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Abstract  - -  This paper studies the application of a genetic algorithm to discrete-time optimal 
control problems. Numerical results obtained here are compared with ones yielded by GAMS, a 
system for construction and solution of large and complex mathematical programming models. V~l.~e 
GAMS appears to work well only for linear quadratic optimal control problems or problems with 
short horizon, the genetic algorithm applies to more general problems equally well. 

1. I N T R O D U C T I O N  

In this paper we study the numerical optimization of discrete-time dynamic control systems 1. In 
general, the task of designing and implementing algorithms for the solution of optimal control 
problems is a difficult one. The highly touted dynamic programming is a mathematical technique 
that can be used in variety of contexts, particularly in optimal control [2]. However, this algorithm 
breaks down on problems of moderate size and complexity, suffering from what is called "the curse 
of dimensionality" [3]. 

The optimal control problems are quite difficult to deal with numerically. Some numerical 
dynamic optimization programs available for general users are typically offspring of the static 
packages [4] and they do not use dynamic-optimization specific methods. Thus the available 
programs do not make an explicit use of the Hamiltonian, transversality conditions, etc. On the 
other hand, if they did use the dynamic-optimization specific methods, they would be even more 
difficult to be handled by a layman. 

Genetic algorithms (GAs, Section 2) require little knowledge of the problem itself. Therefore, 
computations based on these algorithms are attractive to users without the numerical optimiza- 
tion background. Genetic algorithms have been quite successfully applied to static optimization 
problems like wire routing, scheduling, transportation problem, traveling salesman problem, etc., 
[5-i0]. 

On the other hand, to the best of authors' knowledge, only recently GAs have been applied 
to optimal control problems [1]. We believe that previous GA implementations were too weak to 
deal with problems where high precision was required. In this paper we present our modification 
of a GA designed to enhance its performance in dynamic optimization problems, and we show its 
quality and applicability by a comparative study. As a reference, we use a standard computational 
package used for solving such problems: the Student Version of General Algebraic Modeling 
System [4]. We use the MINOS version of the optimizer [11]; in the rest of the paper this system 
is referred to briefly as GAMS. 

*This research was supported by a grant from the North Carolina Supercomputing Center. 
1This paper is an extended version of [1] which was presented at the 29th CDC (December, 1990). 
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The remainder of this paper is organized as follows. Section 2 gives an overview of genetic 
algorithms and Section 3 presents our modifications to the classical design. In Section 4 three 
optimal control problems with available analytical solutions are formulated, so that the reference 
points for comparisons are available. In Section 5 the results of application of the genetic algo- 
rithm to the control problems are presented. In Section 6 the genetic algorithm's performance 
is compared with that of GAMS. Section 7 provides some concluding remarks and directions for 
future work. 

2. GENETIC  A L G O R I T H M S  

Genetic algorithms [6,12] are a class of probabilistic algorithms which begin with a popula- 
tion of randomly generated candidates and "evolve" towards a solution by applying "genetic" 
operators, modeled on genetic processes occurring in nature. As stated in [13]: 

".. .  the metaphor underlying genetic algorithms is that of natural evolution. In evolu- 
tion, the problem each species faces is one of searching for beneficial adaptations to a 
complicated and changing environment. The 'knowledge' that each species has gained 
is embodied in the makeup of the chromosomes of its members. The operations that 
alter this chromosomal makeup are applied when parents reproduce; among them 
are random mutation, inversion of chromosomal material, and crossover cxchange 
of chromosomal material between two parents' chromosomes." 

For a given optimization problem (optimization of function f(x)),  at each iteration t of a 
genetic algorithm we maintains a population of solutions P(t) = {x~,.. ., xnt }, where z~t is a 
feasible solution, t is an iteration number and n is arbitrarily chosen length of the population. This 
population would undergo "natural" evolution. In each generation relatively "good" solutions 
reproduce; the relatively "bad" solutions die out, and are replaced by the offsprings of the former 
ones. To distinguish between the "good" and "bad" solutions f(x~) is used, which plays a role 
of the environment (see Figure 1). 

procedure genetic algorithm begin 
initialize P(t) 

evaluate P(t) 
while (not termination-condltion) do 

begin 
t=t+l 

sdect  P(t) from P(t-1) 
recombine P(t)  
evaluate P(t) 
end 

end 

t=0 

Figure 1. A simple genetic algorithm. 

During iteration t the genetic algorithm maintains a population P(t) of some solutions 
x[,...,z~ (the population size n remains fixed for the duration of the computation). Each 

t is evaluated by computing f(x~), which gives us some measure of "fitness" of the solution xi 

solution. Next, at iteration t + I a new population is formed: we select solutions to reproduce 
on the basis of their relative fitness, and then the selected solutions are recombined using genetic 
operators (crossover and mutation) to form a new set of solutions. 

The crossover combines the features of two parent structures to form two similar offspring. 
Crossover operates by swapping corresponding segments of a string of parents. For example, 
if parents are represented by five-dimensional vectors, say xl = (al,bl,cl,dl,el) and x2 = 
(a2,b2, c2, d2,e2), then crossing the vectors between the second and the fifth components would 
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The mutation operator arbitrarily alters one or more components of a selected structure--  
this increases the variability of the population. Each bit position of each vector in the new 
population undergoes a random change with the probability equal to the mutation rate, which is 
kept constant throughout the computation process. 

A genetic algorithm to solve a problem must have five components: 

1. A genetic representation of solutions to the problem; 

2. A way to create an initial population of solutions; 

3. An evaluation function that plays the role of the environment, rating solutions in terms of 
their 'Titness"; 

4. Genetic operators that alter the composition of children during reproduction; and 

5. Values for the parameters that the genetic algorithm uses (population size, probabilities of 
applying genetic operators, etc.). 

In our study we have used a modified genetic algorithm (defined in details in [14] and [15]) 
which for static optimization problems performed much better than the "simple" GA. The next 
section defines and discusses modifications and in Section 5 we examine how our modified GA 
works on the chosen control problem. 

2.1. A Modified Genetic Al#orithm 

The modified genetic algorithm uses the floating point representation, some new (specialized) 
genetic operators and other enhancements; we discuss them briefly in turn. 

2.2. Representation 

In floating point representation each chromosome vector is coded as a vector of floating point 
numbers of the same length as the solution vector. Each element is initially selected as to be 
within the desired domain, and the operators are carefully designed to preserve this constraint 
(there is no such problem in the binary representation, but the design of the operators is rather 
simple; we do not see that as a disadvantage; on the other hand, it provides for other advantages 
mentioned below). 

The precision of such an approach depends on the underlying machine, but is generally much 
better than that of the binary representation. Of course, we can always extend the precision 
of the binary representation by introducing more bits, but this considerably slows down the 
algorithm [16]. 

In addition, the floating point representation is capable of representing quite large domains 
(or cases of unknown domains). On the other hand, the binary representation must sacrifice the 
precision for an increase in domain size, given fixed binary length. Also, in the floating point 
representation it is much easier to design special tools for handling nontrivial constraints. This 
is discussed fully in [17]. 

2.3. The Specialized Operators 

The operators we use are quite different from the classical ones, as they work in a different 
space (real valued). However, because of intuitional similarities, we will divide them into the 
standard classes: mutation and crossover. In addition, some operators are non-uniform, i.e., 
their action depends on the age of the population. 

M U T A T I O N  G R O U P  : 

• un i form muta t ion ,  defined similarly to that of the classical version: if z~ = Iv t , . . . ,  vm) 
is a chromosome, then each element vk has exactly equal chance of undergoing the mutative 
process. The result of a single application of this operator is a vector (v l , . . . ,  v~, . . . ,  vm), 
with 1 < k < n, and v~, is a random value from the domain of the corresponding parameter 
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• non-unlform mutation is one of the operators responsible for the fine tuning capabilities 
of the system. It is defined as follow: if z~ = (Vl,...,vn) is a chromosome, then each 
element vk has exactly equal chance of undergoing the mutative process. The result of a 
single application of this operator is a vector (Vl,..., v~,..., v,), with k E 1..n, 

v~ : ~ vk + A(t, U B  - vk) if a random digit is 0 

L vk - A(t, vk - L B )  if a random digit is 1 

and U B  and L B  defined from: domaink = ( L B ,  UB ) .  The function A(t, y) returns a value 
in the range [0, y] such that  the probabihty of A(t, y) being close to 0 increases as t increases. 
This property causes this operator to search the space uniformly initially (when t is small), 
and very locally at later stages. We have used the following function: 

A ( t , y )  = y .  ( 1 - -  r(1- t /T)b)  , 

where r is a random number from [0 . . .  1], T is the maximal generation number, and b is a 
system parameter  determining the degree of non-uniformity. 

Moreover, in addition to the standard way of applying mutation we have some new mech- 
anisms: e.g., the non-uniform mutation is also applied to a whole solution vector rather 
than a single element of it, causing the whole vector to be shghtly slipped in the space. 

CROSSOVER GROUP : 

s i m p l e  c rossover ,  defined in the usual way, but  with the only permissible split points 
between v's, for a given chromosome. 

t and t a r i t h m e t i c a l  c r o s s o v e r  is defined as a hnear combination of two vectors: if s v s w 
t ( l - a ) .  t and .¢t+1 are to be crossed, the resulting offspring are s t+l = a • s,~ + s~ _~ = 

t + (1 - a) t This operator can use a parameter a which is either a constant (uniform a • 8 v • 8 w 

arithmetical crossover), or a variable which value depends on the age of population (non- 
uniform arithmetical crossover). 

Here again we have some new mechanisms to apply these operators; e.g., the arithmetical 
crossover may be applied either to selected elements of two vectors or to the whole vectors. 

There are some papers e.g., [18] which suggest that genetic algorithms are not fundamentally 
different than "evolutionary programming techniques," which relay on random mutation and hill- 
chmbing only. In other words, they suggest that  the usage of more complex genetic operators 
than mutat ion is not improving the algorithm's convergence. The results of our experiments 
with modified GA contradict that  view. The crossover operators are very important  in exploring 
promising areas in the search space and are responsible for early (but not premature) convergence; 
a decrease in the crossover rates deteriorate the performance of our system. However, it seems 
that  the significance of particular operators changes with the age of the evolution process: it is 
worthwhile to explore it further. 

2.4. Other Enhancements  

However, there are some problems that such applications encounter that  sometimes delay, 
if not prohibit,  the finding of the optimal solutions with a desired precision. Such problems 
originate from many sources as 

1. the coding, which moves the operational search space away from the problem space, 

2. insufficient number of iterations, 

3. insufficient population size, etc., 
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1. premature convergence of the entire population to a non-global optimum, and 

2. inability to perform fine local tuning. 

There are a number of enhancements implemented in the modified version of the algorithm 
which deal with the convergence problem and the fine local tuning. Our approach is to 

1. detect such troublesome cases, and 

2. make the GA to adjust appropriately. 

For example, a detected multimodal function would cause a much smaller initial influence of the 
fitness on the selection process. For a detailed discussion on these topics, see [19]. 

3. TEST PROBLEMS 

Three simple discrete-time optimal control models (frequently used in applications of optimal 
control) have been chosen as test problems for the modified genetic algorithm: linear-quadratic 
problem, the harvest problem, and the (discretized) push-cart problem. These are apparently 
easy convex optimal control problems. However, a renowned optimization package (though it is 
a 'Student Version' only) has had serious troubles in finding the optimal solution to one of them. 
GA, on the contrary, did not suffer any difficulty in solving any of them. We discuss these three 
problems in turn. 

3.1. The Linear-Quadratic Problem 

The first test problem is a one-dimensional linear-quadratic model: 

N - 1  

minimize q . z ~ + ~ - ~ ( s . x ~ + r . u ~ )  (1) 
k=O 

subject to x k + l = a . x k ÷ b . u k ,  k = O ,  1 , . . . , N - 1 ,  (2) 

where x0 is given, a, b, q, s, r are given constants, xt E R, is the state and uk E R is the control 
of the system. 

The value for the optimal performance of (1) subject to (2) is 

J* = K0 x0 2, (3) 

where Kk is the solution of the Riccati equation 

Kk = s + ra 2 Kk+l and KN = q. (4) 
r + b2K~+l 

In the sequel, the problem (1) subject to (2) will be solved for the sets of the parameters 
displayed in Figure 2. 

In the experiments the value of N was set at 45 as this was the largest horizon for which a 
comparative numerical solution from GAMS was still achievable. 

3.2. The Harvest Problem 

The harvest problem is defined as 

N - I  

k=0 

subject to the equation of growth Xk+l : a . X k - -  Uk 

(5) 

(6) 
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Case  N x0 s r q a b 

I 45 100 1 1 1 1 1 

I I  45 100 10 1 1 1 1 

I I I  45 100 1000 1 1 1 1 

IV 45 100 1 10 1 1 1 

V 45 100 1 1000 1 1 1 

VI  45 100 1 1 0 1 1 

VI I  45 100 1 1 1000 1 1 

VI I I  45 100 1 1 1 0.01 1 

IX 45 100 1 1 1 1 0.01 

X 45 100 1 1 1 1 100 

F igure  2. Ten tes t  cases. 

where initial state x0 is given, a is a constant, and xk E R and uk E R + are the state and the 
(nonnegative) control, respectively. 

The optimal value J* of (5) subject to (6) and (7) is: 

j .  = (aN _ 1)5 
(8) 

Problem (5) subject to (6) and (7) will be solved for a - 1.1 and the following values of 
N -- 2,4,10,20,45. 

3.3. The Push-Cart Problem 

The push-cart problem consists of maximization of the total distance Xl(N) traveled in a 
given time (a unit, say), minus the total effort. The system is second order: 

1 
x2(k -}- 1 )  ---- 2xg(k) - Xl(k) + ~ u(k) 

and the performance index to be maximized is: 

(9) 

(10) 

1 N - 1  

x l ( N ) -  ~ ~ u2(k). (11) 
k---0 

For this problem the optimal value of index (11) is: 

j .  1 3 N -  1 1 N-1 
- -  3 6N 2 2N 3 Z k2" ( 1 2 )  

k=0 

The push-cart problem will be solved for different values N -- 5,10,15,20,25,30,35,40,45. Note 
that  different N correspond to the number of discretization periods (of an equivalent continuous 
problem) rather than to the actual length of the optimization horizon which will be assumed as 
o n e .  

4. E X P E R I M E N T S  AND RESULTS 

In this section we present the results of the modified genetic algorithm for the optimal control 
problems. For all test problems, the population size was fixed at 70, and the runs were made for 
40,000 generations. For each test case we have made three random runs and reported the best 
results; it is important to note, however, that the standard deviations of such runs were almost 
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Case 

I 
II 

III 
IV 

V 

VI 

VII 
VIII 

IX 

X 

Generat~ns Factor 

1 16O 1,000 1 0 , 0 0 0  20,000 30,000 40,000 

17904.4 3.87385 1.73682 1.61859 1.61817 1.61804 1.61804 104 
13572.3 5.56187 1.35678 1.11451 1.09201 1.09162 1.09161 105 

17024.8 2.89355 1.06954 1.00952 1.00124 1.00102 1.00100 107 

15082.1 8.74213 4.05532 3.71745 3.79811 3.70162 3.70160 104 

5968.42 12.2782 2.69862 2.85524 2.87645 2.87571 2.87569 105 

17897.7 5.27447 2.09334 1.61863 1.61837 1.61805 1.61804 104 

2690258 18.6685 7.23567 1.73564 1.65413 1.61842 1.61804 104 

123.942 72.1958 1.95783 1.00009 1.00005 1.00005 1.00005 104 

7.28165 4.32740 4.39091 4.42524 4.31021 4.31004 4.31004 105 

9971341 148233 16081.0 1.48445 1.00040 1.00010 1.00010 104 

Figure 3. Genetic algorithm for the linear-quadratic problem (1)-(2). 

N 

2 

4 

8 

10 

2o 

45 

Generations 

1 100 1,000 1 0 , 0 0 0  2 0 , 0 0 0  30,000 40,000 

6.3310 

12.6848 

25.4601 

32.1981 

65.3884 
167.1348 

6.3317 

12.7127 

25.6772 

32.5010 
68.6257 

251.3241 

6.3317 

12.7206 

25.9024 

32.8152 

73.1167 
277.3990 

6.3317 

12.7210 

25.9057 

32.8209 
73.2372 

279.0657 

6.3317 

12.7210 

25.9057 

32.8209 
73.2376 

279.2612 

6.3317 

12.7210 

25.9057 

32.8209 

73.2376 

279.2676 

6.331738 

12.721038 

25.905710 

32.820943 

73.237668 

279.271421 

Figure 4. Genetic Algorithm for the harvest problem (5)-(7). 

Generations 

1 100 1,000 1 0 , 0 0 0  2 0 , 0 0 0  30,000 40,000 N 

5 -3.008351 

10 -5.668287 

15 -6.885241 

20 -7.477872 

25 -8.668933 

30 -12.257346 

35 -11.789546 

40 -10.985642 

45 -12.789345 

0.081197 

-0.011064 

-0.012345 

-0.126734 

-0.015673 
-0.194342 

-0.236753 

-0.235642 

-0.342671 

0.119979 

0.140195 

0.142546 

0.149953 

0.143030 
0.123045 

0.110964 

0.072378 

0.072364 

0.120000 

0.142496 

0.150338 

0.154343 

0.156775 
0.158241 

0.159307 

0.160250 

0.160913 

O. 120000 

0.142500 

0.150370 

0.154375 

O. 156800 

0.158421 

0.159586 

0.160466 

0.161127 

0.1200OO 

0.142500 

0.150370 

0.154375 

0.156800 

0.158426 

0.159592 
0.160469 

0.161152 

0.120000 

0.142500 

0.150371 

0.154377 

0.156800 

0.158426 

0.159592 
0.160469 

0.161152 

Figure 5. Genetic Algorithm for the push-cart problem (9)-(11). 

negl igibly small.  T h e  vectors  ( u 0 , . . .  ,UN-1) were init ial ized r andomly  (but  wi th in  a desired 

domains) .  Figures  3, 4, and 5 repor t  the values found along with  in te rmedia te  resul ts  a t  some 

genera t ion  intervals .  For example ,  the  values in column "10,000" indicate  the  par t ia l  resul t  af ter  

10,000 genera t ions ,  while running  40,000. It is i m p o r t a n t  to note  tha t  such values are worse 
than  those ob ta ined  while running  only 10,000 generat ions ,  due to the na tu re  of  some genet ic  
operators. In the next section we compare these results with the exact solutions and solutions 

obtained from the computational package GAMS. 

Note, that the Problem (5)-(7) has the final state constrained. It differs from the Prob- 

lem(i)-(2) in the  sense tha t  not  every  r andomly  ini t ial ized vector  ( u 0 , . . . ,  UN-1)  o f  pos i t ive  real  

numbers generates an admissible sequence xk (see condition (6)) such that x0 -- ZN, for given a 

and x0. In our version of genetic algorithm, we have generated a random sequence of u0, . . . ,  UN-2, 
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repeated the initialization process: this happened in less than 10% of cases. The same difficulty 
occurred during the reproduction process. An offspring (after some genetic operations) need not 
satisfy the constraint: z0 = ZN. In such a case we replaced the last component of the offspring 
vector u using the formula: U N - z  = a • Z N - Z  -- :ON. Again, if U N - z  turns out to be negative, 
we do not introduce such offspring into new population (again, the number of such cases did not 
exceed 10%). For an automatic way of handling such constrains see [17]. 

5. GENETIC ALGORITHMS VERSUS OTHER METHODS 

In this section we compare the above results with the exact solutions as well as those obtained 
from the computational package GAMS (with MINOS optimizer). 

5.1.  The  L i n e a r - Q u a d r a t i c  Prob lem 

Exact solutions of the problems for the values of the parameters specified in Figure 2 have 
been obtained using Formulae (3) and (4). 

To highlight the performance and competitiveness of the genetic algorithm, the same test 
problems were solved using GAMS. The comparison may be regarded as not totally fair for the 
genetic algorithm since GAMS is based on search methods particularly appropriate for linear- 
quadratic problems. Thus the Problem (1)-(2) must be an easy case for this package. On the 
other hand, if for these test problems the genetic algorithm proved to be competitive, or close to, 
there would be an indication that it should behave satisfactorily in general. Figure 6 summarizes 
the results, where columns D refer to the percentage of the relative error. 

C~_~e 

I 

II 

III 

IV 

V 

VI 

VH 

VIII 

IX 

X 

Exact solution 

value 

16180.3399 

109160.7978 

10009990.0200 

37015.6212 

287569.3725 

16180.3399 

16180.3399 

10000.5000 

431004.0987 

10000.9999 

Genetic Algorithm 

value D 

0.000% 
0.000% 
0.000% 
0.000% 
0.000% 
0.000% 
0.000% 
0.000% 
0.000% 
0.000% 

16180.3928 

109161.0138 

10010041.3789 

37016.0426 

287569.4357 

1618O.4O65 

16180.3784 

10000.5000 

431004.4182 

10001.0038 

GAMS 

value D 

16180.3399 0.000% 

109160.7978 0.000% 

10009990.0200 0.000% 

37015.6212 0.000% 

287569.3725 0,000% 

16180.3399 0.000% 

16180.3399 0.000% 

10000.5000 0.000% 

431004.0987 0.000% 

10000.9999 0.000% 

Figure 6. Comparison of solutions for the linear-quadratic problem. 

As shown above the performance of GAMS for the linear-quadratic problem is perfect. How- 
ever, this was not at all the case for the second test problem. 

5.2. The  Harves l  Prob l em  

To begin with, none of the GAMS solutions was identical with the analytical one. The 
difference between the solutions were increasing with the optimization horizon as shown below 
(Figure 7), and for N > 4 the system failed to find any value. 

It appears that GAMSis sensitive to non-convectness of the optimizing problem and to the 
number of variables. Even adding an additional constraint to the problem (uk+z > 0.1 • uk) to 
restrict the feasibility set so that the GAMS algorithm does not "lose itself ''~) has not helped 
much (see column "GAMS+"). As this column shows, for optimization horizons sufficiently long 
there is no chance to obtain a satisfactory solution from GAMS. 
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N Exact  solution GAMS GAMS+ Genetic Alg 

value D value D value D 

2 6.331738 4.3693 30.99% 6.3316 0.00% 6.3317 0.000% 

4 12.721038 5.9050 53.58% 12.7210 0.00% 12.7210 0.000% 

8 25.905710 * 18.8604 27.20% 25.9057 0.000% 

10 32.820943 * 22.9416 30.10% 32.8209 0.000% 

20 73.237681 * * 73.2376 0.000% 

45 279.275275 * * 279.2714 0.001~0 

Figure 7. Comparison of solutions for the harvest  problem. The  symbol '* '  means  
tha t  the GAMS failed to report a reasonable value. 

N 

5 

10 

15 

20 

25 

30 

35 

40 

45 

Exact solution 

value value 

0.120000 

0.142500 

0.150370 

0.154375 

0.156800 

0.158426 

0.159592 

0.160469 

0.161152 

GAMS 

D 

0.120000 0.000% 
0.142500 0.000% 
0.150370 0.000% 
0.154375 0.000% 

0.156800 0.000% 

0.158426 0.000% 

0.159592 0.000% 

0.160469 0.000% 

0.161152 0.000% 

GA 

value D 

0.120000 0.000 % 
0.142500 0.000 % 
0.150370 0.000 % 
0.154375 0.000 % 

0.156800 0.000 % 
0.158426 0.000 % 
0.159592 0.000 % 

0.160469 0.000 % 

0.161152 0.000 % 

Figure 8. Comparison of solutions for the push-car t  problem. 

N No. of 

iterations 

needed 

5 6234 

I0 10231 

15 19256 

20 19993 

25 18804 

30 22976 

35 23768 

40 25634 

45 28756 

Time 

needed 

(CPU sec) 

65.4 

109.7 

230.8 

257.8 

301.3 

389.5 

413.6 

467.8 

615.9 

Time for 40,000 

iterations 

(CPU ,ec) 
328.9 

400.9 

459.8 

590.8 

640.4 

701.9 

779.5 

850.7 

936.3 

Time for 

GAMS 

(CPU sec) 

31.5 

33.1 

36.6 

41.1 

47.7 

58.2 

68.0 

81.3 

95.9 

Figure 9. T ime performance of genetic algorithm and GAMS for the push-cart  problem (9)-(11): 
number  of iterations needed to obtain the result with precision of six decimal places, t ime needed 
for tha t  number  of iterations, t ime needed for all 40,000 iterations. 

5.3. The Push.Cart Problem 

For the push-cart problem both GAMS and genetic algorithm produce very good results 
(Figure 8). However, it is interesting to note the relationship between the time different search 
algorithms need to complete the task. 

For most optimization programs, the time necessary for an algorithm to converge to the opti- 
mum depends on the number of decision variables. This relationship for dynamic programming 
is exponential ("curse of dimensionality"). For the search methods (like GAMS) it is usually 
LL , 1  I "  
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Figure 9 reports number of iterations genetic algorithm needed to obtain exact solution (with 
six decimal place rounding), the time needed for that, and the total time for all 40,000 iterations 
(for unknown exact solution we can not determine the precision of the current solution). Also, 
the time for GAMS is given. Note, that GAMS was run on PC Zenith z-386/20, while genetic 
algorithm on DEC-3100 station. 

It is clear, that the genetic algorithm is much slower than GAMS: there is a difference in 
absolute values of CPU time as well as computers used. However, let us compare not the times 
needed for both system to complete their calculations, but rather their growth rates of the time 
as a function of the size of the problem. The Figure 10 show the growth rate of the time needed 
to obtain the result of the genetic algorithm and GAMS. 

50( 

CPU time 

10C 

50 

, N  

CPU time 

__J 
10 

o o o o 

10 45 10 45 
Figure 10. Time as a function of problem size (N). 

. N  

These graphs are self-explanatory: although genetic algorithm is generally slower, its linear 
growth rate is much better than that of GAMS (which is at least quadratic). Similar results hold 
for the linear-quadratic problem and the harvest problem. 

6. CONCLUSIONS AND FUTURE WORK 

In this paper we have initiated the study of the application of the (modified) genetic algorithm 
to discrete-time optimal control problems. The experiments were successful on three selected 
optimal control problems. In particular, the results were encouraging because the closeness of the 
numerical solutions to the analytical ones was satisfying, additionally, the coding and computation 
efforts were reasonable (about 1500 lines of code in C, and, for the 40,000 generations, few minutes 
of CPU time on CRAY Y-MP and up to 15 minutes on a DEC-3100 station). 

The numerical results were compared with those obtained from a search-based computational 
package (GAMS). While the genetic algorithm gave us results comparable with the analytic 
solutions for all test problems, GAMS failed for one of them. Additionally, the genetic algorithm 
displayed some qualities not always present in the other systems: 

• The optimization function for genetic algorithm need not be continuous. In the same time 
some optimization packages will not accept such function at all. 

Some optimization packages are all-or-nothing propositions: the user has to wait until the 
program completes. Sometimes it is not possible to get partial (or approximate) results at 
some early stages. Genetic algorithms give the users additional flexibility, since the user 
can monitor the "state of the search" during the run time and make appropriate decisions. 
In particular, the user can specify the computation time (s)he is willing to pay for (longer 
time provides better precision of the answer). 

The computational complexity of genetic algorithms grows at the linear rate; most of other 
search methods are very sensitive on the length of the optimization horizon. Moreover, 
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"In a world where serial algorithms are usually made parallel through countless 
tricks and contortions, it is no small irony that  genetic algorithms (highly parallel 
algorithms) are made serial through equally unnatural  tricks and turns." 

It seems we can easily improve the performance of our system using parallel implementa- 
tions; often it is difficult for other optimization methods. 

This paper is the first step toward building a control-problem optimization system based on 
genetic algorithms. Here, precise solutions for three frequently used simple control models were 
obtained. In general, an optimization system to be interesting for practitioners has to be more 
control-problem specific than the system here introduced. In particular the system has to allow 
for: 

• inequality/equality local constraints of the state variable, 

• inequality/equality local constraints of the control variable, 

• mixed inequality/equality local constraints, 

• inequality/equality global constraints of the state variable, 

• inequality/equality global constraints of the control variable, 

• free final time. 

In this paper a model with one local equality constraint on the final state has been successfully 
handled. Future developments of the system will concentrate on the constraints' classes specified 
above. 
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