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Abstract In this article, a theoretical study is presented for peristaltic flow of a MHD fluid in an

asymmetric channel. Effects of viscosity variation, velocity-slip as well as thermal-slip have been

duly taken care of in the present study. The energy equation is formulated by including a heat

source term which simulates either absorption or generation. The governing equations of motion

and energy are simplified using long wave length and low Reynolds number approximation. The

coupled non-linear differential equations are solved analytically by means of the perturbation

method for small values of Reynolds model viscosity parameter. The salient features of pumping

and trapping are discussed with particular focus on the effects of velocity-slip parameter,

Grashof number and magnetic parameter. The study reveals that the velocity at the central region

diminishes with increasing values of the velocity-slip parameter. The size of trapped bolus decreases

and finally vanishes for large values of magnetic parameter.
ª 2015 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Peristaltic transport of physiological fluids induced by a pro-

gressive wave of area contraction or expansion along the
length of a distensible tube has drawn serious attention of
researchers working in the area of physiological fluid dynam-
ics. To be more specific, it encounters in urine transport from

the kidney to the bladder, through the ureter, chyme transport
in the gastrointestinal tract, swallowing food through the
esophagus, transport of spermatozoa in the ductus efferentes
of the male reproductive tracts, the movement of the ovum

in the female fallopian tube, and the vasomotion of small
blood vessels. Also, finger and roller pumps are frequently
used for pumps corrosive or very pure materials so as to pre-

vent direct contact of the fluid with the pump’s internal
surfaces.

To understand the peristaltic action under different normal

and pathological conditions, several theoretical and experi-
mental attempts [1,2] have been made since the first investiga-
tion of Latham [3]. Aarts and Ooms [4] have developed a
theory for peristaltic pumping of a compressible fluid in a
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Nomenclature

ðX0;Y0Þ Cartesian coordinates

ðU0;V0Þ velocity components along X0 and Y0 directions
c wave speed
p0 fluid pressure
g acceleration due to gravity

B0 applied magnetic field strength
Cp specific heat at constant pressure
Q0 constant heat addition/absorption

Re Reynolds number
M Hartman number
Pr Prandtl number

Gr Grashof number
T1 temperature of the upper wall
T0 temperature of the lower wall

Greek symbols

k wave length
/0 phase difference
l0 variable viscosity
r electrical conductivity

q density of blood
a1 co-efficient of thermal expansion
j thermal conductivity

h0 non-dimensional mean flow rate
h non-dimensional temperature
d wave number

b heat source/sink parameter
b1 velocity slip parameter
c thermal slip parameter
a Reynolds model viscosity parameter
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circular tube with a view to enhance oil production from por-
ous rock by the application of ultrasound. Vries et al. [5]

observed that due to myometrial contractions, the intra-
uterine fluid flow exhibits peristalsis and myometrial contrac-
tions may occur in both symmetric and asymmetric directions.

Taylor [6] conducted a theoretical investigation on asymmetric
wave propagation in wavy sheets with the main objective of
deriving some information regarding the mechanical interac-

tion between spermatozoa. Carew and Pedley [7] studied the
pumping phenomenon of peristaltic flow in the ureter by using
lubrication theory. By taking into account the wall deforma-
tion of the pipe, Antanovskii and Ramkissoon [8] have used

lubrication theory in order to analyze the peristaltic transport
of a compressible viscous fluid through a pipe for situations
where the pressure drop changes with time. Nadeem and

Akram [9] theoretically studied a peristaltic flow of a
Williamson model in an asymmetric channel. Maiti and
Misra [10] have investigated the peristaltic transport of bile

flow within ducts in a pathological state. They remarked that
in the presence of gallstones, the critical pressure for reflux
decreases as porosity increases. Very recently, Akbar and
Butt [11] have studied on the non-Newtonian Casson fluid

model accompanied in a horizontal tube.
In the above mentioned studies fluid viscosity is assumed to

be constant. There are few attempts [12,13] in which the effects

of variable viscosity in the peristaltic mechanisms have been
considered. These studies considered the viscosity to be a func-
tion of space variable in the form of an exponential function.

In a typical situation most of the fluids have temperature
dependent viscosity and this property varies significantly when
large temperature difference exists. Elshehawey and

Gharsseldien [14] studied the effects of variable viscosity for
peristaltic motion of an incompressible Newtonian fluid
through a channel with three layers flow. Martin [15] analyti-
cally solved the problem of viscometric flows of Power-law flu-

ids with variable viscosity.
The red blood cell (erythrocyte) is a major biomagnetic sub-

stance and therefore, it is quite possible that blood flow is

influenced by the presence of magnetic field. The flow rate of
blood is reduced due to either an increase in blood flow
resistance or a decrease in blood pressure. The effect of an
externally applied magnetic field on blood flow has been ana-

lyzed theoretically by treating blood as an electrically conduct-
ing fluid [16]. The major mechanism of the influence of a
stationary magnetic field on blood viscosity is based on the

interaction between the induced magnetic moment of the ery-
throcytes (RBC) and the external stationary magnetic field.
The RBC has greater susceptibility along its long axis. So, it

tends to orient its long axis for larger magnetic susceptibility
along the external magnetic field.

The peristaltic transport of magnetohydrodynamic (MHD)
flow of a fluid in a channel is of interest in connection with cer-

tain problems of the movement of conductive physiological
fluids, e.g., the blood, blood pump machines and with the need
for experimental as well as theoretical research on the opera-

tion of a peristaltic MHD compressor. Effect of a moving
magnetic field on blood flow was investigated by Sud et al.
[17], and they observed that the effect of suitable moving mag-

netic field accelerates the speed of blood. Akbar [18] theoreti-
cally investigated the influence of magnetic field on peristaltic
transport of nano Eyring-Powell fluid in an asymmetric chan-
nel. Agrawal and Anwaruddin [19] developed a mathematical

model of MHD flow of blood through an equally branched
channel with flexible walls executing peristaltic waves using
long wave length approximation method and observed, for

the flow blood in arteries with arterial disease like arterial
stenosis or arteriosclerosis, that the influence of magnetic field
may be utilized as a blood pump in carrying out cardiac oper-

ations. The principle of magnetic field is successfully applied to
Magnetic Resonance Imaging (MRI) when a patient under-
goes in a hight static magnetic field. Abbasi et al. [20] devel-

oped a mathematical model on peristaltic transport of MHD
fluid by considering variable viscosity. Moreover, the influence
of magnetic field on peristaltic flow of a Casson fluid in an
asymmetric channel was studied by Akbar [21] who has also

investigated the characteristics of fluid flow in tabular harmo-
nizes by considering long wave length and low Reynolds num-
ber approximations [22]. Akbar [23] has carried out the

influence of magnetic field on flow and heat transfer of a car-
bon nanotube induced by peristaltic waves and observed that
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with the increase of solid volume fraction of the nanoparticles
and heat absorption parameter, the temperature profile
increases significantly.

Lauga and Stone [24] experimentally investigated the effec-
tive slip length of the resulting flow as a function of the degrees
of freedom describing the surface heterogeneities, namely the

relative width of the no-slip and no-shear stress regions and
their distribution along the pipe. They concluded that the
experimental results which are consistent with a large number

of distributed slip domains such as nano-size and micron-size
nearly flat bubbles coating the solid surface. In addition they
also suggested the possibility of a shear-dependent effective
slip length. Hayat et al. [25] discussed the effect of slip velocity

on peristaltic transport of an incompressible viscous fluid in an
asymmetric channel through a porous medium. According to
them for large values of slip parameter the size of trapped

bolus decreases and symmetry disappears. Furthermore,
Hayat et al. [26] have examined the slip effect on Carreau–
Yasuda fluid in a curved channel wherein they reported that

an increase in velocity slip parameters decreases the peristaltic
and retrograde pumping regions. Many authors [27,28] sug-
gested the presence of a red blood cell slip at the vessel wall.

Misra and Kar [29] solved the problem of blood flow through
a stenosed vessel by taking into consideration the slip velocity
at the wall by using the momentum integral technique. Ebert
and Sparrow [30] and Sparrow et al. [31] analyzed several flow

problems under some pathological states. Wang [32]
considered a problem involving partial slip by considering
stagnation point flows. Abbasi et al. [33] also investigated

the peristaltic transport of copper–water nanofluid in an
inclined channel in the presence of mixed convection. They
found that velocity slip parameter has a decreasing effect on

the velocity near the center of channel while the temperature
of nanofluid enhances in the presence of Grashof number as
well as inclination of the channel. Later on Hayat et al. [34]

also theoretically analyzed the slip and joule heating effects
in mixed convection peristaltic transport of nanofluid with
Soret and Dufour effects.

While flowing through the arterial tree, blood carries a

large quantity of heat to different parts of the body. On the
skin surface, the transfer of heat can take place by any of
the four processes: radiation, evaporation, conduction and

convection. It may further be mentioned that blood flow
enhances when a man performs hard physical work and also
when the body is exposed to excessive heat environment. In

cases like these, blood circulation cannot remain normal. In
order to take care of the increase in blood flow, the dimensions
of the artery have to increase suitably. It is known that when
the temperature of the surroundings exceeds 20 �C, heat trans-
fer takes place from the surface of the skin by the process of
evaporation through sweating and when the temperature is
below 20 �C, the human body loses heat by conduction and

radiation both. Blood flow with radiative heat transfer was dis-
cussed by Ogulu and Bestman [35] on the basis of a theoretical
study. The study of heat transfer analysis is an important area

in connection with peristaltic motion, which has industrial
applications such as sanitary fluid transport, blood pumps in
heart lungs machine and transport of corrosive fluids where

the contact of fluid with the machinery parts is prohibited.
There is only a limited amount of research available in the lit-
erature in which peristaltic phenomenon has discussed in the
presence of heat transfer [36,37].
To the best of our knowledge, no attempt is available in the
literature which deals with the problem of peristaltic transport
of MHD flow of blood and heat transfer in an asymmetric cap-

illary blood vessel with variable viscosity when no-slip condi-
tion is inadequate. The no-slip condition is inadequate when
one considers fluids exhibiting macroscopic wall slip and that

in general is governed by relation between the slip velocity
and traction. Due to such fact in mind, the main purpose of
the present investigation is to examine the peristalsis of a mag-

netohydrodynamic (MHD) fluid with variable viscosity,
velocity-slip as well as thermal-slip conditions. To the authors’
best knowledge, this problem has not been even studied for the
hydrodynamic fluid. The flow analysis is developed in a wave

frame of reference moving with the velocity of the wave. In
Section 2, the problem is first modeled and the non-
dimensional governing equations are formulated in wave

frame. The non-dimensional governing equations under the
long wavelength and low Reynolds number approximation
and the corresponding boundary conditions are prescribed in

Section 3. In Section 4, perturbation analysis has been dis-
cussed. Section 5 includes the exact solution of the problem.
The results for the velocity, temperature, pressure rise, pres-

sure gradient, wall shear stress and stream function have been
discussed for various values of the problem parameters in
Section 6. Finally, the main conclusions are summarized in
Section 7. It is expected that the results presented here will

serve as fairly good theoretical estimates of various prospective
fluid mechanical flow governing parameters related to the peri-
staltic transport of blood.

2. Mathematical model and governing equations

We consider the peristaltic transport of an unsteady incom-

pressible and electrically conducting fluid through an asym-
metric two dimensional channel (cf. Fig. 1) of width d1 þ d2.

We choose a stationary frame of reference ðX0;Y0Þ such that

X0 measured along the axis of the channel and Y0 perpendicular

to X0. Let ðU0;V0Þ be the velocity components in the fixed

frame of reference ðX0;Y0Þ. Again, we consider the flow is
induced by sinusoidal wave trains propagating with constant
speed c along the channel walls. The geometry of the wall sur-

face (cf. [38]) is assumed to be

h01ðX0; t0Þ ¼ d1 þ a1 cos
2p
k
ðX0 � ct0Þ

� �
; upper wall ð1Þ

h02ðX0; t0Þ ¼ �d2 � a2 cos
2p
k
ðX0 � ct0Þ þ /0

� �
; lower wall ð2Þ

in which a1 and a2 are amplitudes of the waves, k is the wave
length, t0 is the time / ð0 6 / 6 pÞ is the phase difference. It
should be noted that / ¼ 0 corresponds to a symmetric chan-

nel with waves out of phase and for / ¼ p the waves are in
phase. A uniform magnetic field is applied normal to that of
flow. In this analysis, it is assumed that magnetic Reynolds
number is much less than unity so that the induced magnetic

field is negligible in comparison with applied magnetic field.
The Soret effect, also called thermophoresis, is a phe-

nomenon observed when a mixture of different type particles,

is under the action of temperature gradient, and the responses
of the particles are different. At t0 � 0, the walls of the channel
and the fluid are assumed to beat the same temperature, so that

the Soret effect is negligibly small.
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Fig. 1 A physical sketch of the problem.
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With all the abovementioned consideration, the equations that
govern the motion of the fluid in the wave frame may be listed as

@U0

@X0
þ @V

0

@Y0
¼ 0; ð3Þ

q
@U0

@t0
þU0

@U0

@X0
þ V0

@U0

@Y0

� �
¼ � @P

0

@X0
þ 2

@

@X0
l0ðY0Þ @U

0

@X0

� �

þ @

@Y0
l0ðY0Þ @V0

@X0
þ @U

0

@Y0

� �� �
� rB2

0U
0 þ qga1ðT0 � T0Þ; ð4Þ

q
@V0

@t0
þU0

@V0

@X0
þ V0

@V0

@Y0

� �
¼ � @P

0

@Y0
þ 2

@

@Y0
l0ðY0Þ @V

0

@Y0

� �

þ @

@X0
l0ðY0Þ @V0

@X0
þ @U

0

@Y0

� �� �
;

ð5Þ

qCp

@T0

@t0
þU0

@T0

@X0
þ V0

@T0

@Y0

� �
¼ j

@2T0

@X0
2 þ

@2T0

@Y0
2

� �
þQ0; ð6Þ

where the definition of all the symbols involved in the equa-
tions is included in the Nomenclature.

In the laboratory frame ðX0;Y0Þ the flow is unsteady.
However if observed in a co-ordinate system moving at the

wave speed c in the wave frame ðx0; y0Þ, it can be treated as
steady. The co-ordinates, velocities, pressure and temperature
in the two frames are

x0 ¼ X0 � ct0; y0 ¼ Y0; u0 ¼ U0 � c; v0 ¼ V0;

p0 ¼ P0; T ¼ T0; ð7Þ

where U0; V0 and u0; v0 are the velocity components in the cor-
responding co-ordinate systems. Let us introduce the following
non-dimensional variables [38]:

x¼x0

k
; y¼ y0

d1
; u¼u0

c
; v¼ kv0

d1c
; p¼d21p

0ðx0Þ
klc

; t¼ ct0

k
;

h¼ T�T0

T1�T0

; h1ðxÞ¼
h01ðx0Þ
d1

; h2ðxÞ¼
h02ðx0Þ
d1

; lðyÞ¼l0ðy0Þ
l0

ð8Þ

in which l0 is the constant viscosity and d is the wave number.
Invoking Eq. (8) into Eqs. (3)–(6) we have

@u

@x
þ @v
@y
¼ 0; ð9Þ

Red ðuþ 1Þ @u
@x
þ v

@u

@y

� �
¼ � @p

@x
þ 2d2 @

@x
lðyÞ @u

@x

� �

þ @

@y
lðyÞ d2 @v

@x
þ @u
@y

� �� �
�M2ðuþ 1Þ þ Grh; ð10Þ

Red
3 ðuþ 1Þ @v

@x
þ v

@v

@y

� �
¼ � @p

@y
þ 2d2 @

@y
lðyÞ @v

@y

� �

þ @

@x
lðyÞ d2 @v

@x
þ @u
@y

� �� �
; ð11Þ

dRePr ðuþ 1Þ @h
@x
þ v

@h
@y

� �
¼ d2 @

2h
@x2
þ @

2h
@y2

� �
þ b; ð12Þ

where d; Re; M; Gr; Pr; b are non-dimensional parameters,

called respectively the wave number, Reynolds number,
Hartmann number, Grashof number, Prandtl number and
source/sink parameter given by

d ¼ d1
k
; Re ¼

qd1c
l0

; M ¼
ffiffiffiffiffi
q
l0

r
B0d1;

Gr ¼ qgaðT1 � T0Þd21
cl0

; Pr ¼
l0cp
j

; b ¼ Q0d
2
1

jðT1 � T0Þ

ð13Þ

Introducing the stream function u ¼ @w
@y
; v ¼ � @w

@x
, in the Eqs.

(9)–(12) and under the assumptions of long wave length

ðd� 1Þ and low Reynolds number will take the form

0 ¼ � @p
@x
þ @

@y
lðyÞ @

2w
@y2

� �
�M2 @w

@y
þ 1

� �
þ Grh; ð14Þ

0 ¼ � @p
@y
; ð15Þ

0 ¼ @
2h
@y2
þ b: ð16Þ

It is noted that from Eq. (15) that p is not a function of y.
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3. Volumetric flow rate and boundary conditions

The instantaneous volume flow rate in fixed frame is given
by

Q ¼
Z h01

h02

U0ðX0;Y0; t0Þdy0; ð17Þ

where h01 and h02 are functions of X0 and t0.

The volumetric flow rate in the wave frame is given by

q ¼
Z h01

h02

u0ðx0; y0Þdy0; ð18Þ

where h01 and h02 are functions of x0 only.

If we substitute (7) into (17) and make use of (18), we find
that the two rates of volume flow are related through
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study

Fig. 2 Comparison of axial velocity distribution for M= 0.0,

Gr= 0.0, a ¼ 0:0 and b1 ¼ 0:0 with the numerical results of

Kothandapani and Srinivas [38].
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Fig. 3 Axial velocity profiles for different values of M with a ¼
b ¼ 0:5; d ¼ 1:0; b ¼ 0:5; b1 ¼ 0:5; h0 ¼ 2:4; Gr ¼ 5:0; a ¼ 0:05;

c ¼ 0:1 and / ¼ p=4).
Q ¼ qþ cðh01 � h02Þ: ð19Þ

The time mean flow over a period T2 ð¼ k
c
Þ at a fixed posi-

tion X0 can be written as

Q0 ¼ 1

T2

Z T2

0

Qdt: ð20Þ

Substituting Eq. (19) into (20) and integrating, we arrive at

Q0 ¼ qþ cðd1 þ d2Þ: ð21Þ

On defining the non-dimensional time mean flows h0 and F
respectively in the laboratory and wave frame as

h0 ¼ Q0

cd1
; F ¼ q

cd1
: ð22Þ

Thus Eq. (21) reduces to

h0 ¼ Fþ 1þ d; ð23Þ
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Fig. 5 Axial velocity profiles for different values of Gr when

a ¼ b ¼ 0:5; d ¼ 1:0; b ¼ 0:5; b1 ¼ 0:5; h0 ¼ 2:4; M ¼ 4:0; a ¼
0:05; c ¼ 0:1 and / ¼ p=4.
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where d ¼ d2
d1
and

F ¼
Z h1

h2

@w
@y

dy ¼ wðh1Þ � wðh2Þ: ð24Þ

The non-dimensional form of the equations channel walls
gives rise to

h1 ¼
h01
d1
¼ 1þ a cosð2pxÞ;

and h2 ¼
h02
d1
¼ �d� b cosð2pxþ /Þ; ð25Þ

in which

a ¼ a1
d1

and b ¼ a2
d1
: ð26Þ
1.0 0.5 0.0 0.5 1.0 1.5
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Fig. 6 Temperature distribution for different values of b
with a ¼ b ¼ 0:5; d ¼ 1:0; Gr ¼ 5:0; b1 ¼ 0:5; h0 ¼ 2:4; M ¼ 4:0;

a ¼ 0:05; c ¼ 0:1 and / ¼ p=4.
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Fig. 7 Temperature distribution for different values of c with

a¼ b¼ 0:5; d¼ 1:0; Gr¼ 5:0; b1 ¼ 0:5; h0 ¼ 2:4; M¼ 4:0; a¼ 0:05;

b¼ 0:5 and /¼ p=4.
Also a; b and / satisfy the following relation

a2 þ b2 þ 2ab cos/ 6 ð1þ dÞ2: ð27Þ

The dimensionless slip condition in the wave frame is

w¼F

2
;
@w
@y
þb1

@2w
@y2
¼�1 and hþc

@h
@y
¼0 at y¼h1; ð28Þ

w¼�F
2
;
@w
@y
�b1

@2w
@y2
¼�1 and h�c

@h
@y
¼0 at y¼h2; ð29Þ

in which b1 ¼
b01
d1

� �
and c ¼ c0

d1

� �
are the non-dimensional veloc-

ity and thermal slip parameters.
As mentioned in previous communications [39,40],

although the viscosity l depends on y and h, the viscosity l
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0

1

2

3

4

5

Gr

uw 1 0.7

1 0.5

1 0.3

1 0.1

τ

Fig. 8 Variation of shear stress at the upper wall with Gr

for different values of b1 with a ¼ b ¼ 0:5; d ¼ 1:0; b ¼ 0:5;

h0 ¼ 2:4; M ¼ 4:0, a ¼ 0:05; c ¼ 0:1 and / ¼ p=4.
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Fig. 9 Variation of shear stress at the lower wall with Gr

for different values of a with a ¼ b ¼ 0:5; d ¼ 1:0; b ¼ 0:5;

h0 ¼ 2:4; M ¼ 4:0, b1 ¼ 0:5; c ¼ 0:1 and / ¼ p=4.
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can be taken as a function of y only. For our analysis, we con-
sider the following form of l

lðyÞ ¼ 1� ay for a� 1; ð30Þ

where a is Reynolds model viscosity parameter. The choice of

l is justified physiologically because normal human being or
animal of similar size takes 1� 2L of the fluid everyday.
Also 6� 7L of the fluid is recurred by a small intestine as

secretions from salivary glands, stomach, pancreas, liver and
small intestine itself.

4. Perturbation analysis

The Reynolds model viscosity parameter a is considered to be
very small. In order to solve Eq. (14) with the help of boundary
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a¼ b¼ 0:5; d¼ 1:0; b¼ 0:5; b1 ¼ 0:5; h0 ¼ 2:4; M¼ 4:0; Gr¼ 5:0;

c¼ 0:1 and /¼ p=4.
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conditions (28) and (29), we consider the perturbation expan-
sion by writing

f ¼ f0 þ af1 þ a2f2 þ � � � ; ð31Þ

where f can replace w , F or p.
Now differentiating Eq. (14) with respect to y and substitut-

ing Eq. (31) and collecting the co-efficients of like power of a,
one gets the zeroth-order equation as

@4w0

@y4
�M2 @

2w0

@y2
þ Gr

@h
@y
¼ 0 ð32Þ

along with the corresponding boundary conditions

w0 ¼
F0

2
;

@w0

@y
þ b1

@2w0

@y2
¼ �1 at y ¼ h1 ð33Þ

and

w0 ¼ �
F0

2
;

@w0

@y
� b1

@2w0

@y2
¼ �1 at y ¼ h2: ð34Þ

The first-order perturbation equation is found in the form

@4w1

@y4
� y

@4w0

@y4
� 2

@3w0

@y3
�M2 @

2w1

@y2
¼ 0: ð35Þ

The corresponding boundary conditions are

w1 ¼
F1

2
;

@w1

@y
þ b1

@2w1

@y2
¼ 0 at y ¼ h1 ð36Þ

and

w1 ¼ �
F1

2
;

@w1

@y
� b1

@2w1

@y2
¼ 0 at y ¼ h2: ð37Þ
5. Solution of the problem

The temperature Eq. (16) satisfy the boundary conditions (28)
and (29) yields

h ¼ � by2

2
þ c1yþ c2; ð38Þ
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Fig. 12 Variation of Dp with h0 for different values of M when

a ¼ b ¼ 0:5; d ¼ 1:0; b ¼ 0:5; b1 ¼ 0:5; a ¼ 0:05; Gr ¼ 5:0; c ¼
0:1 and / ¼ p=4.
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where the integrating constants ci; i ¼ 1; 2 obtained by using

boundary conditions (28) and (29) are given in Appendix A.

5.1. Case I (M ¼ 0)

With the help of Eq. (38) and using the boundary conditions
(33) and (34), we can solve Eq. (32) by considering M ¼ 0.

The analytical expression for w0 may be written as in following
form

w0 ¼ c3 þ c4yþ c5
y2

2
þ c6

y3

6
þ y4

24

by
5
� c1

� �
Gr; ð39Þ

where the integrating constants ci; i ¼ 3; . . . ; 6 are given in
Appendix A.

Now using the above expression of w0, we can obtain the
solution of w1 by solving Eq. (35) under the boundary condi-

tions (36) and (37) (when M ¼ 0) as

w1 ¼ c7 þ c8yþ c9
y2

2
þ c10

y3

6
þ c6

y4

12
� c1

y5

60
Gr

þ b
y6

240
Gr; ð40Þ

where the integrating constants ci; i ¼ 7; . . . ; 10 are given in
Appendix A.
Fig. 13 Streamline patterns for (a) M= 3, (b) M= 4, (c) M= 5 a

Gr¼ 5:0; a¼ 0:05; c¼ 0:1 and /¼ p=4.
5.2. Case II (M – 0)

Using the expression of h which is given in Eq. (38), we can
solve Eq. (32) under the boundary conditions (33) and (34) as

w0 ¼ A1 þ A2yþ A3e
My þ A4e

�My

� Gry2

6M3
bMy� 3c1Mþ 3bð Þ: ð41Þ

Using the solution given in Eq. (41), we can solve the Eq.
(35) with the help of (36) and (37) as

w1¼A5þA6yþA7e
MyþA8e

�MyþA3

4
MeMyyðy�5Þ

�A4M

4
e�Myyðyþ5ÞþA3e

My

2
y2þA4e

�My2y2�Grby2

M4
; ð42Þ

where the integrating constants Ai; i ¼ 1; . . . ; 8 are given in
Appendix A.

The axial pressure can be written in the form

dp

dx
¼ �a

@2w
@y2
þ ð1� ayÞ @

3w
@y3
�M2 @w

@y
þ 1

� �
þ Grh: ð43Þ

The non-dimensional expression for the pressure rise per

wavelength Dp is given by
nd (d) M= 6 with a¼ b¼ 0:5; d¼ 1:0; b¼ 0:5; b1 ¼ 0:5; h0 ¼ 2:4;
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Dp ¼
Z 1

0

dp

dx

� �
dx: ð44Þ
6. Results and discussion

This section is divided into six subsections. In Section 6.1, we
give the comparison of our results with the previous results. In

Sections 6.2–6.4, the effects of various parameters on velocity
profiles, temperature distribution and wall shear stress are
investigated. The pumping characteristics are discussed in
Section 6.5 and in Section 6.6 we have illustrated the trapping

phenomena.

6.1. Model validation

Fig. 2 gives the comparison between the results obtained in the
present study and the results of Kothandapani and Srinivas
[38]. For the purpose of comparison, both the studies have

been naturally brought to the same platform, by considering
equal parametric values in the absence of magnetic field as well
as by disregarding the slip effects for the present study. For

comparison, we neglected the heat transfer effect by setting
Gr ¼ 0 and assumed that the viscosity is constant while taking
a ¼ 0. On the other hand, in the analytical solution of the
Fig. 14 Streamline patterns for (a) b1 ¼ 0:1, (b) b1 ¼ 0:3, (c) b1 ¼ 0:5

Gr¼ 5:0; a¼ 0:05; c¼ 0:1 and /¼p=4.
velocity profiles presented by Kothandapani and Srinivas
[38], we considered a large value of permeability parameter
with zero inclination angle. One may observe from this figure

that the results of the present study are in good agreement with
those of the previous study.

6.2. Velocity distribution

Figs. 3–5 focus on the axial velocity u for different values of
Hartman number (magnetic parameter), velocity-slip parame-

ter and Grashof number respectively. Fig. 3 reveals that at the
near of the arterial walls, axial velocity increases with increas-
ing Hartman number, whereas the reversed trend is observed

in the central region of the artery in the case of cooling of
the arterial walls i.e, when Gr > 0. This observation agrees
with the theory because with the increase in Hartman number,
the Lorentz force increases. It is well known that Lorentz force

opposes the flow. This implies that if we increase the strength
of magnetic field, the flow of blood will be impeded. From
Fig. 4, we observed that for any values of velocity-slip param-

eter, the axial velocity vanishes at two different points. These
points are the points of inflexion. This result indicates that
the flow reversal occurs at these points. It is also noted that

the axial velocity decreases in the central region and increases
near the channel walls for increasing velocity slip parameter b1.
and (d) b1 ¼ 0:7 with a¼ b¼ 0:5; d¼ 1:0; b¼ 0:5;M¼ 4:0; h0 ¼ 2:4;
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One can have an idea of velocity distribution for both cases i.e,
the cooling of the arterial walls (Gr > 0) and heating of the
arterial walls (Gr < 0) from Fig. 5. It may be noted that in

the case of cooling, velocity increases with increasing
Grashof number up to a certain height of the artery, beyond
which a reverse trend is observed, whereas in the case of heat-

ing, velocity decreases up to a certain distance from the lower
wall of the artery and after that velocity decreases with increas-
ing Grashof number. It is also seen from this figure that for

Gr ¼ �12, velocity vanishes at three different points whereas
for other values of Gr, velocity vanishes twice.

6.3. Temperature distribution

Figs. 6 and 7 give some characteristic temperature profiles for
different values of heat source parameter and thermal-
slip/temperature jump factor respectively. Fig. 6 emphasizes

that as heat generates during blood flow in arterioles, there
is a significant rise in thickness of boundary layer. Thereby
the temperature of the boundary layer enhanced by apprecia-

ble extend. It is also noticed from this figure that the maximum
value of temperature attains in the central region of the chan-
nel. Fig. 7 indicates that temperature increases as the temper-

ature jump factor increases. It may also be noted from this
figure that for any values of c, temperature increases with
Fig. 15 Streamline patterns for (a) a¼ 0:05, (b) a¼ 0:1, (c) a¼ 0:2 a

Gr¼ 5:0; M¼ 4; c¼ 0:1 and /¼ p=4.
the height of the channel and after attaining its maximum, it
decreases.

6.4. Wall shear stress

It is widely accepted fact that the wall shear stress plays an
important role in the development of arteriole disease. Hence

it is important to study the effects of the parameters b1; a
and Gr on the wall shear stress. Fig. 8 depicts the variation
of shear stress at the upper wall of an artery for different

values of velocity-slip parameter in the case of heating as well
as cooling of the arterial walls. The figure shows that for both
cases, shear stress decreases at the upper wall of an artery with

the increasing values of velocity-slip parameter. It is also
observed that in the case of heating of the walls (Gr < 0),
shear stress at the upper wall increases with increasing Gr,
whereas the reversed trend is observed in the case of cooling

of the walls. Fig. 9 reveals that the shear stress at the lower
wall decreases as Reynolds model viscosity parameter (a)
increases.

6.5. Pumping characteristics

This subsection describes the influence of various emerging

parameters involving in our problem on the axial pressure
nd (d) a¼ 0:3 with a¼ b¼ 0:5; d¼ 1:0; b¼ 0:5; b1 ¼ 0:5; h0 ¼ 2:4;
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gradient dp
dx
and the pressure rise per wavelength Dp. The effect

of these parameters is shown by Figs. 10–12. Figs. 10 and 11
illustrate that in the wider part of an artery, 0 6 x 6 0:35
and 0:65 6 x 6 1, the pressure gradient is relatively small, that
is, the flow can easily pass without imposition of large pressure
gradient. Where, in the narrow part of artery, 0:35 6 x 6 0:65,
a much larger pressure gradient is required to maintain the
same flux to pass it, especially for the narrowest position
x ¼ 0:5. This is in well agreement with the physical situation.

Also from these two figures we observe that the effect of
Grashof number and Reynolds model viscosity parameter on
the pressure gradient for fixed value of other parameters.
Fig. 10 shows that the amplitude of pressure gradient increases

with increasing Gr in the case of cooling of the arterial walls
(Gr > 0), whereas a reverse trend is observed in the case of
heating of the arterial walls (Gr < 0). Fig. 11 reveals that in

case of cooling of the walls, the amplitude of pressure gradient
decreases with increasing a. Fig. 12 illustrates the change of

pressure rise Dp versus the time average mean flow rate h0

for different values of Hartman number M (3, 4, 5, 6). One
may observe from this figure that in the range of values of
pressure gradient examined in the present study, the volumet-

ric flow rate increases with the increase in the magnetic param-
eter in the pumping region when Dp > 8 and decreases in the
pumping region when Dp < 8 and free pumping region
Fig. 16 Streamline patterns for (a) / ¼ p
4
, (b) / ¼ p

2
, (c) / ¼ 3p

4
and

Gr ¼ 5:0; a ¼ 0:05; c ¼ 0:1 and M ¼ 4.
(Dp ¼ 0) as well as in the co-pumping region (Dp < 0). It is
also seen from this figure that there is an inversely linear rela-

tion between Dp and h0, i.e. the pressure rise decreases with
increasing flow rate.

6.6. Trapping phenomena

The formation of an internally circulating bolus of the fluid by
closed streamline is called trapping and this trapped bolus

pulled ahead along with the peristaltic wave. Since this bolus
appears to be trapped by the wave, the bolus moves with the
same speed as that of the wave. Fig. 13 illustrates the stream-
line patterns and trapping for different values of the Hartman

number M corresponding to a ¼ 0:05; Gr ¼ 5:0; b1 ¼ 0:5 and

h0 ¼ 2:4. It is observed that the volume of the bolus decreases

with increase of M and slowly disappears for the large value of
M, where the fluid moves as a bulk. One may note from these
figures that only for M ¼ 4, bolus appears near the lower wall

of artery. Formation of trapping zone and streamline patterns
is depicted in Fig. 14 for different values of velocity-slip
parameter b1. These figures reveal that with a reduction in
b1, the trapping zone decreases and it disappears completely

when b1 attains the value 0.3. Plots showing the effect of the
Reynolds model viscosity parameter on trapping are presented
in Fig. 15. One can observe that size of the trapped bolus
(d) / ¼ p with a ¼ b ¼ 0:5; d ¼ 1:0; b ¼ 0:5; b1 ¼ 0:5; h0 ¼ 2:4;
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decreases with increase in a and vanish when a ¼ 0:3. The
effects of the phase difference / on the trapping can be seen
through Fig. 16. It is found that for small values of /, trapping
exists and the size of the trapped bolus is large and decreases in
size when / increases and vanishes for / ¼ p.

7. Concluding remarks

A study is made in order to explain the peristaltic transport of
a MHD flow of blood with variable viscosity and heat transfer

in an asymmetric arteriole in the presence velocity-slip and
temperature jump. The governing two-dimensional equations
have been modeled and then simplified using long wave length

approximation. Closed form analytic solutions are constructed
for axial velocity, temperature and stream function. The effects
of various emerging parameters on the axial velocity, temper-

ature, axial pressure gradient, pressure rise over a wavelength,
wall shear stresses and stream line flow patterns are seen with
the help of graphs. From the presented analysis the following
conclusions can be drawn:

� The velocity of blood can be controlled by regulating the
magnetic field strength. This result is very much important

at the time of surgery.
� As heat generation increases, the thermal boundary layer
thickness increases by an appreciable extent. This result is

very much important in the case of electromagnetic hyper-
thermia treatment. Because the main objective of electro-
magnetic hyperthermia is to rise the cancerous tissues
above 42 �C.
� Wall shear stress at the upper wall increases with velocity-
slip parameter, whereas the wall shear stress at the lower
wall decreases with increasing a in the case of cooling of

the arterial walls.
� It is possible to enhance the pressure rise Dp as well as the
peristaltic pumping performance by increasing the intensity

of magnetic parameter.
� An increase in the Reynolds model viscosity parameter
reduces the size of trapped bolus, and ultimately vanishes

when the viscosity parameter is large.
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Appendix A. The expressions that appear in Section 5 are listed
as follows
c1 ¼
1

2
bðh1 þ h2Þ; c2 ¼

1

2
bh22 � bch2 þ c1ðc� h2Þ;

c3 ¼
F0

2
� c4h1 �

1

2
c5h

2
1 �

1

6
c6h

3
1 �

1

24
Grh41

1

5
bh1 � c1

� �
;

c4 ¼ �1� E1 � c5ðh1 þ b1Þ � c6h1ðb1 þ
1

2
h1Þ;

c5 ¼
1

E6

ðE8 � E7c6Þ; c6 ¼
E5E6 � E8E3

E4E6 � E3E7

;

c7 ¼
F1

2
� c8h1 �

1

2
c9h

2
1 �

1

6
c10h

3
1 � R1;

c8 ¼ �R5 � R3c9 � R4c10;

c9 ¼
1

R12

ðR14 � c10R13Þ; c10 ¼
R11R12 � R14R9

R10R12 � R13R9

;

E1 ¼
Grh21
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h1
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bh1 � c1

� �
þ b1

1

3
bh1 � c1
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;

E2 ¼
Grh22
2

1

3
h2

1

4
bh2 � c1

� �
� b1

1

3
bh2 � c1
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;

E3 ¼ h1 � h2 þ 2b1; E4 ¼ ðh1 þ h2Þ
1

2
ðh1 � h2Þ þ b1

� �
;

E5 ¼ E2 � E1;

E6 ¼
1

2
ðh1 � h2Þðh2 � h1 � 2b1Þ;

E7 ¼ ðh1 � h2Þ h21 þ h1h2 þ h22 � h1 b1 þ
1

2
h1
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;

E8 ¼ F0 þ ð1þ E1Þðh1 � h2Þ

� 1
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1

5
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1 �

Gr

60
c1h
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R3¼ h1þb1; R4¼ h1 b1þ
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h1

� �
;

R5¼ c6h
2
1

1

3
h1þb1
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� �
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2
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� �
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1
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ðh1 � h2Þðh1 þ h2 � 2R3Þ;
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1

6
ðh1 � h2Þðh21 þ h1h2 þ h22 � 6R4Þ;

R14 ¼ F1 � R1 þ R2 þ R5ðh1 � h2Þ;

A1¼
F0

2
�A2h1�A3e

Mh1 �A4e
�Mh1 þGrh21

6M3
ðbMh1�3c1Mþ3bÞ

� �
;

A2¼ J3�J1A3�J2A4½ �;
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A3 ¼
1

J14
ðJ16 � J15A4Þ

� �
; A4 ¼

J11J16 � J13J14
J11J15 � J12J14
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;

G11 ¼ F1 � ðG1 � G2Þ þ ðh1 � h2ÞG5½ �;
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