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1. INTRODUCTION

The study of the radical J�V � for a vertex operator algebra V was
initiated in [DLMM], where we defined the radical J�V � and determined
J�V � in the case V is of CFT type (see Section 3 for the definition of a
CFT-type vertex operator algebra). Let M be an admissible V -module (see
[DLM2] and below for the definition). The M-radical JM�V � of V con-
sists of vectors v ∈ V such that o�v� = 0 on M where o�v� = vwtv−1 if v is
homogeneous and o�u+ v� = o�u� + o�v�. In the case that M = V , JV �V �
is exactly the J�V � which was determined to be �L�0� + L�−1��V + J�V �1
in [DLMM] where J�V �1 is the weight-one subspace of J�V �. It turns
out that a similar result is true for JM�V �. We show in this paper that
JM�V � = �L�0� + L�−1��V + JM�V ��0� 1� where JM�V ��0�1� is the intersec-
tion of JM�V � with V0 ⊕ V1. Although the method for determining JM�V �
is similar to that for determining JV �V � in [DLMM], the argument here is
more complicated. The reason is that V has a vacuum 1 but M does not, in
general. If V is also rational and C2-finite (see Section 3 for these defini-
tions) and satisfies L�1�V1 = 0, it is proved in [DM2] that o�u� is not zero
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on any admissible module M for nonzero u in V1. So if V satisfies all these
conditions, we, in fact, prove that JM�V � is exactly �L�−1� + L�0��V . We
expect that the concept of M-radical JM�V � of V will play a very important
role in the theory of vertex operator algebra.

The second main result in this paper is a criterion for irreducibility of
an admissible V -module M (see Proposition 4.3). The result says that M
is irreducible if and only if each homogeneous subspace is an irreducible
V̂ �0�-module or SM�V �-module (see Section 4 for the definition of V̂ �0�
and SM�V �). We also formulate this result in terms of the theory of asso-
ciative algebras An�V � developed in [DLM4]. This result is important in
the study of dual pairs associated to a vertex operator algebra and an auto-
morphism group (cf. [DLM1]).

Both results are extended to twisted modules. In particular, we also define
the radical JV �M� for an admissible g-twisted V -module for an automor-
phism g of V of finite order and determine JV �M� precisely. A similar
criterion of irreducibility of M is obtained, too, in terms of a certain Lie
algebra SM�V 0� (see Section 5) and an associative algebraAg�n�V � [DLM5].

2. PRELIMINARY

Let �V�Y� 1�ω� be a vertex operator algebra (see [B] and [FLM]). We
shall use the commuting formal variables z� z0� z1� z2. We shall also use the
delta function δ�z� = ∑

n∈� zn whose elementary properties can be found
in [FLM].

First recall from [FLM, Z, DLM2] the definitions of the weak module, the
admissible module, and the ordinary module for a vertex operator algebra V .
A weak module M for V is a vector space equipped with a linear map

V → �EndM�		z−1� z


v �→ YM�v� z� = ∑

n∈�
vnz

−n−1 �vn ∈ EndM� for v ∈ V

satisfying the conditions for u� v ∈ V�w ∈M ,

vnw = 0 for n ∈ � sufficiently large;

YM�1� z� = 1�

z−1
0 δ

(
z1 − z2

z0

)
YM�u� z1�YM�v� z2�

−z−1
0 δ

(
z2 − z1

−z0

)
YM�v� z2�YM�u� z1�

= z−1
2 δ

(
z1 − z0

z2

)
YM�Y �u� z0�v� z2�� (2.1)
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Here and below �zi − zj�n for n ∈ � is to be expanded in nonnegative
powers of the second variable zj .

This completes the definition. We denote this weak module by �M�YM�
(or briefly by M).

An ordinary V -module is a weak V -module which carries a �-grading

M = ⊕
λ∈�
Mλ�

such that dimMλ is finite andMλ+n = 0 for fixed λ and n ∈ � small enough.
Moreover, one requires that Mλ is the λ-eigenspace for L�0�,

L�0�w = λw = �wtw�w� w ∈Mλ

where L�0� is the component operator of YM�ω� z� = ∑
n∈� L�n�z−n−2.

An admissible V -module is a weak V -module M which carries a
�+-grading

M = ⊕
n∈�+

M�n�

(�+ is the set all nonnegative integers) such that if r�m ∈ �, n ∈ �+, and
a ∈ Vr , then

amM�n� ⊆M�r + n−m− 1��
Note that any ordinary module is an admissible module.

A vertex operator algebra V is called rational if any admissible module
is a direct sum of irreducible admissible modules. It was proved in [DLM3]
that if V is rational then there are only finitely many inequivalent irre-
ducible admissible modules and each irreducible admissible module is an
ordinary module.

The following proposition can be found in [L2] and [DM1].

Proposition 2.1. Any irreducible weak V -module M is spanned by
�unw�u ∈ V� n ∈ ��, where w ∈ W is any fixed nonzero vector.

Let M be a weak V -module. We define the M-radical of V to be

JM�V � = �v ∈ V �o�v��M = 0�� (2.2)

where o�v� = vwtv−1 for homogeneous v ∈ V and o�u+ v� = o�u� + o�v�.
If M = V this is precisely the definition of radical of V given in [DLMM].
(JV �V � was denoted by J�V � in [DLMM].) If M = ⊕

n≥0M�n� is an admis-
sible module then o�v�M�n� ⊂M�n� for all n ∈ �.

Recall from [DLMM] that V is of CFT type if V is simple and
V = ⊕

n≥0 Vn with V0 one-dimensional. It was proved in [DLMM] that if V
is of CFT type then JV �V � is equal to �L�0� + L�−1��V + JV �V �1, where
JV �V �1 = V1 ∩ J�V �. Here we prove a similar result for JM�V � for any
admissible module M with the same assumption on V .
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3. DETERMINATION OF JM�V �

We need several lemmas.

Lemma 3.1. Let V be a simple vertex operator algebra and M a weak
V -module. Let u ∈ V such that the vertex operator YM�u� z� on M involves
only either finitely many positive powers or finitely many negative powers of z,
then u ∈ V0.

Proof. The proofs in the two cases are similar. We only deal with the
case that YM�u� z� involves only finitely many positive powers of z. We first
prove that

YM�u� z1�YM�v� z2� = YM�v� z2�YM�u� z1��
for all v ∈ V . By (7.24) of [DL] (also see [FLM]) there exists a nonnegative
integer n such that

�z1 − z2�nYM�u� z1�YM�v� z2� = �z1 − z2�nYM�v� z2�YM�u� z1�� (3.3)

Since each factor in (3.3) involves only finitely many positive powers
of z1 we multiply (3.3) by �z1 − z2�−n to obtain YM�u� z1�YM�v� z2� =
YM�v� z2�YM�u� z1�.

From 	YM�ω� z1�� YM�u� z2�
 = 0 we see that

0 = 	L�−1�� YM�u� z�
 = YM�L�−1�u� z��
From the Jacobi identity (2.1) we have the associator formula (see Chap. 8
of [FLM]): for a� b ∈ V and w ∈ M there exists a nonnegative integer n,
which depends on a and w only, such that

�z0 + z2�nYM�Y �a� z0�b� z2�w = �z0 + z2�nYM�a� z0 + z2�YM�b� z2�w�
So if b = L�−1�u then YM�b� z2� = 0 on M and

�z0 + z2�nYM�Y �a� z0�b� z2�w = 0

or

YM�Y �a� z0�b� z2�w = 0�

This shows that YM�amb� z� = 0 on M for any a ∈ V and m ∈ �. Assume
that b �= 0. Since V is simple then the span of amb for a ∈ V and m ∈ � is
the whole V by Proposition 2.1. As a result we have YM�v� z� = 0 for every
v ∈ V . This is a contradiction as YM�1� z� = idM . Thus b = L�−1�u = 0.
Since L�−1�� Vn → Vn−1 is injective if n �= 0 (cf. [L1] and [DLiM] we
immediately have that u ∈ V0, as required.
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Lemma 3.2. Let V be a vertex operator algebra of CFT type. Let 0 �= v ∈
Vn with n ≥ 2 such that L�1�v = 0. Then v �∈ JM�V �.
Proof. Assume that v ∈ JM�V �. Then o�v� = vn−1 = 0 on M . Using the

relation 	L�−1�� vm
 = −mvm−1 we see that vk = 0 for 0 ≤ k ≤ n− 1. Thus
for any u ∈ V we have

0 = 	vi� u−i
 =
i∑
t=0

(
i

t

)
�vtu�−t

for i = 0� � � � � n− 1. This shows that

�viu�−i = 0

for i = 0� � � � � n− 1. Using the relation 	L�−1�� am
 = −mam−1 repeatedly
for a a ∈ V gives

�viu�k = 0

for i = 1� � � � � n − 1 and k ≤ −i. Thus YM�viu� z� involves only finitely
many positive powers of z. It follows from Lemma 3.1 that viu ∈ V0 for
i = 1� � � � � n − 1. If u is homogeneous of weight s ≥ 0 then the weight
vn−1u again is s. Thus if s > 0 then vn−1u = 0. If s = 0 then u is a multiple
of 1 and again vn−1u = 0. Thus v ∈ JV �V �.

On the other hand, JV �V � = JV �V �1 + �L�−1� + L�0��V (Theorem 1 of
[DLMM]). It is clear that v �∈ JV �V �. This is a contradiction.

Lemma 3.3. Let V be a vertex operator algebra of CFT type andM a weak
V -module. Let v ∈ V1 such that o�v� is a constant on M . Then v ∈ JV �V �.
Moreover, if M is irreducible then o�v� is a constant on M if and only if
v ∈ JV �V �.
Proof. For any u ∈ V and n ∈ � we have

0 = 	o�v�� YM�u� z�
 = 	v0� YM�u� z�
 = YM�v0u� z��
As in the proof of Lemma 3.1 we conclude that v0u = 0 for all u ∈ V . That
is, v ∈ JV �V �.

If v ∈ JV �V � then again we have 	o�v�� YM�u� z�
 = YM�v0u� z� = 0.
If M is irreducible then M has countable dimension. Let HomV �M�M�
denote the set of all V -homomorphisms from M to itself. Then
HomV �M�M� is a division ring over �. Let w ∈M be any nonzero vector.
Then f �→ f �w� gives a bijection from HomV �M�M� to HomV �M�M�w
which has countable dimension. Thus HomV �M�M� has countable dimen-
sion. Since any division ring over � with countable dimension is � itself (cf.
[DLM3]) we conclude that HomV �M�M� = �. We now see immediately
o�v� is a constant on M .

We can now determine the radical JM�V � precisely.
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Theorem 3.4. Suppose that V is a vertex operator algebra of CFT type.
Then for any admissible V -module M we have

JM�V � = �L�0� + L�−1��V + JM�V ��0� 1�
where JM�V ��0� 1� = �V0 + V1� ∩ JM�V �. Moreover, if a = a0 + a1 ∈
JM�V ��0� 1� with ai ∈ Vi then a1 ∈ JV �V �. That is, the image of the pro-
jection of JM�V ��0�1� into V1 is contained in JV �V �.
Proof. The proof of this theorem is similar to that of Theorem 1 of

[DLMM]. The conclusion �L�0� +L�−1��V + JM�V ��0� 1� ⊂ JM�V � is clear.
First we recall a result from [DLiM] (Corollary 3.2). As a module for

sl�2� �� = �L�−1�� L�0�� L�1��, V is a direct sum of highest weight mod-
ules X�µ� with highest weights µ �µ > 0�, the trivial module, and the pro-
jective cover P�1� of X�1�. Thus for any x ∈ JM�V � we can write

x =
m∑
n=0

L�−1�nun�

where each un either is in V1 or satisfies L�1�un = 0. We assume that
um �= 0. We prove by induction on m that x lies in JM�V ��0�1� + �L�0� +
L�−1��V .

Suppose first that m = 0. Then x = u0. Write x = ∑
i≥0 x

i where xi ∈ Vi
and L�1�xi = 0 if i �= 1. Since o�x� = 0 on M we have

0 = 	L�1�� o�x�
 = ∑
i≥0

	L�1�� o�xi�
 = ∑
i≥2

2�i− �i− 1�/2 − 1�xii

on M where we have used the fact that 	L�1�� o�xi�
 = 0 for i ≤ 1 (see
Lemma 2.5 of [DLMM]). That is,∑

i≥2

�i− 1�xii = 0�

Thus

0 = ∑
i≥2

�i− 1�	L�1�� 	L�−1�� xii



= ∑
i≥2

�i− 1�	L�1��−ixii−1
 = −∑
i≥2

�i− 1�2ixii

on M . Continuing in this way we get∑
i≥2

�i− 1�kik−1xii = 0

for all k ≥ 1. It follows that each xii = 0 for all i ≥ 2. Using the rela-
tion 	L�−1�� un
 = −nun−1 shows inductively that xij = 0 for j = 0� � � � � i.
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Thus xi ∈ JM�V �. If xi �= 0 then xi is not in JM�V � by Lemma 3.2. This is
a contradiction. Thus xi = 0 for all i ≥ 2.

So x = x0 + x1. Since x0 is a multiple of 1 we see that o�x1� = −o�x0�
is a constant on M . By Lemma 3.3 x1 ∈ JV �V �. This proves the result for
m = 0.

For m > 0 set a = L�−1�m−1um and b = ∑m−1
n=0 L�−1�nun. Thus x =

L�−1�a+ b. From �L�0� + L�−1��a ∈ JM�V � we have

0 = o�x� = o�L�−1�a� + o�b� = −o�L�0�a� + o�b� = o�b− L�0�a��
Note that L�0�a = �m− 1�L�−1�m−1um + L�−1�m−1L�0�um so that

b− L�0�a =
m−2∑
n=0

L�−1�nun − L�−1�m−1��m− 1�um + L�0�um − um−1�

lies in JM�V �. Since either L�0�um ∈ V1 or L�1�L�0�um = 0, we conclude
by induction that b−L�0�a lies in JM�V ��0� 1� + �L�0� +L�−1��V . But then
the same is true for x = b−L�0�a+ �L�0� +L�−1��a. This completes the
proof of the theorem.

We now sharpen Theorem 3.4 if V satisfies additional conditions. Recall
from [DLM6] and [Z] that V is called C2-finite if dim V/C2�V � is finite
dimensional where C2�V � is linearly spanned by u−2v for all u� v ∈ V .

Theorem 3.5. Let V be a simple, rational, C2-finite vertex operator algebra
of CFT type such that L�1�V1 = 0. Then for any admissible V -module M we
have JM�V � = �L�−1� + L�0��V . In particular, J�V � = �L�−1� + L�0��V .
Proof. It follows from a result in [DM2] which says that o�u� is not zero

on any admissible module for u ∈ V1.

4. A CRITERION FOR IRREDUCIBILITY

In this section we give a criterion for irreducibility of an admissible mod-
ule for an arbitrary vertex operator algebra V which we do not assume to
be simple. We consider the quotient space

V̂ = �	t� t−1
 ⊗ V/D�	t� t−1
 ⊗ V�
where D = d

dt
⊗ 1 + 1 ⊗ L�−1�. Denote by v�n� the image of tn ⊗ v in V̂

for v ∈ V and n ∈ �. Then V̂ is �-graded by defining the degree of v�n�
to be wtv− n− 1 if v is homogeneous. Denote the homogeneous subspace
of degree n by V̂ �n�. The space V̂ is, in fact, a �-graded Lie algebra with
bracket

	a�m�� b�n�
 =
∞∑
i=0

(
m

i

)
aib�m+ n− i�
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for a� b ∈ V (see [B, L2 and DLM3]). Note that V̂ �0� is a subalgebra of V̂
and is isomorphic to V/�L�−1� + L�0��V whose Lie bracket is given by

	a� b
 =
wta−1∑
n=0

(
wta− 1
n

)
anb

for homogeneous a� b ∈ V .
Let M be an admissible V -module. Then the map from V̂ to End M by

sending v�m� to vm is a Lie algebra homomorphism (cf. [L2] and [DLM3]).
In particular, the restriction of this map to V̂ �0� gives a Lie algebra homo-
morphism from V/�L�−1� + L�0��V to End M . The kernel of this map is
exactly the M-radical JM�V �. Set

SM�V � = V/JM�V ��
Then SM�V � is quotient Lie algebra of V/�L�−1� +L�0��V by Theorem 3.4
and acts on M faithfully.

Lemma 4.1. Let V be a finite dimensional vertex operator algebra. Then
V = V0 is a commutative associative algebra such that Y �a� z�b = ab for
a� b ∈ V .
Proof. Since L�−1� is injective on

∑
n>0 Vn (see [L1] and [DLiM]), we

observe that
∑
n>0 Vn = 0. In particular, ω = 0 and L�0� = 0. This shows

that V = V0.
It is clear now that an = 0 for a ∈ V0 and n �= −1. This implies that

Y �a� z�b = a−1b. The reader can verify that ab = a−1b defines a commu-
tative associative algebra structure on V0 (see [B] and [L2]).

Lemma 4.2. Let V be a vertex operator algebra and M = ⊕
n≥0M�n� an

admissible V -module with M�0� �= 0. Then M is not equal to
⊕k

n=0M�n� for
any k ≥ 0 unless V is finite dimensional.

Proof. If M = ⊕k
n=0M�n� such that M�k� �= 0. Take a nonzero

u ∈ M�k�. Then from the definition of the admissible module L�−1�u ∈
M�k + 1� = 0. Thus u is a vacuum-like vector and the submodule W
of M generated by u is isomorphic to the adjoint module V [L1]. Since
L�−2�u ∈ M�n + 2� = 0 we see that ω = 0 and V = V0 is finite dimen-
sional.

Now we use Proposition 2.1 and Lemma 4.2 to give a criterion for irre-
ducibility of an admissible module.

Proposition 4.3. Let V be a vertex operator algebra with ω �= 0. An
admissible V -module M = ⊕

n≥0M�n� with M�0� �= 0 is irreducible if and
only if each M�n� is an irreducible V̂ �0�-module or each M�n� is an irre-
ducible SM�V �-module.
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Proof. We have already mentioned that M is a module for V̂ under the
action v�n� �→ vn where YM�v� z� = ∑

n∈� vnz−n−1 are vertex operators on
M for v ∈ V . First we assume that M is irreducible. By Proposition 2.1
M = V̂ · w for any nonzero vector w of M . Now take w ∈ M�n�. Then
M�k� = V̂ �k − n� · w. In particular, M�n� = V̂ �0� · w. Thus M�n� is an
irreducible V̂ �0�-module.

Conversely, suppose each M�n� is an irreducible V̂ �0�-module. From the
proof of Lemma 1.2.1 of [Z] we see that L�0� acts on each M�n� as a
scalar. Let W be any nonzero submodule of M . Then

W = ⊕
n≥0

W �n��

where W �n� = M�n� ∩W . From Lemma 4.2 and the injectivity of L�−1�
on M�n� for all large n (cf. [L1] and [DLiM]) we see that W �n� �= 0 for all
large n. Note that each W �n� is a submodule of M�n� for V̂ �0�. So W �n� =
M�n� for all large n as M�n� is an irreducible V̂ �0�-module. If W �= M
then the quotient M/W is an admissible V -module with only finitely many
homogeneous subspaces. This is a contradiction by Lemma 4.2 unless V is
finite dimensional. Thus W =M and M is irreducible.

Remark 4�4 In the case V = V0 is a commutative associative algebra,
the assertion in Proposition 4.3 is false. For example, if we take V = �,
then M = ∑

n≥0M�n� is a V -module with each M�n� = V . Clearly, each
M�n� is an irreducible SM�V �-module, but M is not irreducible under V .

The result discussed in Proposition 4.3 can also be formulated in terms
of the theory of the associative algebra An�V � developed in [DLM4].

Let On�V � be the linear span of all u ◦n v and L�−1�u + L�0�u, where
for homogeneous u ∈ V and v ∈ V ,

u ◦n v = ReszY �u� z�v �1 + z�wtu+n

z2n+2 �

Define the linear space An�V � to be the quotient V/On�V �. We also define
a second product ∗n on V for u and v as above,

u ∗n v =
n∑

m=0

�−1�m
(
m+ n
n

)
ReszY �u� z��1 + z�wtu+n

zn+m+1 v�

Extend linearly to obtain a bilinear product on V which coincides with that
of Zhu [Z] if n = 0. The following theorem was proved in [DLM4]; in the
case n = 0 it was proved previously in [Z].
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Theorem 4.5. Let M = ∑
n≥0M�n� be an admissible V -module with

M�0� �= 0. Then

(i) The product ∗n induces an associative algebra structure on An�V �
with the identity 1 + On�V �. Moreover, ω + On�V � is a central element of
An�V �.

(ii) The identity map on V induces an onto algebra homomorphism
from An�V � to Am�V � for 0 ≤ m ≤ n.

(iii) The map u �→ o�u� gives a representation of An�V � on M�i� for
0 ≤ i ≤ n.
Moreover, V is rational if and only if An�V � are finite-dimensional semisimple
algebras for all n.

Note that both the actions of An�V � and SM�V � on
∑

0≤m≤n M�m� are
given by v �→ o�v�. Combining Proposition 4.3 and Theorem 4.5 immedi-
ately gives

Theorem 4.6. Assume that the Virasoro element ω of V is nonzero. Then
an admissible V -module M = ⊕

n≥0M�n� with M�0� �= 0 is irreducible if
and only if each M�n� is an irreducible An�V �-module.

5. TWISTED CASE

This section is an analogue of Section 4 for a twisted module M . We will
omit a lot of details and refer the reader to the previous sections when it is
clear how the corresponding proofs and arguments given before carry out
in this case.

First we give definitions of various twisted modules following [FLM]
and [DLM3]. Let g be an automorphism of V of order T . Then we have
the eigenspace decomposition V = ∑T−1

k=0 V
k where V k = �v ∈ V �gv =

e−2πik/T v�. Then V 0 is a vertex operator subalgebra of V with the same
Virasoro vector.

A weak g-twisted V -module M is a vector space equipped with a linear
map

V → (End M) �z�
v �→ YM�v� z� = ∑

n∈�
vnz

−n−1 �vn ∈ End M�

such that for all 0 ≤ r ≤ T − 1, u ∈ V r , v ∈ V , and w ∈M ,

YM�u� z� = ∑
n∈ r

T +�

unz
−n−1

ulw = 0 for l � 0�

YM�1� z� = idM �
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z−1
0 δ

(
z1 − z2

z0

)
YM�u� z1�YM�v� z2� − z−1

0 δ

(
z2 − z1

−z0

)
YM�v� z2�YM�u� z1�

= z−1
2

(
z1 − z0

z2

)−r/T
δ

(
z1 − z0

z2

)
YM�Y �u� z0�v� z2��

It is clear that if g = 1 this reduces the definition of the weak module in
Section 3.

An ordinary g-twisted V -module is a weak g-twisted V -module M with a
�-grading induced by the eigenvalues of L�0�;

M = ⊕
λ∈�
Mλ�

where Mλ = �w ∈ M�L�0�w = λw�� dimMλ is finite, and, for fixed λ,
Mn/T+λ = 0 for all small enough integers n.

An admissible g-twisted V -module is a weak 1
T
�-graded g-twisted

V -module M

M =
∞⊕
n=0

M�n/T �

such that M�0� �= 0 and that vmM�n/T � ⊆ M�n/T + wtv − m − 1� for
homogeneous v ∈ V . Clearly, an ordinary g-twisted V -module is an admis-
sible g-twisted V -module.

Remark 5�1 From the definition we see that any weak (admissible, ordi-
nary) g-twisted V -module is a weak (admissible, ordinary) V 0-module.

Let M be an admissible g-twisted V -module. For homogeneous v ∈ V
we denote o�v� = vwtv−1 on M and extend it linearly to whole V , as before.
Then it is immediate from the definition that o�v� = 0 for v ∈ V 1 ⊕ · · · ⊕
V T−1. SinceM is an admissible V 0-module we consider theM-radical of V 0

given in (2.2). By Theorem 3.4 we have

Theorem 5.2. Suppose that V is a vertex operator algebra of CFT type.
Then for any admissible g-twisted V -module M we have

JM�V 0� = �L�0� + L�−1��V 0 + JM�V 0��0� 1��

Moreover, if a = a0 + a1 ∈ JM�V 0��0� 1� with ai ∈ V 0
i then a1 ∈ JV 0�V 0�.

Proposition 4.3 still holds in this case.

Proposition 5.3. Let V be a simple vertex operator algebra with ω �= 0.
An admissible g-twisted V -module M = ⊕

n≥0M�n/T � with M�0� �= 0 is
irreducible if and only if each M�n/T � is an irreducible SM�V 0�-module.
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Proof. If M is irreducible then one can show that the analogue of
Proposition 2.1 is true. That is, M = �unw�u ∈ V� n ∈ 1

T
�� for any nonzero

w ∈ M . Thus for any nonzero w ∈ M�n/T � we have �o�v�w�v ∈ V 0� =
M�n/T �. So M�n/T � is an irreducible SM�V 0�-module.

Note that for each k = 0� � � � � T − 1, Mk = ⊕
n≥0M�n + k/T � is an

admissible V 0-module. If all M�n/T � are irreducible SM�V 0�-modules
then Mk is an irreducible admissible V 0-module for k = 0� � � � � T − 1
by Proposition 4.3. Using the associativity of vertex operators on M we
show that if YM�v� z�w = 0 for some nonzero v ∈ V and w ∈ M then
YM�u� z� = 0 for all u ∈ V (cf. Proposition 11.9) of [DL]: here we use the
assumption that V is simple). Since

∑∞
n=0M�n� is nonzero (M�0� �= 0 by

assumption) we see from the associativity of vertex operators on M that
�un

∑∞
n=0M�n��u ∈ V k� n ∈ �� is a nonzero V 0-submodule of Mk. Thus{

un

∞∑
n=0

M�n��u ∈ V k� n ∈ �

}
=Mk�

In particular, Mk is nonzero for all k. Clearly, Mk and Mi for i �= k are
inequivalent V 0-modules.

Let 0 �= w ∈ Mk. Then �unw�u ∈ V i� n ∈ �� is an admissible
V 0-submodule of Mi+k (where i + k is understood modulo T ) and
thus must be equal to Mi+k for all i. That is, �unw�u ∈ V� n ∈ �� =M and
M is an irreducible g-twisted V -module.

As in the untwisted case, we can also formulate Proposition 5.3 in terms
of the theory of the associative algebra Ag�n�V � developed in [DLM3] and
[DLM5].

Let V and g be as before. Fix n = l + i
T

∈ 1
T
�, with l a nonnegative

integer and 0 ≤ i ≤ T − 1. For 0 ≤ r ≤ T − 1 we define δi�r� = 1 if i ≥ r
and δi�r� = 0 if i < r. We also set δi�T � = 1. Let Og�n�V � be the linear
span of all u ◦g� n v and L�−1�u + L�0�u where for homogeneous u ∈ V r
and v ∈ V ,

u ◦g� n v = ReszY �u� z�v �1 + z�wtu−1+δi�r�f+l+r/T

z2l+δi�r�+δi�T−r� �

Define the linear space Ag�n�V � to be the quotient V/Og� n�V �. Then
Ag�n�V � is the untwisted associative algebra An�V � as defined in Section 4
if g = 1 and is Ag�V � in [DLM3] if n = 0. We also define a second product
∗g� n on V for u and v as above;

u ∗g� n v =
l∑

m=0

�−1�m
(
m+ 1
l

)
ReszY �u� z��1 + z�wtu+1

zl+m+1 v

if r = 0 and u ∗g� n v = 0 if r > 0. Extend linearly to obtain a bilinear
product on V .
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Recall from [DLM3] that V is called g-rational if any admissible
g-twisted V -module is completely reducible. The following theorem was
given in [DLM5].

Theorem 5.4. Let M = ∑∞
n=0M�n/T � be an admissible g-twisted

V -module with M�0� �= 0. We have:

(i) The product ∗g� n induces an associative algebra structure on
Ag�n�V � with the identity 1 + Og�n�V �. Moreover, ω + Og�n�V � is a central
element of Ag�n�V �.

(ii) The identity map on V induces an onto algebra homomorphism
from Ag�n�V � to Ag�m�V � for m�n ∈ 1

T
� and 0 ≤ m ≤ n�

(iii) The map u �→ o�u� gives a representation of Ag�n�V � on M�i� for
i ∈ 1

T
� and 0 ≤ i ≤ n. Moreover, V is g-rational if and only if Ag�n�V � are

finite-dimensional semisimple algebras for all n.

Clearly, both the actions of Ag�n�V � and SM�V 0� on
∑

0≤m≤n M�m� are
induced by v �→ o�v�. Combining Proposition 5.3 and Theorem 5.4 gives
an analogue of Theorem 4.6

Theorem 5.5. Assume that the Virasoro element ω of V is nonzero. Then
an admissible g-twisted V -module M = ⊕

n≥0M�n� with M�0� �= 0 is irre-
ducible if and only if each M�n� is an irreducible Ag�n�V �-module.
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