JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 68, 318 (1979)

Erratum

Volume 32, Number 2 (1970), in the Note, "The Optimal Route Problem and the Method of Approximation in Policy Space," by D. Davidson and D. J. White, pp. 435-455:

A "proof" that the policy space method for the standard optimal route problem would terminate in (N-1) steps if there are N states was given. Unfortunately this proof was incomplete.

In the original "proof," it was merely shown that at each stage of the policy space algorithm, $j^m(i)$ could be chosen identical with $j_m(i)$, for $i \in \Omega_m$, and that, as a result of this selection process,

$$f^{m}(i) = f_{m}(i) = f(i), \qquad i \in \Omega_{m}.$$
⁽¹⁹⁾

It can be shown, however, that if $\{F^m(\cdot), J^m(\cdot)\}\$ are alternative sequences of cost functions and policies generated by the policy space algorithm, then (19) is still true for $F^m(\cdot)$. Thus, assuming that the result is true for $0 \leq t \leq m$, and remembering that $\{F^m(\cdot)\}\$ is monotonic decreasing in m, we have, for $i \in \Omega_m$, and if $j(\cdot)$ is an optimal policy, such that $i \in \Omega_m \to j(i) \in \Omega_{m-1}$,

$$F^{m}(i) - f(i) = c_{iJ^{m}(i)} + F^{m}(J^{m}(i)) - c_{ij(i)} - f(j(i))$$

= $c_{iJ^{m}(i)} + F^{m}(J^{m}(i)) - c_{ij(i)} - F^{m-1}(j(i))$
= $c_{iJ^{m}(i)} + F^{m-1}(J^{m}(i)) - c_{ij(i)} - F^{m-1}(j(i))$
 $\leq 0.$ (20)

The last inequality arises because, by virtue of the policy space algorithm, $J^{m}(i)$ minimizes $c_{ii} + F^{m-1}(j)$.

Since clearly $F^m(i) \ge f(i)$, we have $F^m(i) = f(i) = f_m(i), i \in \Omega_m$.

The inductive hypothesis is trivally true with m = 0, and hence the original proof is valid with this addition.

D. J. WHITE

Printed in Belgium

Copyright © 1979 by Academic Press, Inc. All rights of reproduction in any form reserved.