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ABSTRACT 

In this paper we prove a general theorem concerning the number of translation classes of curves of 
genus g belonging to a fixed cohomology class in a polarized abelian variety of dimension g. For 
g = 2 we recover results of G6ttsche and Bryan-Leung. For g = 3 we deduce explicit numbers for 
these classes. 

1. INTRODUCTION 

Let (A, L) be a polar ized abelian variety of  dimension g and of  type ( d l , . . . ,  dg) 

over the field C of  complex numbers.  Two curves, C1 and C2 in A are called 
equivalent,  if  there is an x a A such that  C1 = txC2. Here tx : A ~ A denotes the 
translat ion by x We call a class of  equivalent curves in A a translation class of 
curves. Equivalent curves in A define the same cohomology class in 
H 2g- 2(A, 2). Let r E Q, r > 0 such that  the cohomology class r A  g -  I Cl(L) is 
contained in H 2g- 2(-4, 7Z), It  is easy to see that  the number  of  translation classes 

of  irreducible reduced curves of  genus g in the class r A g-  1 cl (L) is finite. The 
problem is to compute  this number.  

In  the case of  an abelian surface this problem is equivalent to comput ing the 

number  of  curves of  genus 2 in a linear system [LI. In fact, i f L  is of  type (dl, dE), 
then ILl contains exactly d 2- d 2 curves which are equivalent to a given curve of 
genus 2. The number  of  curves of  genus 2 in ILl has been computed  in the spe- 
cial case of  a simple abelian surface of  type (1, d) by G6ttsche and Debarre  in 
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[G] and [D] and finally by Bryan and Leung in [BrL], applying intersection co- 
homology methods. 

In this paper we prove a general theorem (Theorem 2.1) expressing the 
number of equivalence classes of curves of genus g in the class 
r A g-  1 C'I (L) C H 2g- 2 (A, 7~) in terms of maximal isotropic subgroups of Jaco- 
bian type of a finite symplectic space associated to L. For the definitions see 
Section 2. In dimension g _> 4 it is difficult to decide whether a given maximal 
isotropic subgroup is of Jacobian type. However any maximal isotropic sub- 
group of a simple abelian variety of dimension 2 and 3 is of Jacobian type. For 
these abelian varieties the theorem can be applied to actually compute the 
number of translation classes of curves in a fixed cohomology class. For abelian 
surfaces we obtain the results of G6ttsche, Debarre and Bryan-Leung in a 
slightly more general form. The main application of the theorem is dimension 
3, where we compute the number of translation classes of curves of genus 3 for 
any minimal cohomology class in H4(A, 7/) and any simple abelian threefold. It 
would be interesting to find generating functions for these numbers. 
We would like to thank the referee for suggesting some improvements in the 
proof of Proposition 4.4. 

2. STATEMENTS OF THE RESULTS 

First we recall some preliminaries. By a curve we will always mean a complete 
reduced irreducible curve. By its genus we understand its geometric genus, i.e. 
the genus of its normalization. A polarization on an abelian variety A is by 
definition the first Chern class of an ample line bundle L on A. By abuse of no- 
tation we denote the polarization by L instead of Cl (L) and consider it as a line 
bundle. For any polarization L on A the group K(L)  is defined to be the kernel 
of the isogeny 

(aL : A --* /t, x~--~ txL ® L -1. 

If L is of type (dl, . . .  ,de), then K(L)  ~ (Z/dl~- × . . .  × Z/dg~_) 2. The group 
K(L)  admits a nondegenerate (multiplicative) alternating form eZ :K(L)× 
K(L)  ~ C*, so that one can speak of totally isotropic subgroups of K(L) which 
we will shortly call isotropic subgroups. According to [CAV], Corollary 6.3.5 
there is a canonical bijection between the sets of 

(i) maximal isotropic subgroups of K(L)  and 
(ii) isogenies f : (A, L) --* (B, M)  of polarized abelian varieties (i.e. with 

f * M  algebraic equivalent to L) onto a principally polarized abelian variety 
(B, M). 

We call a maximal isotropic subgroup o f  Jacobian type if the associated prin- 
cipally polarized abelian variety (B, M) is the Jacobian of a smooth projective 
curve. 

For any polarization L on A there is a unique dualpolarization L on the dual 
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abelian variety .,], characterized by the following 2 equivalent properties (see 
[BL]). 

(i) 0~f, ~ L d'd, 

(ii) OLOL = dldgidA. 

Here '~ '  denotes algebraic equivalence. The polarization L is o(  type 
(d~, ~ ..... ~ ,  de), if L is of  type (d l , . . . ,  dg). Moreover, one has biduality: L ~ L. 
The main result of  the paper is the following theorem: 

Theorem 2.1. Let (A, L) be a polarized abelian variety o f  dimension g > 2 and 
type (dl , . .  •, dg) and r E Q, r > O, such that r A g-  l cl (L) E H2g-2(A, 77). There is 
a canonical bijection between the sets o f  

(1) translation classes o f  curves o f  genus g in the class r A g-  l cl (L). 
(2) maximal isotropic subgroups in K ( Lr(g-l )!d2" "4 -1) of  Jacob ian type. 

Here for g = 2 the empty product d2 . . . dg_ 1 is considered to be equal to 1. 

Note that, since a general abelian variety of  dimension > 4 is not isogenous to a 
Jacobian, for such an (A, L) the cardinalities of  the sets (1) and (2) of the theo- 
rem are both equal to 0. In particular, a generic polarized abelian variety of 
dimension g > 4 does not contain any curve of  genus g. On the other hand it is 
difficult to decide whether a given polarization in dimension > 4 is of  Jacobian 
type or not. Consequently the main interest of the theorem is for abelian vari- 
eties of  dimensions 2 and 3. 

It is well known (see e.g. [CAV], Corollary 11.8.2) that any simple principally 
polarized abelian variety of  dimension 2 or 3 is the Jacobian of  a nonsingular 
curve. Hence for g = 2 and 3 any maximal isotropic subgroup of  a simple abe- 
lian variety is of  Jacobian type. So in these cases we can be more precise. 

Corollary 2.2. Let (A, L) be a simple abelian surface of  type (dl, d2). The number 
of  curves of  genus 2 in the linear system ILl is d2d 2 • ]{maximal isotropic subgroup 
of  K(L)}.  

Note that if L is of  type (1, d), the number of  maximal isotropic subgroups is 
~r(d) = Emld m (see Proposition 4.3). 

Proof. It remains to show that the number of  curves in IL I equivalent to a given 
curve C E ILl of genus 2 is 2 2 d 1 d~. But if C '  is equivalent to C then C'  = t*~C for 
some x E A. This implies x E K(L).  Since K(L)  is of  order d2d 2, it suffices to 
show that t*~C ~ C for any x E A, x # 0. But if t*~C = C, then t~ has to map the 
finite set of  singularities of  C into itself. This is impossible for x # 0, if we re- 
place C by a suitable translate. In fact, replacing C by tx0 C for a general x0, we 
obtain the identity t*~_~ ,(t*~0_,C3 = t*xoC with x - x0 not a division point and such 
a translation tx-~o cannot stabilize a finite set of  points. []  

Denote by K ( d l , . . . ,  dg) the group (7//d17/× . . .  × 7//dgT/) 2 together with the 
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standard symplectic form e : K(dl , . . . ,dg) 2 ~ C* defined as 
f i , . . .  ,J2g denotes the standard generators of K ( d l , . . . ,  dg), then 

{ e x p ( i ~  ) if # - - g + u  
e(f#,fu) exp ~ if u = g + #  

1 otherwise. 

follows. If 

Corollary 2.3. Let (A, L) be a simple abelian threefold o f  type (dl, d2, d3). The 
number o f  translation classes of  curves o f  genus 3 in the class r A 2 cl (L) for  some 
r E Q,r  > 0 is equal to the number o f  maximal isotropic subgroups of  
K (2rdl d2, 2rdl d3, 2rd2 d3). 

In particular the number of equivalence classes of curves of genus 3 in 
2dld2 A 2 cl (L) is  equal to the number of maximal isotropic subgroups of K(~,~,). 
I fL  is of type (d, d, d), then there is exactly one class of curves of genus 3 in the 
class ~tr/~2 cl (L). 

3. PROOF OF THE THEOREM 

We need some preliminaries. Let (A, L) be a polarized abelian variety of di- 
mension g and C a curve of genus g in A generating A. Then we have the fol- 
lowing diagram 

~' ~ J = J ( 6 ' )  

(1) ~ 

C '--* A 

where v denotes the normalization map, J the Jacobian of C, a n d f  the homo- 
morphism induced by the composed map C ~ C~--~A. Note that f is an iso- 
geny, since C is of genus g and C generates A as an abelian variety. Let M de- 
note a line bundle on J defining the canonical principal polarization on J. 

Lemma 3.1. For any e E ~ the following statements are equivalent." 
(i) f * L  - M edegL. 

(ii) [ C ] -  e g -  n 2 g - 2 ( A , T / ) "  - ~ A  lCl(L) in 

Here -- denotes numerical equivalence and the degree o f  L is defined as 
deg L = dl . . .  dg if L is of type (dl,.. •, dg). 

Proof. Note first that (i) is equivalent to f~bLf = edegL,  ls, i.e. to the com- 
mutativity of the diagram 
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A +-+++ 

(2) ] T .L ] 

J (e~+L)s J, 

where we identify J = ) under the isomorphism OM : J --* ). We claim that (2) 
is equivalent to 

(3) f f~L  = edegL.  1j. 

For the proof note that being an isogeny f : J --* A is an isomorphim in 
Hom~(J, A) = Horn(J, A) ®z Q. Hence (2) is equivalent to 

fOL = edegL . f - l .  

which in turn is equivalent to (3). 
Recall from [CAV] Section 5.4 that for any cycles V and W of com- 

plementary dimensions one defines an endomorphism 6( V, W) of  A by 

6(v, W)(x) = s(v. (t*w - w)) 

where S(V.  (txW - W)) -- )-]7=1 rixi E A if V. (t*xW - W) = E?=I rixi as a 
zero-cycle. Moreover 6( V, W) depends only on the algebraic equivalence clas- 
ses of V and W. In particular 6(C, L) is a well defined endomorphism of A. 

Now assume (3) holds. Then 

6(C, L) = --ff  4~L by [CAV], Proposition 11.6.1 

= - e d e g L .  1A by (3) 

= 6((g e l )!gAl cl(L),L)) by [CAV], Proposition 5.4.7 

Since L is an ample line bundle this implies using [CAV], Theorem 11.6.4 that C 
is numerically equivalent to ~o_~e,~, A g- 1 el(L) which is equivalent to (ii), since (g-l). 
numerical and homological equivalence coincide on an abelian variety. 
Conversely (ii) implies 

e g - 1  

6(C,L)-- (g_ 1)!6(A Cl(L),L) 

according to a theorem of Matsusaka (see [M]). But as above 6(C, L) = --ffOL 
and 6(Ag-t Cl (L), L) = - ( g -  1)! deg L. So this implies (3), which completes 
the proof of Lemma 3.1. [] 

Lemma 3.2. Let (A, L) be a polarized abelian variety of type (dl , . . . ,  dg) and 
(B, M) a principally polarized abelian variety. I f  g : (A, L) ~ (B, M) is an iso- 
geny of polarized abelian varieties, i.e. g* M ~ L, then ~,* L ~ ~I dido. 

Proof. The polarization M being principal, we may identify B =/~ such that 
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CM = lB. Then g*M ~ L implies ¢g*M = ~)L and the following diagram com- 
mutes 

A eL j eL A 

g~ Tg ~g 

1B ¢~,L) 
B ~ B B. 

By definition of L we have 

eL o eL = dldglA. 

Hence 

¢~,L o g = d l  dgg. 

Since g is an isogeny, this gives 

O$*L = dldg " lB. 

On the other hand 

(ai, t~,a, = dldg¢# = dldg . lB. 

Hence ¢#,L = CMd, d, which implies the assertion. 

P r o o f  o f  T h e o r e m  2.1.  
H 2g-2(A,7/). Denote 
Lemma 3.1 

f * L  ,,~ M ~ 

and the following diagram commutes 

sT 
~J 

J --~ J. 

Hence 

[] 

Let C be a curve of genus g in the class r A g- 1 Cl (L) in 
for abbreviation 1 3 = r ( g - 1 ) ! d e g L .  According to 

* * ^ ,  
f ¢ L f  M =/3*M ~ M a2 ~ f * L  ~. 

This implies 

, ^, ~ L ~. Ozf M 

On the other hand by definition of L we have ¢*L L ~ Ldla~ and thus 

It follows 

e L f  M 
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This implies f*M ~ L r(g-1)[d2"''dg-l. Hence the isogeny f corresponds to a 
maximal isotropic subgroup in K ( L  r(g- 1}!d2...4) of Jacobian type. It is clear that 
equivalent curves lead to the same maximal isotropic subgroup. 

Conversely let K be a maximal isotropic subgroup of K ( L  r(g- 1)!d2...4-~) of 
Jacobian type. Then there is an isogeny 

such that 

f*J~/I ~ L r(g- l)[d2""dg-l. 

Let M denote the dual polarization of M on J = ) .  (J, M) -~ (J,/17/) is the Ja- 
cobian of a smooth curve C of genus g. L e t f  : J --+ A denote the dual isogeny of 
f .  Then C := f (C)  is a curve of genus g on A andfl t~  : (~ --+ C is birational, 
since C generates the abelian variety A. 

We have to show that C is in the class r/~ g- 1 Cl (L) ~ H 2g - 2 (A, 7/). Note first 
that f_,r(g - 1)!d2...dg_, is of type 

(deg L deg L deg L)  
r ( g - 1 ) ! \  ~ ,dg_l " ' "  dl " 

In particular we have 

deg f = rg((g - 1)!)g(degL) g-  1. 

So Lemma 3.2 applied to g - - f  yields 

((r(g- l)!d©gL) 2 
f*Lr(g-  1)!a,...d,_, = )* ((Lr(e-U!a2...a,_,)^) ..~ )(4 d,a, 

and thus 

f *  L ~ if/if (g- U!aegZ. 

O n  the other handf lC  : C ~ C is birational, which gives 

f*[C] = E tx[C] 
x E K  

--= deg f .  [t~] 
g-1  

= r~((g - 1 ) ! )g - l (degL)  g - l "  A Cl(/~) 
g-1  

= r A ( r ( g -  1)!degL- Cl(hT/)) 

g-1  
= r A (f'c1 (L)) 

g - I  
= f * ( r  A cI(L))" 

But for an isogenyf* is injective on cohomology, implying 
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g - 1  

[C] = r  A c,(L). 

It is easy to see that both maps are inverse to each other. [] 

4. MAXIMAL I S O T R O P I C  SUBGROUPS 

Suppose dl, ...,dg are positive integers with di[di+l for i = 1, . . . , g -  1 and let 
K(dl ,  ..., dg) = (Z /d1Z  × ... x Z /dgZ)  2 denote the finite group with the standard 
symplectic form e ( . ,  . ) of  Section 2. Recall that a subgroup H c K(dl , . . . ,  dg) is 
called (totally) isotropic if e(h, h') = 1 for all h, h'  E H. An isotropic subgroup 
of  K(dl, ..., dg) is maximal  isotropic if and only if it is of  order d := dl . . .  dg. Let 

v(dl, ..., dg) 

denote the number of maximal isotropic subgroups of K(dl, ..., dg). In this sec- 
tion we compute the number u(dl, ..., dg) in some cases. First note that from the 
definition of  the symplectic form e( . ,  • ) we immediately obtain 

Proposition 4.1. Let  d(, ..., dg be another set o f  positive integers with alia L i for 
i = 1,..., g. I f (dg,  dg) = 1 then there is a symplectic isomorphism 

K(a,a; ,  ..., 4a ) K(a, ,  ..., 4 )  × i,:(a;, ..., 

In particular u( d, d[, ..., dgdg ) = u( d, , ... , dg ) . u( d(, . .., d~, ). 

Proposition 4.2. v(p,-" ,P)  = Hi=lg (pi + 1) for  any pr ime number  p. 

Proof. According to Witt's theorem the group Sp(2g,p)  acts transitively on the 
set of  maximal isotropic subgroups of K ( p , . . .  ,p). Hence 

u(p, . . .  ,p) = ISp(2g, p)l 
IFixg01 

where K0 denotes the isotropic subgroup generated by f l , . . - , f g ,  if f 1 , . . .  ,f2g 
denotes a symplectic basis of  K(p , .  • ,p). An element (o q') ~ Sp(2g,p)  is 

k"/ o /  
contained in K0 if and only if a -- 0, = _t  '7 -1 and 7 t 8 = 6 t 7. Hence 

Ko ~" GL(g ,p)  ~a Symg(p) 

where Symg (p) denotes the additive group of  symmetric g x g-matrices over 0:p. 
This implies 
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v(p,... ,p) = lSp(2g, p)l 
IGL(n,p) I . p,lq,l 

e e Hf_-_, - 1 )  

Hf:o  - p ' - ' ) : ' ; "  

(by [H], II, Hilfssatz 6.2 and Satz 9.13). 
g 

= + 1). [ ]  
i = I  

Proposition 4.3. v(1, ..., 1, d) = a(d) = Enid n for any positive integer d 

Proof. Note that K(1, ..., 1, d) = K(d) and any subgroup of order d of K(d) is 
maximal isotropic. It is well-known that (Z/dT/) 2 contains exactly a(d) sub- 
groups of order d. [] 

In the remaining cases it is a little more difficult to compute the number 
v(dl, ..., dg), mainly because it may happen that there are maximal isotropic 
subgroups of different types. We do this only for K(dl, d2) which turns out to be 
sufficient in order to determine the number of equivalence classes of curves of 
genus 3 in any primitive cohomology class of an abelian threefold. 

In order to compute v(d, d) it suffices according to Proposition 4.1 to com- 
pute v(/¢', p~) for every prime power pn. The different types of maximal isotropic 
subgroups of K(pn,p ") are listed in the following table together with a typical 
example. For the examples recall the standard generators of K(p~,/¢ ') with 
e0cl,f3) = e(f2,f4) = e --:2~ri'l ~t,~7:,  eCf3,fl) = e(f4,f2) = e x p ( - Z ~ )  and e(f~,,f~) = 1 
otherwise. In the following table (and only there) we denote for abbreviation 
7/ :  := 2r/pinT] for all m. 

type 

1 

2k 

3 

4k,z 

5/ 

6k 

7 

Misomorphic to 

Z :  x 7/p.-k x 77e~ 

restrictions 

O < k < n - k < n  

example 

<A,f2 > 

< A , f ' f : , p " - V ~  > 

~_:×~_:×~_: 2k=n <A,:A,p~f4 > 

7]p.-, ×7/p.-k X7/p* X2Zd O<l <k < n - k  <ptfhpkfz,pn-kf4,pn-t.f3> 

Zp. ,  x Z ~  x 77~ x77~ O<l<k<n,2k=n <p~,pkf2,pf4,p"-lf3> 

7/p. ,~ x Zp,,-,~ x Z~ x Z f  O < k < n - k < n  <pkji,pkfE,p"-kf3,p"-kf4> 

2 k  = n ~ × ~ × ~ × ~  < pkfl ,t~f2,Pkf3,pkf4 > 

Note that there are some obvious restrictions: For example type 4k,t only occurs 
for n > 5. For types 3, 5k and 7 the number n is necessarily even. 
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The following proposition computes the number u(pn,p~)(-) of maximal 
isotropic subgroups of K(/Y',pn) of type - from the previous table. 

Proposition 4.4. (1) u(p",p")(1) :p3n-3(p2 + 1)(/7 + 1), 
(2) u(pn,pn)(2k) =p3n-2k-4(p2 + 1)09 + 1)2 
(3) u(p",p")(3) =p2n-3(p2 + 1)(p + 1), 
(4) p(pn,pn)(4k,l) = p3n-41-2k-4(p2+ 1)(p + 1) 2, 
(5) V'(pn,pn)(51) =p2n-41-3(p2+ 1)~O + 1), 
(6) u(pn,pn)(6k) =p3n-6k-3(p2 + 1)(p + 1) 
(7) u(pn,p")(7) = 1. 

Proof. The number u (p~, pn) ( _ ) of maximal isotropic subgroups of K (p~, p~) of 
type - can always be computed as 

v(pn,pn)(_) __ N ( - )  
D(- )  

where N ( - )  denotes the number of ordered bases of maximal isotropic sub- 
groups of K(p~,p ~) of type - and D ( - )  denotes the number of ordered bases of 
the corresponding abelian group. 

There is a more elegant, though conceptually more involved proof of (1): Let 
On : (Ti/pn7i) 4 × (Z/pn71)4-"'~z/pn7i denote the additive version of the multi- 
plicative alternating form e(., .) : (Z/l~71) 4 x (Z/pn2V)4----*C* of above. The al- 
ternating forms 0n form a projective system and define an alternating form 

: (Zp) 4 × (Zp)4----+71p (Here 71p denotes the ring of p-adic integers). The syrn- 
plectic group Sp4(Zp) acts transitively on the set of maximal isotropic sub- 
groups of (Zp) 4. Let S denote the stabilizer of a fixed maximal isotropic sub- 
group. The set of all maximal isotropic subgroups of (71p) 4 can be identified 
with the smooth scheme M := Sp4(Zp)/S over Tip. The maximal isotropic sub- 
groups of (71/p"Y_) 4 can be considered as the Z/pnZ-valued points of the scheme 
M. Since for any smooth scheme N of relative dimension d over 71p the Z/p"Z- 
valued points and the 2~/pT/-valued points of N are related by 

#N(7//pn7/) = pd(n- 1). ~N(~-/p~) 

and since M is of relative dimension 3 over Zp, Proposition 4.2 implies asser- 
tion (1). 

Assertions (4), (5) and (6) can be deduced from (1), (2) and (3) using the 
following remark: If W C K(p~,p n) is any isotropic subgroup then the 
maximal isotropic subgroups containing W are in natural bijection with the 
maximal isotropic subgroups of W x / w .  Thus we find: u(p~,pn)(4k,#)= 
u(pn-21,pn-2l)(2k-l), u(pn,p")(5t)=u(pn-2t,pn-2t)(3) and u(,p",pn)(6k)= 

[] 

It is easy to make a similar computation for v(pm,p n) with m < n. However 
there are considerably more types of maximal isotropic subgroups to distin- 
guish. We omit the corresponding tables and formulas. The following table 
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gives the number v(dl, d2) for small di, d2, which are computed using Proposi- 
tions 4.1, 4.3, 4.4 and the corresponding formulas for m < n. 

I ] (dl, d ~(1, d) ~(d, d) d2) ~(d~, d2) 

2 3 15 (2,4) 51 

3 4 40 (2, 6) 60 

4 7 151 (2,8) 114 

5 6 156 

6 12 600 

7 8 400 

8 15 1335 

9 13 1201 

10 18 2340 

11 12 1464 

12 28 6040 

31 

(2, 10) 90 

(2, 12) 204 

(3, 6) 120 

(3,9) 184 

(3, 12) 280 

(4, 8) 363 

(4, 12) 604 

(5, 10) 468 

16 10191 (6,12) 2040 

5. CURVES IN A M I N I M A L  C O H O M O L O G Y  CLASS 

Let (A, L) be a polarized abelian variety of type (dl, ..., dg). Let cl (L) denote the 
cohomology class of the line bundle L. The class A g- 1 cl (L) E H 2g- 2(A, 7/) is 
divisible by (g - 1)!dl.. .  dg_ 1. The class (g-1)'dv..4 ~ Ag-1 cl (L) is not divisible 
in H2g-2(A, 71) and is called the minimal cohomo-~ogy class (of dimension 1) in 
(A, L) (This follows easily from the fact that for a suitable choice of a real basis 
x l , . . .  ,X2g of the tangent space of A at 0 we have cl(L) = - Y'~igl didxi A dxg+i 
(see [CAV], Lemma 3.6.4)). Denote by Nmin (dl, ..., dg) the number of translation 
classes of curves of genus g in the minimal cohomology class of (A, L). I fL '  is a 
dl-th root of L, then L'  defines a polarization of type (1,~,  ...,~) and the 
minimal cohomology classes in (A, L) and (A, L') coincide. In particular we 
have Nmin(di, ...,dg)= Nmin(1,~, ...,~). Hence we may always assume that 
(A,L) is of type (1, d2, ...,dg). 

In the case of an abelian surface (A, L) of type (1, d) the minimal cohomol- 
ogy class is the polarization cl (L) itself. In this case the number Nmin(1, d) has 
been computed by G6ttsche [G], Debarre [D] and Bryan - Leung [BL]. Theorem 
2.1 and Proposition 4.3 yield 
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Nmin(dl, d2) = O'(d~) 

Note that the results of Section 4 also give the number of translation classes of 
curves of genus 2 in non minimal cohomology classes of abelian surfaces. 

Now let (A,L) be a simple abelian threefold of type (1, d2, d3). Recall from 
Section 4 that u(m, n) denotes the number of maximal isotropic subgroups of 
K(m,n), hence it equals the number of maximal isotropic subgroups of 
K(1, m, n). So Corollary 2.3 yields 

(4) Nmin(1, d2, d3) = u(~ ,  d3) 

and we obtain from Proposition 4.3: 

Proposition 5.1. For any simple abelian threefold (A, L) of type (1, d, d) we have 

N,. i . ( l ,  d, d) = 

Similarly we have 

Proposition 5.2. Let (A,L) be a simple abelian threefold of type (1, 1,d) and 
d r n i = I-[i= 1Pi the prime decomposition. Then 

Nmin(l,l,d) = f i  u(pn',p7 ') 
i = l  

and for any prime number p we have 

- p - 1  v(p2m+ l,p2m+ 1) : (p2 ..~_ l)  (p q_ l)  6mq. ~0- ~" i q- -t- 

+p_ + 1 [p4m_ 1 (p2m-2 _ l) p6m--6 l.] 
p - -1  p2_ l p3 p6_ 

for all m > 2 and 

v(p2m p2m) = (p2 _~_ 1)(p + 1) (p6m-3 +p4m-2P 2m-2 -- 1 +p4m-3 _4m-4 _ 1 
p ~ l ~ + P-P p4 _ 1 

p6m-6 -- 1 [p4m_ 2p~_.-4 -- 1 +p3 _~Z~_ ] + p + l  p6m-12--1] 
p ----~ [~ p 2 _ ~  p6 P--g ~ 1 +1 

for all m > 3. 

For smaller values of m the formulas are similar, but simpler. 

Proof. By identity (4) we have Nmin(1, 1, d) = u(d, d) and by applying Proposi- 
r ?i i ni tion 4.1 we obtain u(d, d) = l"-Ii= 1 u(Pi ,Pi ). Thus we get 

Nmin(1,1, d) = f i  v(pn',pn'). 
i=1 
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T h e  e x p r e s s i o n  for  / , , (p2m-l ,p2m-1)  a n d  v(,p2m,p 2m) is o b t a i n e d  by  a d d i n g  the  

a p p r o p r i a t e  t e r m s  in  P r o p o s i t i o n  4.4. [ ]  

S i m i l a r  f o r m u l a s  c a n  be  g i v en  for  Nmin(1,d2,d3) for  d2 < d3. W e  o m i t  t h e m  

s ince  they  l o o k  m o r e  c o m p l i c a t e d .  Bu t  n o t e  t h a t  the  t ab l e  o n  page  9 gives 

Nmin (1, d2, d3) in  s o m e  cases.  F o r  e x a m p l e  Nmin (1 ,2 ,  4) = 51 etc. 
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