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We construct meta-stable knotted domain strings on the surface of a soliton of the shape of a torus in
3 + 1 dimensions. We consider the simplest case of Z2 Wess–Zumino-type domain walls for which we
can cover the torus with a domain string accompanied with an anti-domain string. In this theory, all
(p,q)-torus knots can be realized as a linked pair of a(n) (un)knotted domain string and an anti-domain
string.

© 2013 Elsevier B.V. All rights reserved.
1. Knotted vortex strings

More than 140 years ago, Lord Kelvin proposed an interesting
idea that atoms could be conceived as stable knotted vortex loops.
Although this idea was not successful as a theory of atoms, it led
to the celebrated mathematical knot theory today. Knots are one of
the most fascinating structures frequently appearing in Nature and
they are found to be important in diverse areas of physics such as
high energy physics, cosmology and condensed matter physics.

It was a long-standing question whether a stable knotted struc-
ture actually exists in a dynamical system. Indeed, until quite re-
cently, no stable knot structures were found. In 1996, Gladikowski
and Hellmund [1] as well as Faddeev and Niemi [2] found sta-
ble knot-like structures made of (stable) topological solitons, Hop-
fions, which are (un)knotted closed loops of vortex tubes in the
Faddeev–Skyrme model [3]. The Faddeev–Skyrme model is an O (3)

non-linear sigma model with the addition of a (four-derivative)
Skyrme term. With the aid of the recent drastically improved com-
puter power, they succeeded in constructing numerical solutions
of Hopfions with small charges. Faddeev and Niemi [2] conjec-
tured that all torus knots can be constructed from stable knot-
ted vortex tubes. Soon after, Battye and Sutcliffe found beautiful
higher-charged Hopfions numerically, which have both link and
knot structures [4].

After the discovery in terms of numerical solutions, the knotted
solitons have been studied extensively in the literature. However,
all knotted solitons, known so far, are obtained from closed vor-
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tex flux tubes. The purpose of this Letter is to demonstrate the
existence of a different type of knotted soliton, which lives on the
surface of toroidal structures in 3+1 dimensions. Viz. we construct
non-planar domain strings on the surface of a ring-shaped soliton,
like a vorton [5], a superconducting string loop (spring) [6] or a
Q -ring [7] etc.

2. The model

In [8,9] it was proposed that non-planar domain wall networks
might exist on the surface of a host soliton star which is a spheri-
cally compactified domain wall. This idea was investigated numeri-
cally in [10] in a simple concrete model having two complex scalar
fields and U (1) × Zn global symmetry. In [10], the host soliton
(star) is a large Q -ball [11] and an attempt was made to tile the
surface of the Q -ball with almost-BPS planar domain-string net-
works in the Wess–Zumino model [12]. However, in [10] it was
proven that only a few spherical polyhedra can be constructed on
the surface of a sphere.

Although an attempt of tiling the domain-string network on a
sphere did not turn out very successful, we can still ask whether
it is possible to tile other Riemann surfaces with domain strings.
Namely, how does the answer depend on the topology of the host
soliton. Because we are interested in a solitonic object which may
be dynamically produced, we choose a torus, T 2, which is one
of the simplest geometries. Indeed, many ring-shaped solitons are
known, e.g. a closed loop of the superconducting cosmic strings
[5], springs [6] and Hopfions [1].

We will work in the framework of the simple model proposed
in [10] which was used to construct the domain-string networks
on Q -balls. That is, we will use a single complex scalar field φ
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Fig. 1. The cross-section profile of ψ for a ring-shaped soliton at z = 0. The ring is
axially symmetric with respect to the z-axis.

with an effective potential of the Wess–Zumino type coupled to
some other field which belongs to a host configuration. Hence, the
Lagrangian contains two parts

L = L1[Aμ,ψi] +L2[ψi, φ], (1)

where L1 may include multiple scalar fields ψi and gauge fields
Aμ which are needed to form a stable ring soliton. The Wess–
Zumino field φ couples to ψi only via L2. We need not specify
a particular model for L1, but we require it to have a solitonic
field configuration admitting a ring-shaped profile function. The
only condition which we require for one of the ψi ’s, say ψ1, is
that it is non-zero inside and zero outside of the ring, see Fig. 1.
Indeed, this is a universal property of the condensate field for the
well-known vortons and springs. Then, for L2[ψi, φ], we consider
the specific model

L2 = 1

2
|∂μφ|2 − β2

∣∣∣∣η[ψ1] − φ2

v2

∣∣∣∣
2

, (2)

η[ψ1] ≡ 4|ψ1|2
(
1 − |ψ1|2

)
. (3)

As done in [10], we treat β as a small parameter, such that the
profile of the torus configuration of L1 receives only a negligible
correction. This can be seen as follows. To be concrete, let us con-
sider one of the simplest models as L1 consisting of the complex
fields (ψ1,ψ2) = (ψ,σ ):

L1[ψ,σ ] = |∂μψ |2 + |∂μσ |2 − γ |ψ |2|σ |2, (4)

η[ψ] = 4|ψ |2|σ |2 = 4|ψ |2(1 − |ψ |2), (5)

with the constraint |σ |2 + |ψ |2 = 1 and γ takes on a positive
value. The stable vorton solution in this model (β = 0) was ob-
tained in [13]. The field σ = f (r)eikθ is called the vorton field,
and the condensate ψ whose phase increases along the vorton as
ψ = g(r)ei(ωt+pz) , with r, θ being polar coordinates. Since we just
want to estimate how much the host soliton is modified by turning
on a non-zero coupling, β , we simplify the problem here and con-
sider a so-called twisted-vortex string [13] on a periodic interval,
z = 2π/p, instead of the vorton. Let us consider the twisted-vortex
string in L = L1 + L2. Firstly, the vacuum structure of L is not
changed with respect to that of L1 in Eq. (5). Furthermore, all
the conserved charges are independent of β . The existence of the
same kinds of (host) solitonic configurations in L with β �= 0 as in
L with β = 0 follows straightforwardly. Indeed, we obtained nu-
merically a twisted-vortex string solution which is shown Fig. 2.
In Fig. 2, we have chosen a relatively large value for the coupling,
i.e. β = 1, but the deformation of the profile functions, ψ and σ ,
remains small. Thus we conclude that the shape of the host ring
is quite insensitive to the β coupling – even for order-one values
Fig. 2. The twisted-vortex profile functions |ψ(r)|2 (in gold/decreasing with r),
|σ(r)|2 (in violet/increasing with r) and |φ/v|2 (in blue) for k = 2 with β = 0
(dashed curves) and β = v = 1 (solid curves). The parameters are chosen as γ = 1,
ω = 1 and p = 1.1. One can increase the toroidal radius R p by increasing the wind-
ing number k in L1. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this Letter.)

– and thus we can safely ignore the back reaction as long as β is
kept sufficiently small. There is, however, an important difference
between β = 0 and β �= 0: φ �= 0 for the latter. Since η[ψi] = 0
both inside and outside of the ring, φ only develops a non-zero
VEV φ � v near the surface of the ring, in order to minimize the
energy contribution from the potential term. Clearly, there exists
another configuration, namely φ � −v near the surface of torus.
These two configurations have exactly the same energy due to the
Z2 symmetry of the model. Hence, the Z2 symmetry is sponta-
neously broken by the ring soliton, which gives rise to domain
strings on the host ring soliton.

Once we ignore the back reaction to the host soliton, L2 can be
seen effectively as the (2 + 1)-dimensional Wess–Zumino model
with a Z2 discrete symmetry, where the field φ has VEVs 〈φ〉 �
±v . As well known, the Wess–Zumino model in 2 + 1 dimensions
admits domain strings interpolating those two vacua having ten-
sion and transverse size, respectively,

T = 25/2

3
βv, d = v

β
. (6)

Therefore, we can take β parametrically small keeping the size of
the domain string d fixed. We will choose β � v such that d is
of order one in the following, and hence the tension of the do-
main string is of order β2. Since, no physical parameters depend
on only β , we can keep the size of the domain strings large and
choose a small value of β . In this way the back reaction is para-
metrically negligible and need not be a concern.

In the following, we will tile the surface of the ring soliton with
these two domains.

3. Numerical calculation

We solved the partial differential equation (gradient flow equa-
tions) with a finite difference method, more precisely using a
Crank–Nicolson algorithm on a 1602 × 80 square lattice times a
relaxation time axis with Courant number, �t/�xi = 0.2:

−∂φE = EOM[∇φ,φ] = ∂tφ, (7)

such that when the configuration does not change anymore, the
soliton configuration is obtained. This is the relaxation method.
The spatial lattice has the lengths 602 × 30 and stepsize �xi =
0.375 and we chose β = v/3 = 0.1 yielding d = √

3. Hence, the
stepsize is small enough to resolve the domain string (there is
about 4.6 lattice points on the domain string itself). Since the
Crank–Nicolson algorithm is implicit
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Fig. 3. The left panel shows the two domains. The two domain strings (i.e. energy
density isosurface) are shown in the right panel. The upper figures are for the (1,0)

type, i.e. poloidal strings, while the lower figures are for the (0,1) type, i.e. toroidal
strings.

1

2

[−∂φE(t) − ∂φE(t + �t)
] = φ(t + �t) − φ(t)

�t
, (8)

φ(t + �t) needs to be calculated by means of solving a matrix
equation for which we use a biconjugate gradients method. Since
the equation of motion is non-linear, we linearize the equation
(only for φ at time t + �t)

φ = φ0 + δφ, (9)

i.e. we keep the full non-linear expression for φ0 but truncate δφ

to linear order. We then iterate several times until the solution of
the next time slice, φ(t + �t), converges. Thereafter, the routine is
continued until the variation of the field in time is small enough.

Figs. 3–5 are obtained by the above explained Crank–Nicolson
algorithm. As a check we have also carried out the same calcu-
lation using Mathematica. We obtain equally good solutions with
the calculation done in Mathematica, see Figs. 6–8.

With an appropriate initial configuration, one obtains the de-
sired results as final states of the relaxation. If the configuration is
unstable, it collapses to a single vacuum. Since we obtained non-
trivial domain strings by means of the relaxation, they represent
stationary points of the energy.

4. Knotted domain strings

As we will explain, domain strings on the ring surface are noth-
ing but torus knots. Therefore, they are naturally characterized
by a pair of co-prime integers (p,q). The number p denotes the
poloidal winding number (around the meridian circle), while q is
the toroidal winding number (around the longitudinal circle) of
the torus. As well known, torus knots are prime and chiral. Torus
knots with pq > 0 are right-handed and pq < 0 are left-handed.
A (p,q)-knot is identical to the (−p,−q)-knot.

The simplest configurations are the (1,0) and (0,1). These have
unknotted closed domain strings sitting on the antipodal points
of the torus, see Fig. 3. Clearly, the configuration (0,1) is unsta-
ble against small perturbations because the smaller string loop is
preferred energetically. Thus, the larger string will shrink and anni-
hilate the smaller one since the net Z2 charge of the configuration
is trivial.

The Hopf link appears for the (1,1) type. The configuration is
unknotted but two domain strings are singly linked which is a so-
called Hopf link, see Fig. 4. Each string loop winds both cycles of
the torus once. The domain string and anti-domain string sit near
Fig. 4. Hopf link (1,1): The left figure shows the tiling of the surface of a torus with
two domains and the right figure shows that the domain strings are linked once.

Fig. 5. Solomon’s links: The upper figures show the (2,1) configuration and the
lower ones show the (1,2)-type strings. These are unknotted but doubly linked
configurations.

Fig. 6. The sixthly linked trefoil knot with winding numbers (3,2). The top-left fig-
ure shows the region where Re[φ] > 0 which is a trefoil form. The top-right figure
displays the two linked trefoil domain strings in the view from above. The bottom-
left figure shows the two domains on the torus surface and the bottom-right figure
is a 3D view of the trefoil knots.

the antipodal point with respect to the other on the torus.1 They
are, however, nearly maximally separated from each other in most
of the configuration.

The unknotted but doubly linked strings are obtained for the
(2,1) and (1,2) cases. They are called Solomon’s links, see Fig. 5.

1 For instance, for the Hopf link (1,1), the string tension squeezes the strings a
bit together upon minimization of energy and thus at the point where the strings
are sitting orthogonal to the toroidal radius, they are not completely antipodal to
one another.
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Fig. 7. The sixthly linked trefoil knot with winding numbers (2,3). See the caption
of Fig. 6.

Fig. 8. The linked knot with winding numbers (4,3).

The next example is the linked trefoil which is the simplest
knotted structure among the torus knots. Namely, they are char-
acterized by winding numbers (3,2) and (2,3), see Figs. 6 and 7.
The linking number is the product of p and q. Hence, both these
trefoils are linked 6 times. In [2], it was conjectured that all
torus knots can be constructed as Hopfions in the Faddeev–Skyrme
model, but to the best of our knowledge our solutions are the
first ones realizing both the (3,2) and the (2,3) configuration. For
these torus knots and the remaining higher-winding ones, we have
decreased the domain string width d � 1, instead of

√
3 as used in

the lower-winding cases, see Eq. (10).
The last example is the linked knot with winding numbers

(4,3) and linking number 12, see Fig. 8.

5. Stability

There are two types of stability issues. The first is regarding the
impact of the presence of the domain strings on the host solitons;
that is, the fields have a mutual coupling that potentially could
destabilize the host soliton. This issue has been demonstrated in
detail above to depend on β2 and be parametrically unimportant
for vanishing β . To this end, let us point out that the host soliton
is stable for β = 0. Therefore, size- or shape-changing modes of the
host soliton are massive in the case of β = 0. Let the shape-mode
be gapped with mass m2 > 0. Once β > 0 is turned on, m changes
accordingly and could potentially become tachyonic. However, by
continuity, an infinitesimal change in β > 0 from β = 0 is not ex-
pected to be able to drive m2 negative from a finite positive value.
Thus for sufficiently small β this type of instability is prevented.
The other type of instability is due to the domain strings coming
in pairs of string and anti-string. We will discuss this issue below.

Since L2 is effectively the Z2 Wess–Zumino model on the sur-
face of a torus, the domain strings are characterized by two wind-
ing numbers, (p,q), and also by the Z2 charge. Each string has
either + or − Z2 charge. All configurations are topologically pro-
tected in the sense of the topologically non-trivial winding num-
bers (p,q). However, since the torus surface is periodic, a single
domain string is always accompanied by its anti-domain string.
Hence, the total Z2 charge is trivial. Therefore, all the domain-
string configurations which we have obtained in this Letter are
non-topological solitons.

Although their stability is granted by topology, we expect meta-
stability and thus a sufficiently long life time of the configurations.
This is due to the interaction between the Z2 kinks being exponen-
tially suppressed as V ∼ exp(−mL) where m is a mass parameter
which is of the order of the inverse kink width d and L denotes
the separation distance of the Z2 kink and anti-kink. Indeed, the
asymptotic potential can be numerically calculated with the super-
position of the well-known kink and anti-kink solutions, and one
finds that the potential has a large plateau in the asymptotic re-
gion. Only when the two kinks are close enough together, they
feel a finite (non-negligible) attractive force. Since the two do-
main strings in all the constructed configurations are nearly maxi-
mally separated, the attractive interactions among them are small
enough to render the configurations sufficiently stable. An excep-
tion, however, is the unknot of type (0,1) which clearly is unstable
against small perturbations.

When we increase either winding number, p or q, a fixed size
torus leaves less and less space for the individual domain string in
order not to be too close to its anti-domain string. That is, when
that happens, they will simply annihilate and leave behind a single
vacuum. Hence, a crude estimate of the maximum allowed wind-
ing numbers of the strings are

d � L ∼ π RP RT√
q2 R2

T + p2 R2
P

, (10)

where RP is the poloidal radius and RT is the inner toroidal radius.
Here, we chose d = v/β = √

3 (or d � 1 in Figs. 6–8) and RP,T =
O(10).

A further point in favor of the argument of stability is the nu-
merical method used being a relaxation method. The relaxation
method only stops and gives a configuration when a locally sta-
ble, or alternatively long-lived metastable configuration has been
obtained.

There are three options for improving the stability. (i) Charging
the domain strings in such away that they repel or attract each
other by some kind of confining force. (ii) A stable bound state
of a string and anti-string may exist. (iii) Considering a periodic
model as L2. All of these may be realized by changing the model
L2. The third option might be the best choice. As an example, we
can choose a modified sine-Gordon model for L2 with a periodic
field à la axion field. Because the sine-Gordon model is periodic by
definition, we do not need the anti-domain string. Thus, the single
domain string can exist by itself in such a model. We will report
on this possibility elsewhere.
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6. Conclusions

In this Letter, we obtained numerical solutions of new knotted
domain strings on the surface of a ring soliton in 3+1 dimensions.
We found several torus knots with winding numbers (1,0), (2,1),
(3,2) and (4,3). With these results, we expect that all torus knots,
i.e. with any co-prime integers (p,q) can be constructed as domain
strings in dynamical systems.2 It is known that lots of complicated
three-dimensional shapes can be formed as solitons, for instance,
the Buckyball was found as a higher-charged Skyrmion. Even on
such a complicated two-dimensional surface as host soliton, we
may construct domain strings. We would like to emphasize that
this is indeed a doable task since the method of [10] is really sim-
ple and changing the topology of the host soliton does not lead
to any difficulties. We hope that the knotted domain strings found
here will open new research directions in many areas of physics
and mathematics.

Note added

Ref. [14] appeared recently on the arXiv and contains similar torus-knots, how-
ever in a different model.
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