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Abstract

The complex Busemann–Petty problem asks whether origin symmetric convex bodies in C
n with smaller

central hyperplane sections necessarily have smaller volume. We prove that the answer is affirmative if n � 3
and negative if n � 4.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The Busemann–Petty problem, posed in 1956 (see [5]), asks the following question. Suppose
that K and L are origin symmetric convex bodies in R

n such that

Voln−1(K ∩ H) � Voln−1(L ∩ H)

for every hyperplane H in R
n containing the origin. Does it follow that

Voln(K) � Voln(L)?
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The answer is affirmative if n � 4 and negative if n � 5. The solution was completed at the end
of the 90s as the result of a sequence of papers [14,13,29,1,12,3,31,33,8,9,39,17,18,40,10]; see
[26, p. 3] for the history of the solution.

In this article we consider the complex version of the problem. For ξ ∈ C
n, |ξ | = 1, denote by

Hξ =
{

z ∈ C
n: (z, ξ) =

n∑
k=1

zkξk = 0

}

the complex hyperplane through the origin perpendicular to ξ .
Origin symmetric convex bodies in C

n are the unit balls of norms on C
n. We denote by ‖ · ‖K

the norm corresponding to the body K :

K = {
z ∈ C

n: ‖z‖K � 1
}
.

In order to define volume, we identify C
n with R

2n using the mapping

ξ = (ξ1, . . . , ξn) = (ξ11 + iξ12, . . . , ξn1 + iξn2) �→ (ξ11, ξ12, . . . , ξn1, ξn2).

Under this mapping the hyperplane Hξ turns into a (2n − 2)-dimensional subspace of R
2n or-

thogonal to the vectors

ξ = (ξ11, ξ12, . . . , ξn1, ξn2) and ξ⊥ = (−ξ12, ξ11, . . . ,−ξn2, ξn1).

Since norms on C
n satisfy the equality

‖λz‖ = |λ|‖z‖, ∀z ∈ C
n, ∀λ ∈ C,

origin symmetric complex convex bodies correspond to those origin symmetric convex bodies K

in R
2n that are invariant with respect to any coordinate-wise two-dimensional rotation, namely

for each θ ∈ [0,2π] and each ξ = (ξ11, ξ12, . . . , ξn1, ξn2) ∈ R
2n

‖ξ‖K = ∥∥Rθ(ξ11, ξ12), . . . ,Rθ (ξn1, ξn2)
∥∥

K
, (1)

where Rθ stands for the counterclockwise rotation of R2 by the angle θ with respect to the origin.
We shall simply say that K is invariant with respect to all Rθ if it satisfies Eq. (1).

Now the complex Busemann–Petty problem can be formulated as follows: suppose K and L

are origin symmetric invariant with respect to all Rθ convex bodies in R
2n such that

Vol2n−2(K ∩ Hξ) � Vol2n−2(L ∩ Hξ)

for each ξ from the unit sphere S2n−1 of R
2n. Does it follow that

Vol2n(K) � Vol2n(L)?

This formulation is reminiscent of the lower-dimensional Busemann–Petty problem, where
one tries to deduce the inequality for 2n-dimensional volumes of arbitrary origin-symmetric
convex bodies from the inequalities for volumes of all (2n − 2)-dimensional sections. In the
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case where n = 2 this amounts to considering two-dimensional sections of four-dimensional
bodies, where the answer to the lower-dimensional problem is affirmative by the solution to
the original Busemann–Petty problem—we first get inequalities for the volumes of all three-
dimensional sections and then the inequality for the four-dimensional volumes. However, if n = 3
we get four-dimensional sections of six-dimensional bodies, where the answer to the lower-
dimensional problem is negative by a result of Bourgain and Zhang [4]. Our problem is different
from the lower-dimensional Busemann–Petty problem in two aspects. First, we do not have all
(2n − 2)-dimensional sections, only sections by subspaces coming from complex hyperplanes,
which makes the situation worse than for the lower-dimensional problem. Secondly, we consider
only those convex bodies in R

2n that are invariant with respect to all Rθ , and we may be able to
convert this invariance into affirmative answers for some higher dimensions.

The latter appears to be the case, as we prove below that the answer to the complex Busemann–
Petty problem is affirmative if n � 3 and negative if n � 4.

In 1988 Lutwak [31] introduced the class of intersection bodies and found a connection be-
tween this class and the “real” Busemann–Petty problem, which played an important role in the
solution of the problem. It appears that the complex Busemann–Petty problem is closely related
to the class of 2-intersection bodies introduced in [21,24], namely the answer to the problem is
affirmative if and only if every origin symmetric invariant with respect to all Rθ convex body in
R

2n is a 2-intersection body. We shall prove this connection in Theorem 2. After that we prove
that every origin symmetric invariant with respect to all Rθ convex body in R

2n is a (2n − 4)-
intersection body, but not every such body is a (2n − 6)-intersection body. Putting n = 3 and
then n = 4, one can see how these results imply the solution of the complex Busemann–Petty
problem. Our proofs use several results from the recently developed Fourier analytic approach
to sections of convex bodies; see [26]. In Section 2, we collect necessary definitions and results
related to this approach.

For other results related to the Busemann–Petty problem see [4,2,21,25,28,32,34,35,37,38,
41,42].

2. Elements of the Fourier approach to sections

Our main tool is the Fourier transform of distributions. As usual, we denote by S(Rn) the
Schwartz space of rapidly decreasing infinitely differentiable functions (test functions) in R

n,
and S ′(Rn) is the space of distributions over S(Rn). The Fourier transform f̂ of a distribution
f ∈ S ′(Rn) is defined by 〈f̂ , φ〉 = 〈f, φ̂〉 for every test function φ. A distribution is called even
homogeneous of degree p ∈ R if 〈f (x),φ(x/α)〉 = |α|n+p〈f,φ〉 for every test function φ and
every α ∈ R, α 
= 0. The Fourier transform of an even homogeneous distribution of degree p is an
even homogeneous distribution of degree −n − p. A distribution f is called positive definite if,
for every test function φ, 〈f,φ ∗φ(−x)〉 � 0. This is equivalent to f̂ being a positive distribution
in the sense that 〈f̂ , φ〉 � 0 for every non-negative test function φ.

A compact set K in R
n is called a star body if every straight line through the origin crosses

the boundary at exactly two points different from the origin, and the boundary of K is continuous
in the sense that the Minkowski functional of K defined by

‖x‖K = min{a � 0: x ∈ aK}
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is a continuous function on R
n. If in addition K is origin symmetric and convex, then the

Minkowski functional is a norm on Rn. If ξ ∈ Sn−1, then ρK(ξ) = ‖ξ‖−1
K is the radius of K

in the direction ξ .
A simple calculation in polar coordinates gives the following polar formula for the volume:

nVoln(K) = n

∫
Rn

χ
(‖x‖K

)
dx =

∫
Sn−1

‖ξ‖−n
K dξ,

where χ is the indicator function of the interval [0,1].
We say that a star body K in R

n is k-smooth (infinitely smooth) if the restriction of ‖x‖K

to the sphere Sn−1 belongs to the class Ck(Sn−1) (C∞(Sn−1)) of k times continuously differen-
tiable (infinitely differentiable) functions on the sphere. It is well known that one can approximate
any convex body in R

n in the radial metric

d(K,L) = sup
ξ∈Sn−1

∣∣ρK(ξ) − ρL(ξ)
∣∣

by a sequence of infinitely smooth convex bodies. This can be proved by a simple convolution
argument (see for example [36, Theorem 3.3.1]). It is also easy to see that any convex body in
R2n invariant with respect to all Rθ can be approximated in the radial metric by a sequence of
infinitely smooth convex bodies invariant with respect to all Rθ . This follows from the same
convolution argument, because invariance with respect to Rθ is preserved under convolutions.

As proved in [26, Lemma 3.16], if K is an infinitely smooth origin symmetric star body in R
n

and 0 < p < n then the Fourier transform of the distribution ‖x‖−p
K is a homogeneous function

of degree −n + p on R
n, whose restriction to the sphere is infinitely smooth. We use a version

of Parseval’s formula on the sphere established in [21] (see also [26, Lemma 3.22]):

Proposition 1. Let K and L be infinitely smooth origin symmetric star bodies in R
n and

0 < p < n. Then

∫
Sn−1

(‖x‖−p
K

)∧
(ξ)

(‖x‖−n+p
L

)∧
(ξ) dξ = (2π)n

∫
Sn−1

‖x‖−p
K ‖x‖−n+p

L dx.

The classes of k-intersection bodies were introduced in [21,24] as follows. Let 1 � k < n, and
let D and L be origin symmetric star bodies in R

n. We say that D is a k-intersection body of L

if for every (n − k)-dimensional subspace H of R
n

Volk
(
D ∩ H⊥) = Voln−k(L ∩ H).

More generally, we say that an origin symmetric star body D in R
n is a k-intersection body if

there exists a finite Borel measure μ on Sn−1 so that for every even test function φ ∈ S(Rn),

∫
n

‖x‖−k
D φ(x)dx =

∫
n−1

( ∞∫
tk−1φ̂(tξ) dt

)
dμ(ξ).
R S 0
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Note that k-intersection bodies of star bodies are those k-intersection bodies for which the mea-
sure μ has a continuous strictly positive density; see [24] or [26, p. 77]. When k = 1 we get the
class of intersection bodies introduced by Lutwak in [31].

A more general concept of embedding in L−p was introduced in [23]. Let D be an origin
symmetric star body in R

n, and X = (Rn,‖ · ‖D). For 0 < p < n, we say that X embeds in L−p

if there exists a finite Borel measure μ on Sn−1 so that, for every even test function φ

∫
Rn

‖x‖−p
D φ(x)dx =

∫
Sn−1

(∫
R

|z|p−1φ̂(zθ) dz

)
dμ(θ).

Obviously, an origin symmetric star body D in R
n is a k-intersection body if and only if the

space (Rn,‖ · ‖D) embeds in L−k . In this article we use embeddings in L−p only to state some
results in continuous form; for more applications of this concept, see [26, Chapter 6].

Embeddings in L−p and k-intersection bodies admit a Fourier analytic characterization that
we are going to use throughout this article:

Proposition 2. (See [24], [26, Theorem 6.16].) Let D be an origin symmetric star body in R
n,

0 < p < n. The space (Rn,‖ · ‖D) embeds in L−p if and only if the function ‖x‖−p
D represents a

positive definite distribution on R
n. In particular, D is a k-intersection body if and only if ‖x‖−k

D

is a positive definite distribution on R
n.

It was proved in [22] (see also [26, Corollary 4.9]) that every n-dimensional normed space
embeds in L−p for each p ∈ [n − 3, n). In particular, every origin symmetric convex body in R

n

is a k-intersection body for k = n−3, n−2, n−1. On the other hand, the spaces 
n
q , q > 2 do not

embed in L−p if 0 < p < n−3, hence, the unit balls of these spaces are not k-intersection bodies
if k < n−3; see [19], [26, Theorem 4.13]. We are going to use a generalization of the latter result,
the so-called second derivative test for k-intersection bodies and embeddings in L−p , which was
first proved for intersection bodies in [20] and then generalized in [26, Theorems 4.19, 4.21].
Recall that for normed spaces X and Y and q ∈ R, q � 1, the q-sum (X ⊕ Y)q of X and Y is
defined as the space of pairs {(x, y): x ∈ X, y ∈ Y } with the norm

∥∥(x, y)
∥∥ = (‖x‖q

X + ‖y‖q
Y

)1/q
.

Proposition 3. Let n � 3, k ∈ N ∪ {0}, q > 2 and let Y be a finite-dimensional normed space
of dimension greater or equal to n. Then the q-sum of R and Y does not embed in L−p with
0 < p < n − 2. In particular, this direct sum is not a k-intersection body for any 1 � k < n − 2.

Let 1 � k < n and let H be an (n − k)-dimensional subspace of R
n. Fix any orthonormal

basis e1, . . . , ek in the orthogonal subspace H⊥. For a convex body D in R
n, define the (n − k)-

dimensional parallel section function AD,H as a function on R
k such that

AD,H (u) = Voln−k

(
D ∩ {H + u1e1 + · · · + ukek}

)
=

∫
n

χ
(‖x‖D

)
dx, u ∈ R

k. (2)
{x∈R : (x,e1)=u1,...,(x,ek)=uk}
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Let | · |2 be the Euclidean norm on R
k . For every q ∈ C, the value of the distribution

|u|−q−k

2 /�(−q/2) on a test function φ ∈ S(Rk) can be defined in the usual way (see [11, p. 71])
and represents an entire function of q ∈ C. If D is infinitely smooth, the function AD,H is infi-
nitely differentiable at the origin (see [26, Lemma 2.4]), and the same regularization procedure
can be applied to define the action of these distributions on the function AD,H . The function

q �→
〈 |u|−q−k

2

�(−q/2)
,AD,H (u)

〉
(3)

is an entire function of q ∈ C. In particular, if q < 0

〈 |u|−q−k

2

�(−q/2)
,AD,H (u)

〉
= 1

�(−q/2)

∫
Rk

|u|−q−k

2 AD,H (u)du.

If q = 2m, m ∈ N ∪ {0}, then

〈 |u|−q−k

2

�(−q/2)

∣∣∣∣
q=2m

,AD,H (u)

〉
= (−1)m|Sk−1|

2m+1k(k + 2) . . . (k + 2m − 2)
�mAD,H (0), (4)

where |Sk−1| = 2πk/2/�(k/2) is the surface area of the unit sphere Sk−1 in R
k , and � =∑k

i=1 ∂2/∂u2
i is the k-dimensional Laplace operator (for details, see [11, pp. 71–74]). Since

the body D is origin symmetric, the function AD,H is even, and for 0 < q < 2 we have (see also
[26, p. 39])

〈 |u|−q−k

2

�(−q/2)
,AD,H (u)

〉
= 1

�(−q/2)

∫
Sn−1

( ∞∫
0

AD,H (tθ) − AD,H (0)

t1+q
dt

)
dθ. (5)

Note that the function (3) is equal (up to a constant) to the fractional power of the Laplacian
�q/2AD,H .

The following proposition was proved in [24, Theorem 2]. We reproduce the proof here,
because we formulate the first part of the proposition in a slightly different form. We use a
well-known formula (see for example [11, p. 76]): for any v ∈ R

k and q < −k + 1,

(
v2

1 + · · · + v2
k

)(−q−k)/2 = �(−q/2)

2�((−q − k + 1)/2)π(k−1)/2

∫
Sk−1

∣∣(v,u)
∣∣−q−k

du. (6)

Proposition 4. Let D be an infinitely smooth origin symmetric convex body in R
n and 1 � k < n.

Then for every (n − k)-dimensional subspace H of R
n and any q ∈ R, −k < q < n − k,

〈 |u|−q−k

2

�(−q/2)
,AD,H (u)

〉
= 2−q−kπ−k/2

�((q + k)/2)(n − q − k)

∫
n−1 ⊥

(‖x‖−n+q+k
D

)∧
(θ) dθ. (7)
S ∩H
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Also for every m ∈ N ∪ {0}, m < (n − k)/2,

�mAD,H (0) = (−1)m

(2π)k(n − 2m − k)

∫
Sn−1∩H⊥

(‖x‖−n+2m+k
D

)∧
(η) dη, (8)

where, as before, � is the Laplacian on R
k .

Proof. First let q ∈ (−k,−k + 1). Then,

〈 |u|−q−k

2

�(−q/2)
,AD,H (u)

〉
= 1

�(−q/2)

∫
Rk

|u|−q−k

2 AD,H (u)du.

Using the expression (2) for the function AD,H , writing the integral in polar coordinates and then
using (6), we see that the right-hand side of the latter equation is equal to

1

�(
−q
2 )

∫
Rn

(
(x, e1)

2 + · · · + (x, ek)
2)(−q−k)/2

χ
(‖x‖D

)
dx

= 1

�(
−q
2 )(n − q − k)

∫
Sn−1

(
(θ, e1)

2 + · · · + (θ, ek)
2)(−q−k)/2‖θ‖−n+q+k

D dθ

= 1

2�(
−q−k+1

2 )π
k−1

2 (n − q − k)

∫
Sn−1

‖θ‖−n+q+k
D

( ∫
Sk−1

∣∣∣∣∣
(

k∑
i=1

uiei, θ

)∣∣∣∣∣
−q−k

du

)
dθ

= 1

2�(
−q−k+1

2 )π
k−1

2 (n − q − k)

∫
Sk−1

( ∫
Sn−1

‖θ‖−n+q+k
D

∣∣∣∣∣
(

k∑
i=1

uiei, θ

)∣∣∣∣∣
−q−k

dθ

)
du. (9)

Let us show that the function under the integral over Sk−1 is the Fourier transform of
‖x‖−n+q+k

D at the point
∑

uiei . For any even test function φ ∈ S(Rn), using the well-known
connection between the Fourier and Radon transforms (see [26, p. 27]) and the expression for
the Fourier transform of the distribution |z|q+k−1 (see [26, p. 38]), we get

〈(‖x‖−n+q+k
D

)∧
, φ

〉 = 〈‖x‖−n+q+k
D , φ̂

〉 = ∫
Rn

‖x‖−n+q+k
D φ̂(x) dx

=
∫

Sn−1

‖θ‖−n+q+k
D

( ∞∫
0

zq+k−1φ̂(zθ) dz

)
dθ

= 1

2

∫
n−1

‖θ‖−n+q+k
D

〈|z|q+k−1, φ̂(zθ)
〉
dθ
S
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= 2q+k
√

π �((q + k)/2)

2�((−q − k + 1)/2)

∫
Sn−1

‖θ‖−n+q+k
D

〈
|t |−q−k,

∫
(y,θ)=t

φ(y) dy

〉
dθ

= 2q+k
√

π�((q + k)/2)

2�((−q − k + 1)/2)

∫
Rn

( ∫
Sn−1

∣∣(θ, y)
∣∣−q−k‖θ‖−n+q+k

D dθ

)
φ(y)dy.

Since φ is an arbitrary test function, this proves that, for every y ∈ R
n \ {0},

(‖x‖−n+q+k
D

)∧
(y) = 2q+k

√
π�((q + k)/2)

2�((−q − k + 1)/2)

∫
Sn−1

∣∣(θ, y)
∣∣−q−k‖θ‖−n+q+k

D dθ.

Together with (9), the latter equality shows that

〈 |u|−q−k

2

�(−q/2)
,AD,H (u)

〉

= 2−q−kπ−k/2

�((q + k)/2)(n − q − k)

∫
Sn−1∩H⊥

(‖x‖−n+q+k
D

)∧
(θ) dθ, (10)

because in our notation Sk−1 = Sn−1 ∩ H⊥.
We have proved (10) under the assumption that q ∈ (−k,−k + 1). However, both sides of

(10) are analytic functions of q ∈ C in the domain where −k < Re(q) < n − k. This implies that
the equality (10) holds for every q from this domain (see [26, p. 61] for the details of a similar
argument).

Putting q = 2m, m ∈ N ∪ {0}, m < (n − k)/2 in (10) and applying (4) and the fact that
�(x + 1) = x�(x), we get the second formula. �

The Brunn–Minkowski theorem (see for example [26, Theorem 2.3]) states that the central
hyperplane section of an origin symmetric convex body has maximal (n−1)-dimensional volume
among all hyperplane sections perpendicular to a given direction. This implies the following

Lemma 1. If D is a 2-smooth origin symmetric convex body in R
n, then the function AD,H is

twice differentiable at the origin and

�AD,H (0) � 0.

Besides that for any q ∈ (0,2),

〈 |u|−q−k

2

�(−q/2)
,AD,H (u)

〉
� 0.

Proof. Differentiability follows from [26, Lemma 2.4]. Applying the Brunn–Minkowski the-
orem to the bodies D ∩ (H + tθ), θ ∈ Sn−1 ∩ H⊥, we see that the function t �→ AD,H (tθ)

has maximum at zero. Therefore, the interior integral in (5) is negative, but �(−q/2) < 0 for
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q ∈ (0,2), which implies the second statement. The first inequality also follows from the fact
that each of the functions t �→ AD,H (tej ), j = 1, . . . , k, has maximum at the origin. �

We often use Lemma 4.10 from [26] for the purpose of approximation by infinitely smooth
bodies. For convenience, let us formulate this lemma:

Lemma 2. (See [26, Lemma 4.10].) Let 1 � k < n. Suppose that D is an origin symmetric convex
body in R

n that is not a k-intersection body. Then there exists a sequence Dm of origin symmetric
convex bodies so that Dm converges to D in the radial metric, each Dm is infinitely smooth, has
strictly positive curvature and each Dm is not a k-intersection body.

If in addition D is invariant with respect to Rθ , one can choose Dm with the same property.

3. Connection with intersection bodies

We now return to the complex case. The following simple observation is crucial for applica-
tions of the Fourier methods to convex bodies in the complex case:

Lemma 3. Suppose that K is an origin symmetric infinitely smooth invariant with respect to all
Rθ star body in R

2n. Then for every 0 < p < 2n and ξ ∈ S2n−1 the Fourier transform of the
distribution ‖x‖−p

K is a constant function on S2n−1 ∩ H⊥
ξ .

Proof. By [26, Lemma 3.16], the Fourier transform of ‖x‖−p
K is a continuous function outside

of the origin in R
2n. The function ‖x‖K is invariant with respect to all Rθ , so by the connection

between the Fourier transform of distributions and linear transformations, the Fourier transform
of ‖x‖−p

K is also invariant with respect to all Rθ . Recall that the two-dimensional space H⊥
ξ is

spanned by vectors ξ and ξ⊥ (see the Introduction). Every vector in S2n−1 ∩ H⊥
ξ is the image of

ξ under one of the coordinate-wise rotations Rθ , so the Fourier transform of ‖x‖−p
K is a constant

function on S2n−1 ∩ H⊥
ξ . �

Of course, this argument also applies to the Fourier transform of any distribution of the form
h(‖x‖K).

Similarly to the real case (see [17], [26, Theorem 3.8]), one can express the volume of hyper-
plane sections in terms of the Fourier transform.

Theorem 1. Let K be an infinitely smooth origin symmetric invariant with respect to Rθ convex
body in R

2n, n � 2. For every ξ ∈ S2n−1, we have

Vol2n−2(K ∩ Hξ) = 1

4π(n − 1)

(‖x‖−2n+2
K

)∧
(ξ).

Proof. Let us fix ξ ∈ S2n−1. We apply formula (8) with 2n in place of n, H = Hξ , k = 2, m = 0.
We get

Vol2n−2(K ∩ Hξ) = AK,Hξ (0) = 1

8π2(n − 1)

∫
S2n−1∩H⊥

(‖x‖−2n+2
K

)∧
(η) dη.
ξ
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By Lemma 3, the function under the integral in the right-hand side is constant on the circle
S2n−1 ∩ H⊥

ξ . Since ξ ∈ H⊥
ξ , the integral is equal to 2π(‖x‖−2n+2

K )∧(ξ). �
The connection between the complex Busemann–Petty problem and intersection bodies is as

follows:

Theorem 2. The answer to the complex Busemann–Petty problem in C
n is affirmative if and only

if every origin symmetric invariant with respect to all Rθ convex body in R
2n is a 2-intersection

body.

This theorem will follow from the next two lemmas. Note that, since we can approximate the
body K in the radial metric from inside by infinitely smooth convex bodies invariant with respect
to all Rθ , and also approximate L from outside in the same way, we can argue that if the answer
to the complex Busemann–Petty problem is affirmative for infinitely smooth bodies K and L

then it is affirmative in general.

Lemma 4. Let K and L be infinitely smooth origin symmetric invariant with respect to Rθ convex
bodies in R

2n so that K is a 2-intersection body and, for every ξ ∈ S2n−1,

Vol2n−2(K ∩ Hξ) � Vol2n−2(L ∩ Hξ).

Then

Vol2n(K) � Vol2n(L).

Proof. By [26, Lemma 3.16], the Fourier transforms of the distributions ‖x‖−2n+2
K , ‖x‖−2n+2

L

and ‖x‖−2
K are continuous functions outside of the origin in R

2n. By Theorem 1 and Proposi-
tion 2, the conditions of the lemma imply that for every ξ ∈ S2n−1,

(‖x‖−2n+2
K

)∧
(ξ) �

(‖x‖−2n+2
L

)∧
(ξ)

and

(‖x‖−2
K

)∧
(ξ) � 0.

Therefore,

∫
S2n−1

(‖x‖−2n+2
K

)∧
(ξ)

(‖x‖−2
K

)∧
(ξ) dξ �

∫
S2n−1

(‖x‖−2n+2
L

)∧
(ξ)

(‖x‖−2
K

)∧
(ξ) dξ.

Now we apply Parseval’s formula on the sphere, Proposition 1, to remove the Fourier transforms
in the latter inequality and then use the polar formula for the volume and Hölder’s inequality:

2nVol2n(K) =
∫

2n−1

‖x‖−2n
K dx �

∫
2n−1

‖x‖−2n+2
L ‖x‖−2

K dx
S S
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�
( ∫

S2n−1

‖x‖−2n
L dx

) n−1
n

( ∫
S2n−1

‖x‖−2n
K dx

) 1
n

= (
2nVol2n(L)

) n−1
n

(
2nVol2n(K)

) 1
n ,

which gives the result. �
Lemma 5. Suppose that there exists an origin symmetric convex body L in R

2n which is invariant
with respect to all Rθ and which is not a 2-intersection body. Then one can perturb L twice to
construct other origin symmetric convex bodies L′ and K in R

2n which are invariant with respect
to all Rθ and are such such that for every ξ ∈ S2n−1,

Vol2n−2(K ∩ Hξ) � Vol2n−2(L
′ ∩ Hξ),

but

Vol2n(K) > Vol2n(L
′).

Proof. We can assume that the body L is infinitely smooth and has strictly positive curvature. In
fact, approximating L in the radial metric by infinitely smooth convex bodies which are invariant
with respect to all Rθ and have strictly positive curvature, we get by Lemma 2 that the approx-
imating bodies cannot all be 2-intersection bodies. So there exists an infinitely smooth convex
body L′ invariant with respect to all Rθ , has strictly positive curvature and is not a 2-intersection
body. In the following we write L instead of L′.

Now as L is infinitely smooth, by [26, Lemma 3.16], the Fourier transform of ‖x‖−2
L is a

continuous function outside of the origin in R
2n. The body L is not a 2-intersection body, so by

Proposition 2, the Fourier transform (‖x‖−2
L )∧ is negative on some open subset Ω of the sphere

S2n−1.
Since L is invariant with respect to rotations Rθ , we can assume that the set Ω is also invari-

ant with respect to rotations Rθ . This allows us to choose an even non-negative invariant with
respect to rotations Rθ function f ∈ C∞(S2n−1) which is supported in Ω . Extend f to an even
homogeneous function f (x/|x|2)|x|−2

2 of degree −2 on R
2n. By [26, Lemma 3.16], the Fourier

transform of this extension is an even homogeneous function of degree −2n + 2 on R2n, whose
restriction to the sphere is infinitely smooth:

(
f

(
x/|x|2

)|x|−2
2

)∧
(y) = g

(
y/|y|2

)|y|−2n+2
2 ,

where g ∈ C∞(S2n−1). By the connection between the Fourier transform and linear transforma-
tions, the function g is also invariant with respect to rotations Rθ .

Define a body K in R
2n by

‖x‖−2n+2
K = ‖x‖−2n+2

L − εg
(
x/|x|2

)|x|−2n+2
2 . (11)

For small enough ε > 0 the body K is convex. This essentially follows from a simple two-
dimensional argument: if h is a strictly concave function on an interval [a, b] and u is a twice
differentiable function on [a, b], then for small ε the function h + εu is also concave. Note that
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here we use the condition that L has strictly positive curvature. Besides that, the body K is
invariant with respect to rotations Rθ because so are the body L and the function g. We can now
choose ε so that K is an origin symmetric invariant with respect to all Rθ convex body in R

2n.
Let us prove that the bodies K and L provide the necessary counterexample. We apply the

Fourier transform to both sides of (11). By definition of the function g and since f is non-
negative, we get that for every ξ ∈ S2n−1

(‖x‖−2n+2
K

)∧
(ξ) = (‖x‖−2n+2

L

)∧
(ξ) − (2π)2nεf (ξ) �

(‖x‖−2n+2
L

)∧
(ξ).

By Theorem 1, this means that for every ξ ∈ S2n−1

Vol2n−2(K ∩ Hξ) � Vol2n−2(L ∩ Hξ).

On the other hand, the function f is positive only where (‖x‖−2
L )∧ is negative, so

∫
S2n−1

(‖x‖−2n+2
K

)∧
(ξ)

(‖x‖−2
L

)∧
(ξ) dξ

=
∫

S2n−1

(‖x‖−2n+2
L

)∧
(ξ)

(‖x‖−2
L

)∧
(ξ) dξ − (2π)2nε

∫
S2n−1

(‖x‖−2
L

)∧
(ξ)f (ξ) dξ

>

∫
S2n−1

(‖x‖−2n+2
L

)∧
(ξ)

(‖x‖−2
L

)∧
(ξ) dξ.

The end of the proof is similar to that of the previous lemma—we apply Parseval’s formula to
remove Fourier transforms and then use Hölder’s inequality and the polar formula for the volume
to get Vol2n(K) > Vol2n(L). �
4. The solution of the problem

It is known (see [22] or [26, Corollary 4.9] plus Proposition 2) that for every origin symmetric
convex body K in R

2n, n � 2, the space (R2n,‖ · ‖K) embeds in L−p for each p ∈ [2n − 3,2n),
or, in other words, every origin symmetric convex body in R

2n is a (2n − 3)-, (2n − 2)- and
(2n − 1)-intersection body. On the other hand, for q > 2 the unit ball of the real space 
2n

q is not

a (2n − 4)-intersection body, and, moreover, R
2n provided with the norm of this space does not

embed in L−p with p < 2n − 3 (see [19] or [26, Theorem 4.13]).
Now we have to find out what happens if we consider convex bodies invariant with respect to

all Rθ . It immediately follows from the second derivative test ([26, Theorems 4.19 and 4.21]; see
Theorem 4 below) that for q > 2 the complex space 
n

q does not embed in L−p with p < 2n − 4,
which means that the unit ball Bn

q of this space (which is invariant with respect to all Rθ) is not
a k-intersection body with k < 2n − 4. The only question that remains open is what happens in
the interval p ∈ [2n − 4,2n − 3). The following result answers this question.

Theorem 3. Let n � 3. Every origin symmetric invariant with respect to Rθ convex body K

in R
2n is a (2n − 4)-intersection body. Moreover, the space (R2n,‖ · ‖K) embeds in L−p for

every p ∈ [2n − 4,2n).
If n = 2 the space (R2n,‖ · ‖K) embeds in L−p for every p ∈ (0,4).
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Proof. By Lemma 2, it is enough to prove the result in the case where K is infinitely smooth.
Fix ξ ∈ S2n−1.

Let n � 3. Applying formula (8) and then Lemma 3 with H = Hξ , m = 1, k = 2, and dimen-
sion 2n instead of n, we get

�AK,Hξ (0) = −1

8π2(n − 2)

∫
Sn−1∩H⊥

ξ

(‖x‖−2n+4
K

)∧
(η) dη

= −2π

8π2(n − 2)

(‖x‖−2n+4
K

)∧
(ξ).

By the Brunn–Minkowski theorem (see Lemma 1), (‖x‖−2n+4
K )∧(ξ) � 0 for every ξ ∈ S2n−1, so

‖x‖−2n+4
K is a positive definite distribution on R

2n. By Proposition 2, K is a (2n−4)-intersection
body.

Now let n � 2. For 0 < q < 2, formula (7) and Lemma 1 imply that (‖x‖−2n+q+2
K )∧(ξ) � 0.

By Proposition 2, the space (R2n,‖ · ‖K) embeds in L−2n+q+2, and, using the range of q , every
such space embeds in L−p , p ∈ (2n − 4,2n − 2). As mentioned before, these spaces also embed
in L−p , p ∈ [2n − 3,2n), because so does any 2n-dimensional normed space. �

We now give an example of an origin symmetric convex body in R
2n which is invariant with

respect to all Rθ and is not a k-intersection body for any 1 � k < 2n − 4.
Denote by B

q
n the unit ball of the complex space 
n

q considered as a subset of R
2n:

Bn
q = {

ξ ∈ R
2n: ‖ξ‖q = ((

ξ2
11 + ξ2

12

)q/2 + · · · + (
ξ2
n1 + ξ2

n2

)q/2)1/q � 1
}
.

If q � 1 then Bn
q is an origin symmetric invariant with respect to Rθ convex body in R

2n.
The next theorem immediately follows from Proposition 3.

Theorem 4. If q > 2 then the space (R2n,‖ · ‖q) does not embed in L−p with 0 < p < 2n − 4.
In particular, the body Bn

q is not a k-intersection body for any 1 � k < 2n − 4.

Proof. The space (R2n,‖·‖q) contains as a subspace the q-sum of R and a (2n−2)-dimensional
subspace (R2n−2,‖ · ‖q). This q-sum does not embed in L−p , 0 < p < 2n − 4, by Proposition 3.
By a result of Milman [32], the larger space cannot embed in L−p, 0 < p < 2n − 4, either (the
proof in [32] is only for integers p, but it is exactly the same for non-integers; note that for the
complex Busemann–Petty problem we need only the second statement of the theorem, where p

is an integer). �
We are now ready to prove the main result of this article:

Theorem 5. The solution to the complex Busemann–Petty problem in C
n is affirmative if n � 3

and it is negative if n � 4.

Proof. By Theorem 3, every origin symmetric invariant with respect to Rθ convex body in R
6

(where n = 3) is a 2n − 4 = 2-intersection body, and in R
4 (where n = 2) it is a 2n − 2 = 2-

intersection body. The affirmative answers for n = 3 and n = 2 follow now from Theorem 2.
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If n � 4 then 2n − 4 > 2, so by Theorem 4 the body Bn
q is not a 2-intersection body. The

negative answer follows from Theorem 2. �
Remark 1. The transition between the dimensions n = 3 and n = 4 is due to the fact that con-
vexity controls only derivatives of the second order. To see this let us look again at formula (8),
which we apply with k = 2. We want to get information about the Fourier transform of ‖x‖−2

D ,
so we need to choose m so that −2n + 2m + 2 = −2. If n = 3 then m = 1, but when n = 4 we
need m = 2. This means that for n = 3 we consider �AK,H (0), which is always negative by
convexity, but when n = 4 we look at �2AK,H (0), which is not controlled by convexity and can
be sign-changing. One can construct a counterexample in dimension n = 4 using this argument,
similarly to how it was done for the “real” Busemann–Petty problem; see [26, Corollary 4.4].

Remark 2. Applying Theorem 3 to n = 2 we get that every two-dimensional complex normed
space (which is a 4-dimensional real normed space) embeds in L−p for every p ∈ (−4,0). By
[16, Theorem 6.4], this implies that every such space embeds isometrically in L0. The concept of
embedding in L0 was introduced in [16]: a normed space (Rn,‖ · ‖) embeds in L0 if there exist
a probability measure μ on Sn−1 and a constant C so that for every x ∈ R

n, x 
= 0

log‖x‖ =
∫

Sn−1

log
∣∣(x, ξ)

∣∣dμ(ξ) + C.

We have

Theorem 6. Every two-dimensional complex normed space embeds in L0. On the other hand,
there exist two-dimensional complex normed spaces that do not embed isometrically in any Lp ,
p > 0.

An example supporting the second claim is the complex space 
2
q with q > 2. This follows

from a version of the second derivative test proved in [27] (see also [26, Theorem 6.11]). Recall
that every two-dimensional real normed space embeds isometrically in L1 (see [7,15,30] or [26,
p. 120]), but the real space 
2

q does not embed isometrically in any Lp , 1 < p � 2, as proved by
Dor [6]; see also [26, p. 124].
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