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KEYWORDS Abstract In this article, a theoretical study is presented for peristaltic flow of a MHD fluid in an
Peristaltic transport; asymmetric channel. Effects of viscosity variation, velocity-slip as well as thermal-slip have been
Heat transfer; duly taken care of in the present study. The energy equation is formulated by including a heat
Variable viscosity; source term which simulates either absorption or generation. The governing equations of motion
Slip effects and energy are simplified using long wave length and low Reynolds number approximation. The

coupled non-linear differential equations are solved analytically by means of the perturbation
method for small values of Reynolds model viscosity parameter. The salient features of pumping
and trapping are discussed with particular focus on the effects of velocity-slip parameter,
Grashof number and magnetic parameter. The study reveals that the velocity at the central region
diminishes with increasing values of the velocity-slip parameter. The size of trapped bolus decreases
and finally vanishes for large values of magnetic parameter.
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1. Introduction in the gastrointestinal tract, swallowing food through the

esophagus, transport of spermatozoa in the ductus efferentes
Peristaltic transport of physiological fluids induced by a pro- of the male reproductive tracts, the movement of the ovum
gressive wave of area contraction or expansion along the in the female fallopian tube, and the vasomotion of small
length of a distensible tube has drawn serious attention of blood vessels. Also, finger and roller pumps are frequently
researchers working in the area of physiological fluid dynam- used for pumps corrosive or very pure materials so as to pre-
ics. To be more specific, it encounters in urine transport from vent direct contact of the fluid with the pump’s internal

the kidney to the bladder, through the ureter, chyme transport ~ surfaces.

To understand the peristaltic action under different normal
* Corresponding author. and pathological conditions, several theoretical and experi-
E-mail address: aniruddha.sinha07@gmail.com (A. Sinha). mental attempts [1,2] have been made since the first investiga-
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University. theory for peristaltic pumping of a compressible fluid in a
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Nomenclature
(X', Y') Cartesian coordinates Greek symbols
(U, V") velocity components along X’ and Y’ directions A wave length
¢ wave speed ¢ phase difference
) fluid pressure u variable viscosity
g acceleration due to gravity g electrical conductivity
By applied magnetic field strength P density of blood
C, specific heat at constant pressure o co-efficient of thermal expansion
o constant heat addition/absorption K thermal conductivity
Re Reynolds number o non-dimensional mean flow rate
M Hartman number 0 non-dimensional temperature
P. Prandtl number 14 wave number
Gr Grashof number p heat source/sink parameter
T, temperature of the upper wall b velocity slip parameter
Ty temperature of the lower wall Y thermal slip parameter
Reynolds model viscosity parameter

circular tube with a view to enhance oil production from por-
ous rock by the application of ultrasound. Vries et al. [5]
observed that due to myometrial contractions, the intra-
uterine fluid flow exhibits peristalsis and myometrial contrac-
tions may occur in both symmetric and asymmetric directions.
Taylor [6] conducted a theoretical investigation on asymmetric
wave propagation in wavy sheets with the main objective of
deriving some information regarding the mechanical interac-
tion between spermatozoa. Carew and Pedley [7] studied the
pumping phenomenon of peristaltic flow in the ureter by using
lubrication theory. By taking into account the wall deforma-
tion of the pipe, Antanovskii and Ramkissoon [8] have used
lubrication theory in order to analyze the peristaltic transport
of a compressible viscous fluid through a pipe for situations
where the pressure drop changes with time. Nadeem and
Akram [9] theoretically studied a peristaltic flow of a
Williamson model in an asymmetric channel. Maiti and
Misra [10] have investigated the peristaltic transport of bile
flow within ducts in a pathological state. They remarked that
in the presence of gallstones, the critical pressure for reflux
decreases as porosity increases. Very recently, Akbar and
Butt [11] have studied on the non-Newtonian Casson fluid
model accompanied in a horizontal tube.

In the above mentioned studies fluid viscosity is assumed to
be constant. There are few attempts [12,13] in which the effects
of variable viscosity in the peristaltic mechanisms have been
considered. These studies considered the viscosity to be a func-
tion of space variable in the form of an exponential function.
In a typical situation most of the fluids have temperature
dependent viscosity and this property varies significantly when
large temperature difference exists. Elshehawey and
Gharsseldien [14] studied the effects of variable viscosity for
peristaltic motion of an incompressible Newtonian fluid
through a channel with three layers flow. Martin [15] analyti-
cally solved the problem of viscometric flows of Power-law flu-
ids with variable viscosity.

The red blood cell (erythrocyte) is a major biomagnetic sub-
stance and therefore, it is quite possible that blood flow is
influenced by the presence of magnetic field. The flow rate of
blood is reduced due to either an increase in blood flow

resistance or a decrease in blood pressure. The effect of an
externally applied magnetic field on blood flow has been ana-
lyzed theoretically by treating blood as an electrically conduct-
ing fluid [16]. The major mechanism of the influence of a
stationary magnetic field on blood viscosity is based on the
interaction between the induced magnetic moment of the ery-
throcytes (RBC) and the external stationary magnetic field.
The RBC has greater susceptibility along its long axis. So, it
tends to orient its long axis for larger magnetic susceptibility
along the external magnetic field.

The peristaltic transport of magnetohydrodynamic (MHD)
flow of a fluid in a channel is of interest in connection with cer-
tain problems of the movement of conductive physiological
fluids, e.g., the blood, blood pump machines and with the need
for experimental as well as theoretical research on the opera-
tion of a peristaltic MHD compressor. Effect of a moving
magnetic field on blood flow was investigated by Sud et al.
[17], and they observed that the effect of suitable moving mag-
netic field accelerates the speed of blood. Akbar [18] theoreti-
cally investigated the influence of magnetic field on peristaltic
transport of nano Eyring-Powell fluid in an asymmetric chan-
nel. Agrawal and Anwaruddin [19] developed a mathematical
model of MHD flow of blood through an equally branched
channel with flexible walls executing peristaltic waves using
long wave length approximation method and observed, for
the flow blood in arteries with arterial disease like arterial
stenosis or arteriosclerosis, that the influence of magnetic field
may be utilized as a blood pump in carrying out cardiac oper-
ations. The principle of magnetic field is successfully applied to
Magnetic Resonance Imaging (MRI) when a patient under-
goes in a hight static magnetic field. Abbasi et al. [20] devel-
oped a mathematical model on peristaltic transport of MHD
fluid by considering variable viscosity. Moreover, the influence
of magnetic field on peristaltic flow of a Casson fluid in an
asymmetric channel was studied by Akbar [21] who has also
investigated the characteristics of fluid flow in tabular harmo-
nizes by considering long wave length and low Reynolds num-
ber approximations [22]. Akbar [23] has carried out the
influence of magnetic field on flow and heat transfer of a car-
bon nanotube induced by peristaltic waves and observed that
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with the increase of solid volume fraction of the nanoparticles
and heat absorption parameter, the temperature profile
increases significantly.

Lauga and Stone [24] experimentally investigated the effec-
tive slip length of the resulting flow as a function of the degrees
of freedom describing the surface heterogeneities, namely the
relative width of the no-slip and no-shear stress regions and
their distribution along the pipe. They concluded that the
experimental results which are consistent with a large number
of distributed slip domains such as nano-size and micron-size
nearly flat bubbles coating the solid surface. In addition they
also suggested the possibility of a shear-dependent effective
slip length. Hayat et al. [25] discussed the effect of slip velocity
on peristaltic transport of an incompressible viscous fluid in an
asymmetric channel through a porous medium. According to
them for large values of slip parameter the size of trapped
bolus decreases and symmetry disappears. Furthermore,
Hayat et al. [26] have examined the slip effect on Carreau—
Yasuda fluid in a curved channel wherein they reported that
an increase in velocity slip parameters decreases the peristaltic
and retrograde pumping regions. Many authors [27,28] sug-
gested the presence of a red blood cell slip at the vessel wall.
Misra and Kar [29] solved the problem of blood flow through
a stenosed vessel by taking into consideration the slip velocity
at the wall by using the momentum integral technique. Ebert
and Sparrow [30] and Sparrow et al. [31] analyzed several flow
problems under some pathological states. Wang [32]
considered a problem involving partial slip by considering
stagnation point flows. Abbasi et al. [33] also investigated
the peristaltic transport of copper—water nanofluid in an
inclined channel in the presence of mixed convection. They
found that velocity slip parameter has a decreasing effect on
the velocity near the center of channel while the temperature
of nanofluid enhances in the presence of Grashof number as
well as inclination of the channel. Later on Hayat et al. [34]
also theoretically analyzed the slip and joule heating effects
in mixed convection peristaltic transport of nanofluid with
Soret and Dufour effects.

While flowing through the arterial tree, blood carries a
large quantity of heat to different parts of the body. On the
skin surface, the transfer of heat can take place by any of
the four processes: radiation, evaporation, conduction and
convection. It may further be mentioned that blood flow
enhances when a man performs hard physical work and also
when the body is exposed to excessive heat environment. In
cases like these, blood circulation cannot remain normal. In
order to take care of the increase in blood flow, the dimensions
of the artery have to increase suitably. It is known that when
the temperature of the surroundings exceeds 20 °C, heat trans-
fer takes place from the surface of the skin by the process of
evaporation through sweating and when the temperature is
below 20 °C, the human body loses heat by conduction and
radiation both. Blood flow with radiative heat transfer was dis-
cussed by Ogulu and Bestman [35] on the basis of a theoretical
study. The study of heat transfer analysis is an important area
in connection with peristaltic motion, which has industrial
applications such as sanitary fluid transport, blood pumps in
heart lungs machine and transport of corrosive fluids where
the contact of fluid with the machinery parts is prohibited.
There is only a limited amount of research available in the lit-
erature in which peristaltic phenomenon has discussed in the
presence of heat transfer [36,37].

To the best of our knowledge, no attempt is available in the
literature which deals with the problem of peristaltic transport
of MHD flow of blood and heat transfer in an asymmetric cap-
illary blood vessel with variable viscosity when no-slip condi-
tion is inadequate. The no-slip condition is inadequate when
one considers fluids exhibiting macroscopic wall slip and that
in general is governed by relation between the slip velocity
and traction. Due to such fact in mind, the main purpose of
the present investigation is to examine the peristalsis of a mag-
netohydrodynamic (MHD) fluid with variable viscosity,
velocity-slip as well as thermal-slip conditions. To the authors’
best knowledge, this problem has not been even studied for the
hydrodynamic fluid. The flow analysis is developed in a wave
frame of reference moving with the velocity of the wave. In
Section 2, the problem is first modeled and the non-
dimensional governing equations are formulated in wave
frame. The non-dimensional governing equations under the
long wavelength and low Reynolds number approximation
and the corresponding boundary conditions are prescribed in
Section 3. In Section 4, perturbation analysis has been dis-
cussed. Section 5 includes the exact solution of the problem.
The results for the velocity, temperature, pressure rise, pres-
sure gradient, wall shear stress and stream function have been
discussed for various values of the problem parameters in
Section 6. Finally, the main conclusions are summarized in
Section 7. It is expected that the results presented here will
serve as fairly good theoretical estimates of various prospective
fluid mechanical flow governing parameters related to the peri-
staltic transport of blood.

2. Mathematical model and governing equations

We consider the peristaltic transport of an unsteady incom-
pressible and electrically conducting fluid through an asym-
metric two dimensional channel (cf. Fig. 1) of width d; + d.
We choose a stationary frame of reference (X', Y’) such that
X' measured along the axis of the channel and Y’ perpendicular
to X'. Let (U, V') be the velocity components in the fixed
frame of reference (X', Y’). Again, we consider the flow is
induced by sinusoidal wave trains propagating with constant
speed ¢ along the channel walls. The geometry of the wall sur-
face (cf. [38]) is assumed to be

Py

2
(X', 1) =d, + a cos [ r X - ct’)], upper wall (1)

(X' (') = —dy — ay cos {% (X' —cf)+ d)'} , lower wall (2)

in which @, and @, are amplitudes of the waves, /4 is the wave
length, ¢ is the time ¢ (0 < ¢ < =n) is the phase difference. It
should be noted that ¢ = 0 corresponds to a symmetric chan-
nel with waves out of phase and for ¢ = n the waves are in
phase. A uniform magnetic field is applied normal to that of
flow. In this analysis, it is assumed that magnetic Reynolds
number is much less than unity so that the induced magnetic
field is negligible in comparison with applied magnetic field.

The Soret effect, also called thermophoresis, is a phe-
nomenon observed when a mixture of different type particles,
is under the action of temperature gradient, and the responses
of the particles are different. At ¢ < 0, the walls of the channel
and the fluid are assumed to beat the same temperature, so that
the Soret effect is negligibly small.
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Fig. 1

With all the above mentioned consideration, the equations that

govern the motion of the fluid in the wave frame may be listed as

ou oV
ax Tar =0 3
ou U U P 9 [, . dU
p(aﬂ*Ua)(*Vaw):*a?”a?(“(Y’)ay)
o[,  [(oV U
+a—r["<’”>(a—x+a—w)}
— oByU + pgouy (T — Ty), (4)

Pl
N L B P Y AL

or oxX' oY oY oY oY
o[, [(oV aU
+87[’“‘(Y)(37+aw>}
(5)
or 0T or T T
R s IR

where the definition of all the symbols involved in the equa-
tions is included in the Nomenclature.

In the laboratory frame (X',Y’) the flow is unsteady.
However if observed in a co-ordinate system moving at the
wave speed ¢ in the wave frame (x,)’), it can be treated as
steady. The co-ordinates, velocities, pressure and temperature
in the two frames are

X=X —c, y=Y, U=U—c,
p=P, T=T, (7)
where U', V' and «/, V' are the velocity components in the cor-

responding co-ordinate systems. Let us introduce the following
non-dimensional variables [38]:

S S O 2

=Y e e P e 0 T -
T-T, Hy(X') Hy(x') w0

0= hy(x) == ;o (x) =22 )=
T Ty (x) d 2(x) 4 ) ™

in which g, is the constant viscosity and ¢ is the wave number.

A physical sketch of the problem.

Invoking Eq. (8) into Egs. (3)-(6) we have

ou Ov
aJra—y—O, 9)
ou ou\  Op , 0 Ou
RL’5<(H+ 1)a+v07y) = 6X+26 8)(( ( )ax>
0 28\) ou
a1 (75 )
— M*(u+ 1) + Gro, (10)

s Y 0 0 (o
R,0 ((u—l—l)a + v ay)f ay—i—25 oy (,u(y)ay)
0 ov  Ou

b (P g))

SR.P, ((u+ 1)ge+ g—i) = {5

80 90

e R ()

where 0, R,, M, Gr, P,, [ are non-dimensional parameters,
called respectively the wave number, Reynolds number,
Hartmann number, Grashof number, Prandtl number and
source/sink parameter given by

. d d /
0247 Re:gv M= ﬂBOdl»
4 Ho Ho

) ) (13)
Gr — pga(Ty — Ty)d, P — HoCp B = Ood,
Clo o Kk’ k(T) — Tp)
Introducing the stream function u =2, y = —2% in the Egs.

ay?
(9)~(12) and under the assumptions of long wave length
(60 < 1) and low Reynolds number will take the form

_op 0 Y o
0=— 8x+6y{ ()a—yz}—M2<a—y+1)+Gr0, (14)
__ o
0=— ' (15)
6 +ﬂ (16)

It is noted that from Eq. (15) that p is not a function of y.
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3. Volumetric flow rate and boundary conditions

The instantaneous volume flow rate in fixed frame is given
by
L
0= [ UWX.,Y.,1)d, (17)
Iy
where 4} and /) are functions of X" and 7.
The volumetric flow rate in the wave frame is given by

4
q=/h u' (X', y)dy, (18)

/
2

where /) and /) are functions of x’ only.
If we substitute (7) into (17) and make use of (18), we find
that the two rates of volume flow are related through

0.5F b
0.0
—— Results of the present
= t study
— Results of Kothandapani
-0.5¢ and Srinivas (2008) 1
qol— P IS BRI
-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

Fig. 2 Comparison of axial velocity distribution for M = 0.0,
Gr=0.0, «=0.0 and f, =0.0 with the numerical results of
Kothandapani and Srinivas [38].

03 o S —— o o ———
02l \ 1
0.1 B
0.0f

a) r — M=3.0

-0.1 H
— M=4.0
-02F q
M=5.0
-03F B
— M=6.0
—04L L L . . L L .
-1.0 -0.5 0.0 0.5 1.0 1.5

y

Fig. 3  Axial velocity profiles for different values of M with a =
b=0.5 d=1.0, p=05, ;=05 6 =24, Gr=5.0, « =0.05,
y=0.1 and ¢ = n/4).

Q =q+c(hy — hy). (19)

The time mean flow over a period T (= £) at a fixed posi-
tion X' can be written as

1 (-
0~ [ o (20)
Substituting Eq. (19) into (20) and integrating, we arrive at
Q' =q+c(d +d>). (21)

On defining the non-dimensional time mean flows ¢’ and F
respectively in the laboratory and wave frame as

0 q
0 ==, F=—. 22
Cdl ’ Cdl ( )
Thus Eq. (21) reduces to
0=F+1+d, (23)
0.4 ——
02+ 1
0.0
— B=0.1
5 ]
-0.2 8
— B=03 1
-0.4 B1=0.5 N
-0.6F — A=07 .
‘—1‘.0‘ - ‘—6.5‘ o0 ‘015‘ - ‘1‘.0‘ s
Yy

Fig. 4 Axial velocity profiles for different values of f,
when a=5=0.5, d=10, f=0.5, M =40, 0 =2.4, Gr=5.,
o=0.05, y=0.1 and ¢ = /4.

) /|

L P S ST oo b b
-1.0 -0.5 0.0 0.5 1.0 1.5
y
Fig. 5 Axial velocity profiles for different values of Gr when

a=b=05d=10, f=05, f, =05, 0 =24, M= 40, o=
0.05, y=0.1 and ¢ = /4.
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where d = % and

n al//

F= [ —=dy=y(h)—y(h). (24)
hy ay

The non-dimensional form of the equations channel walls
gives rise to

hy = % =1+ acos(2nx),
1

and hy = % = —d — bcos(2nx + @), (25)
1
in which
_a _@
a= a and b e (26)
————

5 [ T T T

L P N S SO RN S S S T L L Lo
-1.0 -0.5 0.0 0.5 1.0 1.5

Fig. 6 Temperature distribution for different values of f
with a=b=0.5, d=1.0, Gr=5.0, ;, =0.5, 0 =2.4, M =4.0,
o=0.05, y=0.1 and ¢ =n/4.

— r=03
¥=0.5

0.5
4 — r=0.6

-1.0 -0.5 0.0 0.5 1.0 1.5

Fig. 7 Temperature distribution for different values of y with
a=b=0.5d=1.0,Gr=50, 8,=0.5 0 =24, M=4.0, «=0.05,
p=0.5and ¢ =mn/4.

Also a, b and ¢ satisfy the following relation
@ +b* +2abcos p < (1 +d)’. (27)

The dimensionless slip condition in the wave frame is

F oy 0% a0

- i — 0+ = = 2
1 > 8y+ﬁ18y2 and +')8y 0 aty=h, (28)
F oy 0y 00
l//——z, 6—y—ﬁla—yz——l and 0—/a—y—0 aty—hz, (29)

in which f, <: %) and y(: 0'7/1) are the non-dimensional veloc-
ity and thermal slip parameters.

As mentioned in previous communications [39,40],
although the viscosity p depends on y and 0, the viscosity u

: ST
4\ i

3t $,=0.5 A

— B1=0.7

Tuw

Fig. 8 Variation of shear stress at the upper wall with Gr
for different values of f, with a=5b=0.5 d=1.0, f=0.5,
0 =24, M=40,0=0.05 7y=0.1 and ¢ = n/4.

Tiw

Fig. 9 Variation of shear stress at the lower wall with Gr
for different values of o with a=5b=0.5 d=1.0, $=0.5,
0 =24, M=40,8,=0.5 y=0.1 and ¢ = n/4.
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can be taken as a function of y only. For our analysis, we con-
sider the following form of u

up)=1-ay fora<l, (30)

where o is Reynolds model viscosity parameter. The choice of
u is justified physiologically because normal human being or
animal of similar size takes 1 —2L of the fluid everyday.
Also 6 — 7L of the fluid is recurred by a small intestine as
secretions from salivary glands, stomach, pancreas, liver and
small intestine itself.

4. Perturbation analysis

The Reynolds model viscosity parameter « is considered to be
very small. In order to solve Eq. (14) with the help of boundary

: — Gr=-12
of
[ Gr=2
-10F — Gr=5 ]
,20 : 1 1 1 1 1 1 1 1 1 1 1 1 L L L 1 L L n
0.0 0.2 0.4 0.6 0.8 1.0

X

Fig. 10  Variation of ”” with x for different values of Gr when

a=b=0.5,d=1.0, f= 05 B =050 =24 M=40, a=0.05,
y=0.1 and ¢ =n/4.

Fig. 11  Variation of Z—f with x for different values of o when
a=b=05,d=1.0,=0.5 4,=0.5 0 =24 M=4.0, Gr=5.0,
y=0.1 and ¢ =7n/4.

conditions (28) and (29), we consider the perturbation expan-
sion by writing

f=h+ofi+ofi+---, (31)

where f can replace y , F or p.

Now differentiating Eq. (14) with respect to y and substitut-
ing Eq. (31) and collecting the co-efficients of like power of o,
one gets the zeroth-order equation as

My 20 90
- M — = 2
By By + Gr ay =0 (32)
along with the corresponding boundary conditions
By O o O
20 ——1 aty=
=5 Gt hg aty =y (33)
and
__Fk awo Py _ _
== Gl hGE=1 aty=h (34)
The first-order perturbation equation is found in the form
Oy, 9 >y
- -2 -M—L=0. 35
oy* Y oyt 9y? 0y? (33)
The corresponding boundary conditions are
F oy
=7 1+ﬁla;—0 aty = (36)
and
F 8l//1 o™,
IPIZ*?, ﬁl az =0 at}’:/’lz. (37)

5. Solution of the problem

The temperature Eq. (16) satisfy the boundary conditions (28)
and (29) yields

5 2
0= —%+C1_}'+C2, (38)
80p — M=3.0
60 — M=4.0 ]
, M=5.0 ]
40F 1
o f — M=6.0 ]
q \ ]
20+ 1
of
-20f
—40t L |
-2 -1 0 1 2

Fig. 12 Variation of Ap with ¢ for different values of M when
a=b=05d=10, =05, f;,=0.5 «=0.05 Gr=5.0,y=
0.1 and ¢ = /4.



698

A. Sinha et al.

where the integrating constants ¢;, i = 1, 2 obtained by using
boundary conditions (28) and (29) are given in Appendix A.

5.1. Case I (M =20)

With the help of Eq. (38) and using the boundary conditions
(33) and (34), we can solve Eq. (32) by considering M = 0.
The analytical expression for iy, may be written as in following
form

2 34

ettt tal e 2 (B Ner
l//o—C3+c4y+652+ca6+24(5 cl)Gi, (39)
where the integrating constants ¢;, i =3,...,6 are given in
Appendix A.

Now using the above expression of ,, we can obtain the
solution of y, by solving Eq. (35) under the boundary condi-
tions (36) and (37) (when M = 0) as

2 3 4 S

Vi =c +Csy+69%+6’10€+665* Cl%Gr
36
=G 40
+ B35 G, (40)
where the integrating constants ¢;, i =7,...,10 are given in
Appendix A.

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5

5.2. Case Il (M #0)

Using the expression of 0 which is given in Eq. (38), we can
solve Eq. (32) under the boundary conditions (33) and (34) as

Yo = A1 + Ay + Ase™ + Age™
Gry2
6M°

Using the solution given in Eq. (41), we can solve the Eq.
(35) with the help of (36) and (37) as

(BMy — 3¢; M + 3p). (41)

A
= A5+ Agy+ A7e™ + Age™ + 2 MM y(y— 5
| 3 7] Wy

My B2

7%6"’""")/()% 5) +%y2 + AseMr2)? 7%, (42)
where the integrating constants A;, i=1,...,8 are given in
Appendix A.

The axial pressure can be written in the form
dp Oy I (o
—=—a—+4+(l—-awy)—-M|—+1 Gro. 43
dx * 0y? +(1-w) oy? ay t)or (43)

The non-dimensional expression for the pressure rise per
wavelength Ap is given by

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5

Fig. 13 Streamline patterns for (a) M = 3, (b)) M = 4, (c) M = 5 and (d) M = 6 with a=b=0.5, d=1.0, =0.5, B, =0.5, 0 =2.4,

Gr=5.0,=0.05, y=0.1 and ¢ =n/4.
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6. Results and discussion

This section is divided into six subsections. In Section 6.1, we
give the comparison of our results with the previous results. In
Sections 6.2-6.4, the effects of various parameters on velocity
profiles, temperature distribution and wall shear stress are
investigated. The pumping characteristics are discussed in
Section 6.5 and in Section 6.6 we have illustrated the trapping
phenomena.

6.1. Model validation

Fig. 2 gives the comparison between the results obtained in the
present study and the results of Kothandapani and Srinivas
[38]. For the purpose of comparison, both the studies have
been naturally brought to the same platform, by considering
equal parametric values in the absence of magnetic field as well
as by disregarding the slip effects for the present study. For
comparison, we neglected the heat transfer effect by setting
Gr = 0 and assumed that the viscosity is constant while taking
o = 0. On the other hand, in the analytical solution of the

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5

Fig. 14
Gr=5.0,0=0.05,7=0.1 and ¢ =n/4.

velocity profiles presented by Kothandapani and Srinivas
[38], we considered a large value of permeability parameter
with zero inclination angle. One may observe from this figure
that the results of the present study are in good agreement with
those of the previous study.

6.2. Velocity distribution

Figs. 3-5 focus on the axial velocity u for different values of
Hartman number (magnetic parameter), velocity-slip parame-
ter and Grashof number respectively. Fig. 3 reveals that at the
near of the arterial walls, axial velocity increases with increas-
ing Hartman number, whereas the reversed trend is observed
in the central region of the artery in the case of cooling of
the arterial walls i.e, when Gr > 0. This observation agrees
with the theory because with the increase in Hartman number,
the Lorentz force increases. It is well known that Lorentz force
opposes the flow. This implies that if we increase the strength
of magnetic field, the flow of blood will be impeded. From
Fig. 4, we observed that for any values of velocity-slip param-
eter, the axial velocity vanishes at two different points. These
points are the points of inflexion. This result indicates that
the flow reversal occurs at these points. It is also noted that
the axial velocity decreases in the central region and increases
near the channel walls for increasing velocity slip parameter f3,.

Streamline patterns for (a) f; = 0.1, (b) f; = 0.3, (c) f; = 0.5and (d) §, = 0.7 witha=b=0.5,d=1.0, f=0.5, M=4.0, ' =2.4,
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One can have an idea of velocity distribution for both cases i.e,
the cooling of the arterial walls (Gr > 0) and heating of the
arterial walls (Gr < 0) from Fig. 5. It may be noted that in
the case of cooling, velocity increases with increasing
Grashof number up to a certain height of the artery, beyond
which a reverse trend is observed, whereas in the case of heat-
ing, velocity decreases up to a certain distance from the lower
wall of the artery and after that velocity decreases with increas-
ing Grashof number. It is also seen from this figure that for
Gr = —12, velocity vanishes at three different points whereas
for other values of Gr, velocity vanishes twice.

6.3. Temperature distribution

Figs. 6 and 7 give some characteristic temperature profiles for
different values of heat source parameter and thermal-
slip/temperature jump factor respectively. Fig. 6 emphasizes
that as heat generates during blood flow in arterioles, there
is a significant rise in thickness of boundary layer. Thereby
the temperature of the boundary layer enhanced by apprecia-
ble extend. It is also noticed from this figure that the maximum
value of temperature attains in the central region of the chan-
nel. Fig. 7 indicates that temperature increases as the temper-
ature jump factor increases. It may also be noted from this
figure that for any values of y, temperature increases with

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5

the height of the channel and after attaining its maximum, it
decreases.

6.4. Wall shear stress

It is widely accepted fact that the wall shear stress plays an
important role in the development of arteriole disease. Hence
it is important to study the effects of the parameters f;, «
and Gr on the wall shear stress. Fig. 8 depicts the variation
of shear stress at the upper wall of an artery for different
values of velocity-slip parameter in the case of heating as well
as cooling of the arterial walls. The figure shows that for both
cases, shear stress decreases at the upper wall of an artery with
the increasing values of velocity-slip parameter. It is also
observed that in the case of heating of the walls (Gr < 0),
shear stress at the upper wall increases with increasing Gr,
whereas the reversed trend is observed in the case of cooling
of the walls. Fig. 9 reveals that the shear stress at the lower
wall decreases as Reynolds model viscosity parameter (o)
increases.

6.5. Pumping characteristics

This subsection describes the influence of various emerging
parameters involving in our problem on the axial pressure

Fig. 15 Streamline patterns for (a) « = 0.05, (b) 2=0.1, (¢) «=0.2 and (d) « =0.3 with a=b=0.5, d=1.0, =0.5, B, =0.5, 0' =2.4,

Gr=50, M=4, y=0.1 and ¢ =n/4.
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gradient % and the pressure rise per wavelength Ap. The effect
of these parameters is shown by Figs. 10-12. Figs. 10 and 11
illustrate that in the wider part of an artery, 0 < x < 0.35
and 0.65 < x < 1, the pressure gradient is relatively small, that
is, the flow can easily pass without imposition of large pressure
gradient. Where, in the narrow part of artery, 0.35 < x < 0.65,
a much larger pressure gradient is required to maintain the
same flux to pass it, especially for the narrowest position
x = 0.5. This is in well agreement with the physical situation.
Also from these two figures we observe that the effect of
Grashof number and Reynolds model viscosity parameter on
the pressure gradient for fixed value of other parameters.
Fig. 10 shows that the amplitude of pressure gradient increases
with increasing Gr in the case of cooling of the arterial walls
(Gr > 0), whereas a reverse trend is observed in the case of
heating of the arterial walls (Gr < 0). Fig. 11 reveals that in
case of cooling of the walls, the amplitude of pressure gradient
decreases with increasing «. Fig. 12 illustrates the change of
pressure rise Ap versus the time average mean flow rate ¢’
for different values of Hartman number M (3, 4, 5, 6). One
may observe from this figure that in the range of values of
pressure gradient examined in the present study, the volumet-
ric flow rate increases with the increase in the magnetic param-
eter in the pumping region when Ap > 8 and decreases in the
pumping region when Ap <8 and free pumping region

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5

(Ap = 0) as well as in the co-pumping region (Ap < 0). It is
also seen from this figure that there is an inversely linear rela-
tion between Ap and ', i.e. the pressure rise decreases with
increasing flow rate.

6.6. Trapping phenomena

The formation of an internally circulating bolus of the fluid by
closed streamline is called trapping and this trapped bolus
pulled ahead along with the peristaltic wave. Since this bolus
appears to be trapped by the wave, the bolus moves with the
same speed as that of the wave. Fig. 13 illustrates the stream-
line patterns and trapping for different values of the Hartman
number M corresponding to « = 0.05, Gr = 5.0, f; = 0.5 and
(' = 2.4. Tt is observed that the volume of the bolus decreases
with increase of M and slowly disappears for the large value of
M, where the fluid moves as a bulk. One may note from these
figures that only for M = 4, bolus appears near the lower wall
of artery. Formation of trapping zone and streamline patterns
is depicted in Fig. 14 for different values of velocity-slip
parameter f3,. These figures reveal that with a reduction in
f,, the trapping zone decreases and it disappears completely
when f, attains the value 0.3. Plots showing the effect of the
Reynolds model viscosity parameter on trapping are presented
in Fig. 15. One can observe that size of the trapped bolus

I S S S S S S S S S B
-1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5

Fig. 16  Streamline patterns for (a) ¢ =2, (b) ¢ =%, (¢) ¢ = and (d) p =n witha=5=0.5, d=1.0, =05, f; =0.5 0 =24,

Gr=15.0, «=0.05, y=0.1 and M =4.
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decreases with increase in o and vanish when o = 0.3. The
effects of the phase difference ¢ on the trapping can be seen
through Fig. 16. It is found that for small values of ¢, trapping
exists and the size of the trapped bolus is large and decreases in
size when ¢ increases and vanishes for ¢ = 7.

7. Concluding remarks

A study is made in order to explain the peristaltic transport of
a MHD flow of blood with variable viscosity and heat transfer
in an asymmetric arteriole in the presence velocity-slip and
temperature jump. The governing two-dimensional equations
have been modeled and then simplified using long wave length
approximation. Closed form analytic solutions are constructed
for axial velocity, temperature and stream function. The effects
of various emerging parameters on the axial velocity, temper-
ature, axial pressure gradient, pressure rise over a wavelength,
wall shear stresses and stream line flow patterns are seen with
the help of graphs. From the presented analysis the following
conclusions can be drawn:

e The velocity of blood can be controlled by regulating the
magnetic field strength. This result is very much important
at the time of surgery.

e As heat generation increases, the thermal boundary layer
thickness increases by an appreciable extent. This result is
very much important in the case of electromagnetic hyper-
thermia treatment. Because the main objective of electro-
magnetic hyperthermia is to rise the cancerous tissues
above 42 °C.

e Wall shear stress at the upper wall increases with velocity-
slip parameter, whereas the wall shear stress at the lower
wall decreases with increasing o in the case of cooling of
the arterial walls.

e [t is possible to enhance the pressure rise Ap as well as the
peristaltic pumping performance by increasing the intensity
of magnetic parameter.

e An increase in the Reynolds model viscosity parameter
reduces the size of trapped bolus, and ultimately vanishes
when the viscosity parameter is large.
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Appendix A. The expressions that appear in Section 5 are listed
as follows
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