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A b s t r a c t - - W e  describe computations of periodic and meandering spiral patterns in a reaction- 
diffusion model of flames. (~) 2003 Elsevier Science Ltd. All rights reserved. 

1.  I N T R O D U C T I O N  

The formation of patterns and their spatiotemporal dynamics have been a subject of ongoing in- 
terest in many areas, including flames (see, e.g., [1-11]). Thus, there have been experimental ob- 
servations as well as theoretical descriptions of cellular flames, pulsating flames, spinning flames, 
polyhedral flames, flames in the form of "rolls", solid flames, and others, executing a fascinat- 
ing array of complex dynamics, including rotating, modulated rotating, hopping, and ratcheting 
cellular flames. In other experiments, Pearlman and Ronney [12,13] and Pearlman [14] observed 
flames in the form of a spiral propagating down a tube containing a premixed gas consisting of a 
lean mixture of butane (a heavy hydrocarbon) and oxygen highly diluted by helium. The mixture 
was designed to maximize the Lewis number Le (ratio of the thermal diffusivity of the mixture 
to the mass diffusivity of the deficient reaction component butane). The observation was not 
of a steady-state spiral flame. Rather,  the spiral was observed for a finite t ime with subsequent 
transitions from the spiral state and returns to it, indicating the difficulty in controlling the flame 

behavior. 

In an interesting paper, Scott et al. [15] employed a simplified 2D model of the experiment 
which is an extension of a model of Salnikov [16,17]. The model was thermodiffusive in nature, 
with heat loss effects included. Whereas, in the experiments, a fresh supply of fuel to sustain 
the reaction was available ahead of the propagating front, in the 2D model there is no third 
dimension and no propagation. Thus, to sustain the reaction in the model, a constant source of 
fuel was introduced. The authors of [15] focused their s tudy on parameters such that  the system 
exhibited a separation of time scales as in an excitable medium, which is known to possess spiral 
solutions. They  then computed spiral solutions for these parameters. Moreover, they proposed 
that  the spirals appear due to excitability. In support  of their proposal, they noted that  spirals 
appear not only for Le > 1 but for Le _< I as well. However, the parameters considered are not 

typical of combustion. 
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We consider the same system, focusing on parameters which are representative of combustion. 
The problem considered does not describe an excitable system. We nevertheless show that spiral 
structures exist and study their evolution as functions of the parameters. We describe both 
periodic and meandering spirals. We note that the spirals we determine are stable steady-state 
solutions of the model under consideration. The fact that spirals are shown to exist for parameters 
for which the system is not excitable demonstrates that excitability is not a necessary condition 
for their existence. 

2. T H E  M A T H E M A T I C A L  M O D E L  

We consider the model of a flame employed in [15] for the temperature T and deficient reaction 
component mass fraction 1~ in 2D, 

+ c) ?exp _ _ , 

(1) 
-  ?exp + i .  

Here, /5, 5, ~ denote the density, specific heat, and thermal conductivity of the gas mixture, re- 
spectively, b denotes the mass diffusivity of f ' ,  ~), k,/~ denote the heat release, preexponential 
factor and activation energy of the chemical reaction, respectively, R is the gas constant, /-) 
is a heat loss coefficient, 2r0 is the unburned temperature, and the constant /~/ corresponds to 
the continuous supply of fuel, without which a flame could not be self-sustained. The model is 
considered in the domain 0 < x, y < L, with no-flux boundary conditions. 

In this model, there is no uniformly propagating planar flame solution, as exists in the ex- 
perimental configuration under consideration. Recall that it is in the study of stability of an 
unconfined, adiabatic, uniformly propagating planar flame that Le = 1 serves to separate the 
monotonic instability (Le < 1) and the oscillatory instability (Le > 1). Thus, Le = 1 does not 
have the same significance in the present problem as it does in the propagating flame problem. 

3. T H E  H O M O G E N E O U S  S O L U T I O N  A N D  I T S  S T A B I L I T Y  

The model admits a homogeneous stationary solution TH ---- T0 ÷ (~21~///4, ])H ---- M exp(N)//¢, 
(N = -E/R:FH), which will serve as the basic state. We nondimensionalize by introducing ~ = 
(T - T0)/(TH - :F0), Y = Y/I?H- The temporal and spatial variables are nondimensionalized by 

exp(N)//¢ and ~/~exp(N)/(lcf35), respectively, so that (1) becomes 

( ( N ( 1 - ~ _ ) ) ( O _ - - i ) ~ )  
9 t = V 2 8 ÷ h  Y e x p \  a ÷ ( 1 - a ) O  ] - O  , 

( 2 )  

Y t = ~ - - - e V U Y - Y e x p \  a + ( i - a ) 9  ) + 1 ,  

in the domain 0 < x, y < L subject to no-flux boundary conditions. Here, Le = k/(DfiS) is the 
Lewis number, h --/~r exp(N)/(k~5~), a -- T0/TH. The basic state is given by $ -- Y -- 1. 

We next consider the stability of this state. We consider perturbations of the form cos[lr(klx + 
k2y)/L]. The dispersion relation for the growth rate w of the perturbations is 

h 1) + + 1 - h ( Z - 1 ) + k  2 l + ~ e  e w +  = 0 ,  (3) h + k 2  1 - ~ e ( Z -  ~ee 

where k 2 = r2(k~ ÷ k2)/L 2 and Z = N(1 - a) is the Zeldovich number. 
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Figure 1. Neutral stability boundary. Figure 2. Space time plot of the 
spiral wave (mass fraction). 

Monotonic  (Rew = Im w = 0- - so l id  curve) and osci l latory (Rew = 0 , Im  w # 0---dashed 

curve) s tab i l i ty  boundar ies  are shown as Z vs. k in Figure 1 for Le = 4 and h = 1. We see 

tha t  the  dominan t  ins tabi l i ty  is the osci l latory ins tabi l i ty  since its curve lies below the monotonic 

ins tabi l i ty  curve. We note t ha t  the  plot exhibi ted  for Le = 4 is typical  for Le > Lee = (v/1 + h - -  

v ~ )  2. Below, Lee the  dominant  ins tabi l i ty  becomes the monotonic instabili ty.  Thus, here it is 

Le = Lee, ra ther  than  Le = 1, which separates  the  two instabili t ies.  Note t ha t  Lee decreases 

monotonical ly  wi th  h, from Lee = 1 at  h = 0. In par t icular ,  for h = 3487 as in [15], Lee = 0.00014. 

The  min imum of the  osci l latory neutral  ins tabi l i ty  curve corresponds to k = 0 and is given by 

h(Z - 1) = 1. Increasing Z or h is destabilizing. In addit ion,  decreasing Le enhances the  
monotonic  instabil i ty,  whereas increasing Le enhances the  osci l latory ins tabi l i ty  only if h > he. 

We note tha t  h >> 1 corresponds to the regime considered in [15]. 

4 ,  S P I R A L  F L A M E S  

In this  section, we present  the  results of numerical  computa t ions  of flames in the  form of spiral  

waves. In  [15], a spiral  solution of (1) was computed  (using a different nondimensional izat ion)  

for Z ~- 0.9, a value significantly below those typical  for combustion.  In our computat ions ,  we 

fixed N = 4.5 and a = 0.2 so tha t  Z = 3.6, which is more representat ive  of typical  values for 

combustion.  Indeed,  this value is close to  the  s tabi l i ty  boundary  for an unconfined uniformly 

propaga t ing  p lanar  flame when Le = 4 [5]. The  system length was fixed at  69.86. The  parame-  

ters Le, h were varied in the ranges Le 6 [1, 5.5] and h C [0.3, 30]. In [15], the  parameters  Le, h 

were taken as Le = 1 and h = 3487. We note tha t  in the  exper iments  where spiral  flames were 

observed, the  Lewis number  was es t imated  to be in the  range Le 6 [3.88, 4.315] [14]. 

We employ an explici t  finite difference scheme which is first order in t ime and second order in 

space. For all computa t ions ,  we used A t  = 0.00024 and A x  = Ay = 0.14, which were sufficient 

to resolve the  spiral  solutions. We solve the  initial  boundary  value problem, marching forward 

in t ime until  a s t eady  s ta te  is achieved. Thus, the  solutions we compute  are necessarily stable. 

Figure  2 shows a space- t ime plot of a cross-section (y = L/2) of the  mass fraction for a spiral  

(Le = 4, h = 3) which rota tes  outward from the spiral  center. The  space- t ime plot for the 

t empera tu re  is similar.  The  motion,  including tha t  of the spiral  t ip  is periodic in t ime. The 

spiral  was created from initial  condit ions corresponding to the  homogeneous solution in the  lower 

half of the  domain  and a one-dimensional  pulse, localized in x at  x = L/2, in the  upper  half of 

the  domain.  The  pulse begins to move and evolves to the  spiral. 

Spirals corresponding to increasing values of h are shown in Figure 3. As h increases, the  mot ion 

of the  spiral  t ip  becomes more complex and simple periodic spirals evolve to meander ing spirals,  
as is typical  in o ther  systems (see, e.g., [18,19]). The  spiral  t ip  is defined by the intersection of the  

contour lines 8 = 2.0, Y = 0.2. We note t ha t  the  curves describing the mot ion of the  meander ing 
spiral  t ips  in Figure  3 are not  general ly closed. We also see t ha t  as h increases, the  number of 
spiral  arms in a given region of space increases. As a result,  more resolution is required, so we 
restr ict  our computa t ions  to h _< 30, though h may  become quite large before ext inct ion occurs. 
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Figure 3. Temperature contours of spirals 
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Figure 4. Period (P) of tip motion. 
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Figure 5. Phase portrait. 
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Figure 6. Fourier transform of the tip motion. 

Decreasing h leads to an increase in the  spiral  per iod (see Figure  4). When  h becomes suffi- 
ciently small,  the  spiral  d isappears  as its per iod becomes infinite. 

The  results of our computa t ions  are summarized in Figure  5. Here, circles correspond to simple 
periodic spirals and s tars  to  meander ing spirals. The  solid line h = he ~ 0.385 corresponds to 
the analyt ica l ly  predic ted s tabi l i ty  boundary  h = (Z  - 1) -1 of the  homogeneous solution for 
Z = 3.6, which is s table for h < he. The  boundary  between periodic and meander ing  spirals 
depends on h and on Le as seen in Figure 5. The  period(s)  of the  spiral  t ip  mot ion  are shown in 
Figure  4 for Le -- 4. We see tha t  the  t ransi t ion from periodic to meander ing spirals corresponds 

to the  in t roduct ion of a second (larger) period. Indeed, a Fourier  analysis  of the  meander ing 
spiral  t ip  motion reveals t ha t  there  are two dominant  frequencies, as seen in Figure  6. The  
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level of a n y  a d d i t i o n a l  f r equenc ies  is so low t h a t  t h e y  a re  b a r e l y  seen  in t h e  f igures.  T h u s ,  t h e  

m o t i o n  is e s sen t i a l l y  t h e  s u m  of  t h e  two  s inuso ida l  m o t i o n s  w h o s e  p e r i o d s  a re  s h o w n  in F i g u r e  4. 

H a r m o n i c s  a n d  c o m b i n a t i o n  f r equenc ies  were  f o u n d  to  b e  less t h a n  7% of  t h e  sma l l e r  of  t h e  two 

p r i m a r y  s p e c t r a l  c o m p o n e n t s .  F i g u r e  6 i l l u s t r a t e s  t h e  g r o w t h  of  t h e  m e a n d e r  f r e q u e n c y  ( t h e  

lower f r e q u e n c y )  as h increases .  
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