
while (not termination-condltion) do

begin
t=t+l

sdect P(t) from P(t-1)
recombine P(t)
evaluate P(t)
end

end

t=0

Figure 1. A simple genetic algorithm.

During iteration t the genetic algorithm maintains a population P(t) of some solutions
x[,...,z~ (the population size n remains fixed for the duration of the computation). Each

t is evaluated by computing f(x~), which gives us some measure of "fitness" of the solution xi

solution. Next, at iteration t + I a new population is formed: we select solutions to reproduce
on the basis of their relative fitness, and then the selected solutions are recombined using genetic
operators (crossover and mutation) to form a new set of solutions.

The crossover combines the features of two parent structures to form two similar offspring.
Crossover operates by swapping corresponding segments of a string of parents. For example,
if parents are represented by five-dimensional vectors, say xl = (al,bl,cl,dl,el) and x2 =
(a2,b2, c2, d2,e2), then crossing the vectors between the second and the fifth components would

Modified genetic algorithm 85

The mutation operator arbitrarily alters one or more components of a selected structure--
this increases the variability of the population. Each bit position of each vector in the new
population undergoes a random change with the probability equal to the mutation rate, which is
kept constant throughout the computation process.

A genetic algorithm to solve a problem must have five components:

1. A genetic representation of solutions to the problem;

2. A way to create an initial population of solutions;

3. An evaluation function that plays the role of the environment, rating solutions in terms of
their 'Titness";

4. Genetic operators that alter the composition of children during reproduction; and

5. Values for the parameters that the genetic algorithm uses (population size, probabilities of
applying genetic operators, etc.).

In our study we have used a modified genetic algorithm (defined in details in [14] and [15])
which for static optimization problems performed much better than the "simple" GA. The next
section defines and discusses modifications and in Section 5 we examine how our modified GA
works on the chosen control problem.

2.1. A Modified Genetic Al#orithm

The modified genetic algorithm uses the floating point representation, some new (specialized)
genetic operators and other enhancements; we discuss them briefly in turn.

2.2. Representation

In floating point representation each chromosome vector is coded as a vector of floating point
numbers of the same length as the solution vector. Each element is initially selected as to be
within the desired domain, and the operators are carefully designed to preserve this constraint
(there is no such problem in the binary representation, but the design of the operators is rather
simple; we do not see that as a disadvantage; on the other hand, it provides for other advantages
mentioned below).

The precision of such an approach depends on the underlying machine, but is generally much
better than that of the binary representation. Of course, we can always extend the precision
of the binary representation by introducing more bits, but this considerably slows down the
algorithm [16].

In addition, the floating point representation is capable of representing quite large domains
(or cases of unknown domains). On the other hand, the binary representation must sacrifice the
precision for an increase in domain size, given fixed binary length. Also, in the floating point
representation it is much easier to design special tools for handling nontrivial constraints. This
is discussed fully in [17].

2.3. The Specialized Operators

The operators we use are quite different from the classical ones, as they work in a different
space (real valued). However, because of intuitional similarities, we will divide them into the
standard classes: mutation and crossover. In addition, some operators are non-uniform, i.e.,
their action depends on the age of the population.

M U T A T I O N G R O U P :

• un i form muta t ion , defined similarly to that of the classical version: if z~ = Iv t , . . . , vm)
is a chromosome, then each element vk has exactly equal chance of undergoing the mutative
process. The result of a single application of this operator is a vector (v l , . . . , v~, . . . , vm),
with 1 < k < n, and v~, is a random value from the domain of the corresponding parameter

86 Z. MICHALEWIOZ e t a L

• non-unlform mutation is one of the operators responsible for the fine tuning capabilities
of the system. It is defined as follow: if z~ = (Vl,...,vn) is a chromosome, then each
element vk has exactly equal chance of undergoing the mutative process. The result of a
single application of this operator is a vector (Vl,..., v~,..., v,), with k E 1..n,

v~ : ~ vk + A(t, U B - vk) if a random digit is 0

L vk - A(t, vk - L B) if a random digit is 1

and U B and L B defined from: domaink = (L B , UB) . The function A(t, y) returns a value
in the range [0, y] such that the probabihty of A(t, y) being close to 0 increases as t increases.
This property causes this operator to search the space uniformly initially (when t is small),
and very locally at later stages. We have used the following function:

A (t , y) = y . (1 - - r(1- t /T)b) ,

where r is a random number from [0 . . . 1], T is the maximal generation number, and b is a
system parameter determining the degree of non-uniformity.

Moreover, in addition to the standard way of applying mutation we have some new mech-
anisms: e.g., the non-uniform mutation is also applied to a whole solution vector rather
than a single element of it, causing the whole vector to be shghtly slipped in the space.

CROSSOVER GROUP :

s i m p l e c rossover , defined in the usual way, but with the only permissible split points
between v's, for a given chromosome.

t and t a r i t h m e t i c a l c r o s s o v e r is defined as a hnear combination of two vectors: if s v s w
t (l - a) . t and .¢t+1 are to be crossed, the resulting offspring are s t+l = a • s,~ + s~ _~ =

t + (1 - a) t This operator can use a parameter a which is either a constant (uniform a • 8 v • 8 w

arithmetical crossover), or a variable which value depends on the age of population (non-
uniform arithmetical crossover).

Here again we have some new mechanisms to apply these operators; e.g., the arithmetical
crossover may be applied either to selected elements of two vectors or to the whole vectors.

There are some papers e.g., [18] which suggest that genetic algorithms are not fundamentally
different than "evolutionary programming techniques," which relay on random mutation and hill-
chmbing only. In other words, they suggest that the usage of more complex genetic operators
than mutat ion is not improving the algorithm's convergence. The results of our experiments
with modified GA contradict that view. The crossover operators are very important in exploring
promising areas in the search space and are responsible for early (but not premature) convergence;
a decrease in the crossover rates deteriorate the performance of our system. However, it seems
that the significance of particular operators changes with the age of the evolution process: it is
worthwhile to explore it further.

2.4. Other Enhancements

However, there are some problems that such applications encounter that sometimes delay,
if not prohibit, the finding of the optimal solutions with a desired precision. Such problems
originate from many sources as

1. the coding, which moves the operational search space away from the problem space,

2. insufficient number of iterations,

3. insufficient population size, etc.,

Modified genetic algorithm 87

1. premature convergence of the entire population to a non-global optimum, and

2. inability to perform fine local tuning.

There are a number of enhancements implemented in the modified version of the algorithm
which deal with the convergence problem and the fine local tuning. Our approach is to

1. detect such troublesome cases, and

2. make the GA to adjust appropriately.

For example, a detected multimodal function would cause a much smaller initial influence of the
fitness on the selection process. For a detailed discussion on these topics, see [19].

3. TEST PROBLEMS

Three simple discrete-time optimal control models (frequently used in applications of optimal
control) have been chosen as test problems for the modified genetic algorithm: linear-quadratic
problem, the harvest problem, and the (discretized) push-cart problem. These are apparently
easy convex optimal control problems. However, a renowned optimization package (though it is
a 'Student Version' only) has had serious troubles in finding the optimal solution to one of them.
GA, on the contrary, did not suffer any difficulty in solving any of them. We discuss these three
problems in turn.

3.1. The Linear-Quadratic Problem

The first test problem is a one-dimensional linear-quadratic model:

N - 1

minimize q . z ~ + ~ - ~ (s . x ~ + r . u ~) (1)
k=O

subject to x k + l = a . x k ÷ b . u k , k = O , 1 , . . . , N - 1 , (2)

where x0 is given, a, b, q, s, r are given constants, xt E R, is the state and uk E R is the control
of the system.

The value for the optimal performance of (1) subject to (2) is

J* = K0 x0 2, (3)

where Kk is the solution of the Riccati equation

Kk = s + ra 2 Kk+l and KN = q. (4)
r + b2K~+l

In the sequel, the problem (1) subject to (2) will be solved for the sets of the parameters
displayed in Figure 2.

In the experiments the value of N was set at 45 as this was the largest horizon for which a
comparative numerical solution from GAMS was still achievable.

3.2. The Harvest Problem

The harvest problem is defined as

N - I

k=0

subject to the equation of growth Xk+l : a . X k - - Uk

(5)

(6)

88 Z. MICHALEWICZ el a/.

Case N x0 s r q a b

I 45 100 1 1 1 1 1

I I 45 100 10 1 1 1 1

I I I 45 100 1000 1 1 1 1

IV 45 100 1 10 1 1 1

V 45 100 1 1000 1 1 1

VI 45 100 1 1 0 1 1

VI I 45 100 1 1 1000 1 1

VI I I 45 100 1 1 1 0.01 1

IX 45 100 1 1 1 1 0.01

X 45 100 1 1 1 1 100

F igure 2. Ten tes t cases.

where initial state x0 is given, a is a constant, and xk E R and uk E R + are the state and the
(nonnegative) control, respectively.

The optimal value J* of (5) subject to (6) and (7) is:

j . = (aN _ 1)5
(8)

Problem (5) subject to (6) and (7) will be solved for a - 1.1 and the following values of
N -- 2,4,10,20,45.

3.3. The Push-Cart Problem

The push-cart problem consists of maximization of the total distance Xl(N) traveled in a
given time (a unit, say), minus the total effort. The system is second order:

1
x2(k -}- 1) ---- 2xg(k) - Xl(k) + ~ u(k)

and the performance index to be maximized is:

(9)

(10)

1 N - 1

x l (N) - ~ ~ u2(k). (11)
k---0

For this problem the optimal value of index (11) is:

j . 1 3 N - 1 1 N-1
- - 3 6N 2 2N 3 Z k2" (1 2)

k=0

The push-cart problem will be solved for different values N -- 5,10,15,20,25,30,35,40,45. Note
that different N correspond to the number of discretization periods (of an equivalent continuous
problem) rather than to the actual length of the optimization horizon which will be assumed as
o n e .

4. E X P E R I M E N T S AND RESULTS

In this section we present the results of the modified genetic algorithm for the optimal control
problems. For all test problems, the population size was fixed at 70, and the runs were made for
40,000 generations. For each test case we have made three random runs and reported the best
results; it is important to note, however, that the standard deviations of such runs were almost

Modified genetic algorithm 89

Case

I
II

III
IV

V

VI

VII
VIII

IX

X

Generat~ns Factor

1 16O 1,000 1 0 , 0 0 0 20,000 30,000 40,000

17904.4 3.87385 1.73682 1.61859 1.61817 1.61804 1.61804 104
13572.3 5.56187 1.35678 1.11451 1.09201 1.09162 1.09161 105

17024.8 2.89355 1.06954 1.00952 1.00124 1.00102 1.00100 107

15082.1 8.74213 4.05532 3.71745 3.79811 3.70162 3.70160 104

5968.42 12.2782 2.69862 2.85524 2.87645 2.87571 2.87569 105

17897.7 5.27447 2.09334 1.61863 1.61837 1.61805 1.61804 104

2690258 18.6685 7.23567 1.73564 1.65413 1.61842 1.61804 104

123.942 72.1958 1.95783 1.00009 1.00005 1.00005 1.00005 104

7.28165 4.32740 4.39091 4.42524 4.31021 4.31004 4.31004 105

9971341 148233 16081.0 1.48445 1.00040 1.00010 1.00010 104

Figure 3. Genetic algorithm for the linear-quadratic problem (1)-(2).

N

2

4

8

10

2o

45

Generations

1 100 1,000 1 0 , 0 0 0 2 0 , 0 0 0 30,000 40,000

6.3310

12.6848

25.4601

32.1981

65.3884
167.1348

6.3317

12.7127

25.6772

32.5010
68.6257

251.3241

6.3317

12.7206

25.9024

32.8152

73.1167
277.3990

6.3317

12.7210

25.9057

32.8209
73.2372

279.0657

6.3317

12.7210

25.9057

32.8209
73.2376

279.2612

6.3317

12.7210

25.9057

32.8209

73.2376

279.2676

6.331738

12.721038

25.905710

32.820943

73.237668

279.271421

Figure 4. Genetic Algorithm for the harvest problem (5)-(7).

Generations

1 100 1,000 1 0 , 0 0 0 2 0 , 0 0 0 30,000 40,000 N

5 -3.008351

10 -5.668287

15 -6.885241

20 -7.477872

25 -8.668933

30 -12.257346

35 -11.789546

40 -10.985642

45 -12.789345

0.081197

-0.011064

-0.012345

-0.126734

-0.015673
-0.194342

-0.236753

-0.235642

-0.342671

0.119979

0.140195

0.142546

0.149953

0.143030
0.123045

0.110964

0.072378

0.072364

0.120000

0.142496

0.150338

0.154343

0.156775
0.158241

0.159307

0.160250

0.160913

O. 120000

0.142500

0.150370

0.154375

O. 156800

0.158421

0.159586

0.160466

0.161127

0.1200OO

0.142500

0.150370

0.154375

0.156800

0.158426

0.159592
0.160469

0.161152

0.120000

0.142500

0.150371

0.154377

0.156800

0.158426

0.159592
0.160469

0.161152

Figure 5. Genetic Algorithm for the push-cart problem (9)-(11).

negl igibly small. T h e vectors (u 0 , . . . ,UN-1) were init ial ized r andomly (but wi th in a desired

domains) . Figures 3, 4, and 5 repor t the values found along with in te rmedia te resul ts a t some

genera t ion intervals . For example , the values in column "10,000" indicate the par t ia l resul t af ter

10,000 genera t ions , while running 40,000. It is i m p o r t a n t to note tha t such values are worse
than those ob ta ined while running only 10,000 generat ions , due to the na tu re of some genet ic
operators. In the next section we compare these results with the exact solutions and solutions

obtained from the computational package GAMS.

Note, that the Problem (5)-(7) has the final state constrained. It differs from the Prob-

lem(i)-(2) in the sense tha t not every r andomly ini t ial ized vector (u 0 , . . . , UN-1) o f pos i t ive real

numbers generates an admissible sequence xk (see condition (6)) such that x0 -- ZN, for given a

and x0. In our version of genetic algorithm, we have generated a random sequence of u0, . . . , UN-2,

90 Z. MIOHALEWIOZ et al.

repeated the initialization process: this happened in less than 10% of cases. The same difficulty
occurred during the reproduction process. An offspring (after some genetic operations) need not
satisfy the constraint: z0 = ZN. In such a case we replaced the last component of the offspring
vector u using the formula: U N - z = a • Z N - Z -- :ON. Again, if U N - z turns out to be negative,
we do not introduce such offspring into new population (again, the number of such cases did not
exceed 10%). For an automatic way of handling such constrains see [17].

5. GENETIC ALGORITHMS VERSUS OTHER METHODS

In this section we compare the above results with the exact solutions as well as those obtained
from the computational package GAMS (with MINOS optimizer).

5.1. The L i n e a r - Q u a d r a t i c Prob lem

Exact solutions of the problems for the values of the parameters specified in Figure 2 have
been obtained using Formulae (3) and (4).

To highlight the performance and competitiveness of the genetic algorithm, the same test
problems were solved using GAMS. The comparison may be regarded as not totally fair for the
genetic algorithm since GAMS is based on search methods particularly appropriate for linear-
quadratic problems. Thus the Problem (1)-(2) must be an easy case for this package. On the
other hand, if for these test problems the genetic algorithm proved to be competitive, or close to,
there would be an indication that it should behave satisfactorily in general. Figure 6 summarizes
the results, where columns D refer to the percentage of the relative error.

C~_~e

I

II

III

IV

V

VI

VH

VIII

IX

X

Exact solution

value

16180.3399

109160.7978

10009990.0200

37015.6212

287569.3725

16180.3399

16180.3399

10000.5000

431004.0987

10000.9999

Genetic Algorithm

value D

0.000%
0.000%
0.000%
0.000%
0.000%
0.000%
0.000%
0.000%
0.000%
0.000%

16180.3928

109161.0138

10010041.3789

37016.0426

287569.4357

1618O.4O65

16180.3784

10000.5000

431004.4182

10001.0038

GAMS

value D

16180.3399 0.000%

109160.7978 0.000%

10009990.0200 0.000%

37015.6212 0.000%

287569.3725 0,000%

16180.3399 0.000%

16180.3399 0.000%

10000.5000 0.000%

431004.0987 0.000%

10000.9999 0.000%

Figure 6. Comparison of solutions for the linear-quadratic problem.

As shown above the performance of GAMS for the linear-quadratic problem is perfect. How-
ever, this was not at all the case for the second test problem.

5.2. The Harves l Prob l em

To begin with, none of the GAMS solutions was identical with the analytical one. The
difference between the solutions were increasing with the optimization horizon as shown below
(Figure 7), and for N > 4 the system failed to find any value.

It appears that GAMSis sensitive to non-convectness of the optimizing problem and to the
number of variables. Even adding an additional constraint to the problem (uk+z > 0.1 • uk) to
restrict the feasibility set so that the GAMS algorithm does not "lose itself ''~) has not helped
much (see column "GAMS+"). As this column shows, for optimization horizons sufficiently long
there is no chance to obtain a satisfactory solution from GAMS.

Modified genetic algori thm 91

N Exact solution GAMS GAMS+ Genetic Alg

value D value D value D

2 6.331738 4.3693 30.99% 6.3316 0.00% 6.3317 0.000%

4 12.721038 5.9050 53.58% 12.7210 0.00% 12.7210 0.000%

8 25.905710 * 18.8604 27.20% 25.9057 0.000%

10 32.820943 * 22.9416 30.10% 32.8209 0.000%

20 73.237681 * * 73.2376 0.000%

45 279.275275 * * 279.2714 0.001~0

Figure 7. Comparison of solutions for the harvest problem. The symbol '* ' means
tha t the GAMS failed to report a reasonable value.

N

5

10

15

20

25

30

35

40

45

Exact solution

value value

0.120000

0.142500

0.150370

0.154375

0.156800

0.158426

0.159592

0.160469

0.161152

GAMS

D

0.120000 0.000%
0.142500 0.000%
0.150370 0.000%
0.154375 0.000%

0.156800 0.000%

0.158426 0.000%

0.159592 0.000%

0.160469 0.000%

0.161152 0.000%

GA

value D

0.120000 0.000 %
0.142500 0.000 %
0.150370 0.000 %
0.154375 0.000 %

0.156800 0.000 %
0.158426 0.000 %
0.159592 0.000 %

0.160469 0.000 %

0.161152 0.000 %

Figure 8. Comparison of solutions for the push-car t problem.

N No. of

iterations

needed

5 6234

I0 10231

15 19256

20 19993

25 18804

30 22976

35 23768

40 25634

45 28756

Time

needed

(CPU sec)

65.4

109.7

230.8

257.8

301.3

389.5

413.6

467.8

615.9

Time for 40,000

iterations

(CPU ,ec)
328.9

400.9

459.8

590.8

640.4

701.9

779.5

850.7

936.3

Time for

GAMS

(CPU sec)

31.5

33.1

36.6

41.1

47.7

58.2

68.0

81.3

95.9

Figure 9. T ime performance of genetic algorithm and GAMS for the push-cart problem (9)-(11):
number of iterations needed to obtain the result with precision of six decimal places, t ime needed
for tha t number of iterations, t ime needed for all 40,000 iterations.

5.3. The Push.Cart Problem

For the push-cart problem both GAMS and genetic algorithm produce very good results
(Figure 8). However, it is interesting to note the relationship between the time different search
algorithms need to complete the task.

For most optimization programs, the time necessary for an algorithm to converge to the opti-
mum depends on the number of decision variables. This relationship for dynamic programming
is exponential ("curse of dimensionality"). For the search methods (like GAMS) it is usually
LL , 1 I "

92 Z. MIOHALEWIOZ et aL

Figure 9 reports number of iterations genetic algorithm needed to obtain exact solution (with
six decimal place rounding), the time needed for that, and the total time for all 40,000 iterations
(for unknown exact solution we can not determine the precision of the current solution). Also,
the time for GAMS is given. Note, that GAMS was run on PC Zenith z-386/20, while genetic
algorithm on DEC-3100 station.

It is clear, that the genetic algorithm is much slower than GAMS: there is a difference in
absolute values of CPU time as well as computers used. However, let us compare not the times
needed for both system to complete their calculations, but rather their growth rates of the time
as a function of the size of the problem. The Figure 10 show the growth rate of the time needed
to obtain the result of the genetic algorithm and GAMS.

50(

CPU time

10C

50

, N

CPU time

__J
10

o o o o

10 45 10 45
Figure 10. Time as a function of problem size (N).

. N

These graphs are self-explanatory: although genetic algorithm is generally slower, its linear
growth rate is much better than that of GAMS (which is at least quadratic). Similar results hold
for the linear-quadratic problem and the harvest problem.

6. CONCLUSIONS AND FUTURE WORK

In this paper we have initiated the study of the application of the (modified) genetic algorithm
to discrete-time optimal control problems. The experiments were successful on three selected
optimal control problems. In particular, the results were encouraging because the closeness of the
numerical solutions to the analytical ones was satisfying, additionally, the coding and computation
efforts were reasonable (about 1500 lines of code in C, and, for the 40,000 generations, few minutes
of CPU time on CRAY Y-MP and up to 15 minutes on a DEC-3100 station).

The numerical results were compared with those obtained from a search-based computational
package (GAMS). While the genetic algorithm gave us results comparable with the analytic
solutions for all test problems, GAMS failed for one of them. Additionally, the genetic algorithm
displayed some qualities not always present in the other systems:

• The optimization function for genetic algorithm need not be continuous. In the same time
some optimization packages will not accept such function at all.

Some optimization packages are all-or-nothing propositions: the user has to wait until the
program completes. Sometimes it is not possible to get partial (or approximate) results at
some early stages. Genetic algorithms give the users additional flexibility, since the user
can monitor the "state of the search" during the run time and make appropriate decisions.
In particular, the user can specify the computation time (s)he is willing to pay for (longer
time provides better precision of the answer).

The computational complexity of genetic algorithms grows at the linear rate; most of other
search methods are very sensitive on the length of the optimization horizon. Moreover,

Modified genetic algorithm 93

"In a world where serial algorithms are usually made parallel through countless
tricks and contortions, it is no small irony that genetic algorithms (highly parallel
algorithms) are made serial through equally unnatural tricks and turns."

It seems we can easily improve the performance of our system using parallel implementa-
tions; often it is difficult for other optimization methods.

This paper is the first step toward building a control-problem optimization system based on
genetic algorithms. Here, precise solutions for three frequently used simple control models were
obtained. In general, an optimization system to be interesting for practitioners has to be more
control-problem specific than the system here introduced. In particular the system has to allow
for:

• inequality/equality local constraints of the state variable,

• inequality/equality local constraints of the control variable,

• mixed inequality/equality local constraints,

• inequality/equality global constraints of the state variable,

• inequality/equality global constraints of the control variable,

• free final time.

In this paper a model with one local equality constraint on the final state has been successfully
handled. Future developments of the system will concentrate on the constraints' classes specified
above.

REFERENCES

1. g. Michalewicz, J. Krawczyk, M. Kazemi and C. Janikow, Genetic algorithms and optimal control problems,
In Proceedings of the ~gth IEEE Conference on Decision and Control, Honolulu, Hawaii, pp. 1664-1666,
(December 5-7, 1990).

2. D.P. Bertsekas, Dynamic Programming: Deterministic and Stochastic Models, Prentice Hall, Englewood
Cliffs, N.J., (1987).

3. R. Bellman, Dynamic Programming, Princeton University Press, Princeton, N.J., (1957).
4. A. Brooke, D. Kendrick and A. Meerans, GAMS: A User's Guide, The Scientific Press, (1988).
5. K.A. De Jong, Genetic algorithms: A 10 year perspective, In [7], pp. 169-177 (1985).
6. D.E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison Wesley, (1989).
7. J.J. Grefenstette, Ed., Proceedings of the First International Conference on Genetic Algorithms, Pittsburg,

Lawrence Erlbaum Associates, Publishers, (July 24-26, 1985).
8. J.J. Grefenstette, Ed., Proceedings of the Second International Conference on Genetic Algorithms, MIT,

Cambridge, Lawrence Erlbaum Associates, Publishers, (July 28-31, 1987).
9. J. Schaffer, Ed., Proceedings of the Third International Conference on Genetic Algorithms, George Mason

University, Morgan Kaufmann, Publishers, (June 4-7, 1989).
10. G.A. Vignaux and Z. Michalewicz, A genetic algorithm for the linear transportation Problem, IEEE Trans-

actions on Systems, Man, and Cybernetics, 21 (2), 445-452 (1991).
11. B.A. Murtagh and M.A. Saunders, MINOS 5.1 user's guide, Report SOL 83-20R, Stanford University, (De-

cember, 1983, revised January, 1987).
12. J.H. Holland, Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor, (1975).
13. L. Davis, Ed., Genetic Algorithms and Simulated Annealing, Pitman, London, (1987).
14. C. Janikow and Z. Michalewicz, Specialized genetic algorithms for numerical optimization problems, Pro-

ceedings of the Second International Conference on Tools for AI, Washington, pp. 798-804, (November 6-9,
1990).

15. Z. Miehalewicz and C. Janikow, Genetic algorithms for numerical optimization, Statistics and Computing,
1 (2) (1991).

16. C. Janikow and Z. Michalewicz, Experimental comparison of binary and floating point representations in
genetic algorithms, Proceedings of the ~th International Conference on Genetic Algorithms, San Diego,

. . . . • T • •

94 Z. MICHALEWICZ eta/.

17. Z. Michalewicz and C. Jan:k,~w, GENOCOP: A genetic algorithm for numerical optimization problems with
linear constraints, Communication8 oJ the A CM, (1992)(to appear).

18. D.B. Fogel and J.W. Atmar, Comparing genetic operators with Gaussian mutation in simulated evolutionary
process using linear systems, Biol. C~bern., 63, 111-114, (1990).

19. Z. l~cl~]ewicz, Data Strncture8 ÷ Genetic Operator8 -- E~olution Progrsmm, Springer-Verlag, Symbolic
Computation Series, (1992).

20. Z. Michalewicz, G.A. Vignaux and L. Groves, Genetic algorithms for approximation and optimization prob-
lems, Proceedings of the 11th New Zealand Computer ConJerence, pp. 211-223, Wmll|no'ton, (August 16-18,
1989).

21. Z. Michalewicz, G.A. Vignaux and M. Hobbs, A genetic algorithm for the nonlinear transportation problem,
ORSA Journal on Computing, 3 (4) (1991).

22. H.P. Schwefe], Numerical Optimization for Computer Modela, J. Wiley & Sons, (1981).

