A Note on the Total Chromatic Number of Halin Graphs with Maximum Degree 4

Zhongfu Zhang and Linzhong LiU*
Institute of Applied Mathematics, Lanzhou Railway Institute
Lanzhou 730070, P.R. China
Jianfang Wang
Institute of Applied Mathematics, Chinese Academy of Sciences
Beijing 100080, P.R. China
Hongxiang Li
Institute of Applied Mathematics, Shanghai Tiedao University
Shanghai 200333, P.R. China

(Received November 1996; accepted December 1997)

Abstract

In this paper, we prove that $\chi_{T}(G)=5$ for any Halin graph G with $\Delta(G)=4$, where $\Delta(G)$ and $\chi_{T}(G)$ denote the maximal degree and the total chromatic number of G, respectively. (C) 1998 Elsevier Science Ltd. All rights reserved.

Keywords-Halin-graph, Total colouring, Total chromatic number.

1. INTRODUCTION

We quote two definitions.
Definition 1.1. (See [1].) For a 3-connected plane graph $G(V, E, F)$, if all edges on the boundary of one face f_{0} of the face set F are removed, it becomes a tree, and the degree of each vertex of $V\left(f_{0}\right)$ is three, then graph G is called a Halin graph, the vertices on $V\left(f_{0}\right)$ are called exterior vertices of G, and the others interior vertices of G.

Definition 1.2. (See [2].) If all of the elements in $V \cup E$ of the graph $G(V, E)$ can be coloured by k colours such that no two adjacent or incident elements have the same colour, then this colouring is called a k-total colouring of G; and

$$
\chi_{T}(G)=\min \{k \mid k \text {-total colouring of } G\}
$$

is called the (vertex-edge) total chromatic number of G.
From this, the total colouring conjecture can be written in the form

$$
\chi_{T}(G) \leq \Delta(G)+2 \text { for any graph } G .
$$

We would like to thank H. Levison for his valuable discussions with us and the referees for their recommendation.

* Writing author.

In [3], the (vertex) chromatic number $\chi(G)$, the edge chromatic number $\chi^{\prime}(G)$, and the total chromatic number $\chi_{T}(G)$ of the Halin graphs G were studied in great detail, and it was shown that if G is a Halin graph with $\Delta(G) \geq 5$, then

$$
\chi_{T}(G)=\Delta(G)+1
$$

In the end of [3], it was pointed out that determining $\chi_{T}(G)$ for any Halin graph G with $\Delta(G)=3,4$ is an open problem. In this paper, the case when $\Delta(G)=4$ is completely solved.
The other terms and notations can be found in [4-6].

2. THE HALIN GRAPHS WITH $\Delta(G)=4$

We denote by W_{p} the wheel graph of order p.
Lemma 2.1. Let $G\left(G \neq W_{p}\right)$ be a Halin graph, then there exists an interior vertex w which adjacent vertices only one is interior vertex and the others exterior vertices.
Proof. Consider the longest path in graph $T^{\prime}=G-E\left(f_{0}\right)$, where $E\left(f_{0}\right)$ denotes the edges set in the boundary of outer face f_{0}, w denote the second vertex or the reverse second vertex, then w has the property in Lemma 2.1.
Denote by W the set of all w that satisfy conditions in Lemma 2.1.
Theorem 2.1. For wheel graph W_{5} of order five, we have

$$
\chi_{T}\left(W_{5}\right)=5 .
$$

The proof is obvious. A 5 -total colouring of W_{5} is shown in Figure 1.
Theorem 2.2. For any Halin graph G with $\Delta(G)=4$, have

$$
\chi_{T}(G)=5 .
$$

Proof. We use induction on the number $p=|V(G)|$.
When $p=5, G=W_{5}$, by Theorem 2.1, the conclusion is true; when $p=6$, does not exist Halin graph G with $\Delta(G)=4$; and when $p=7$, there is a unique Halin graph G with $\Delta(G)=4$, and the conclusion is also true. Now we assume that the conclusion is true for $p=k-1(k \geq 8)$, and consider the case $p=k$.

Obviously, $\chi_{T}(G) \geq 5$. Hence, it is enough to prove that $\chi_{T}(G) \leq 5$, that is, only to prove that G has a 5 -total colouring.

Among all vertices of W, let w be one of minimum degree, i.e.,

$$
d(w)=\min \{d(v) \mid v \in W\}
$$

where W is the set of all w that satisfy the condition in Lemma 2.1.

Figure 1. W_{5}.

Figure 2. G_{01}.

Case 1. $d(w)=3$.
Denote by y_{1}, y_{2} two exterior vertices adjacent to w, and denote by u an interior vertex adjacent to w. Suppose that u_{1}, u_{2} which are different from y_{1}, y_{2} are adjacent exterior vertices of y_{1}, y_{2}, respectively, that is,

$$
u_{1} \in N\left(y_{1}\right)-\left\{y_{2}, w\right\}, \quad u_{2} \in N\left(y_{2}\right)-\left\{y_{1}, w\right\} .
$$

We consider the graph

$$
G_{01}=G-\left\{y_{1}, y_{2}\right\}+\left\{u_{1} w, u_{2} w\right\}
$$

Obviously, G_{01} is a Halin graph with $\Delta\left(G_{01}\right)=4$ and $\left|V\left(G_{01}\right)\right|=k-2$.
By the induction hypothesis, G_{01} has a 5 -total colouring σ_{0}. On the basis of σ_{0}, we make a 5 -total colouring σ of G.

Denote by $C=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}\right\}$ the set of five colours in σ_{0}, and let

$$
Y=(V(G) \bigcup E(G))-\left\{y_{1}, y_{2}, u_{1} y_{1}, y_{1} y_{2}, u_{2} y_{2}, w y_{1}, w y_{2}\right\}
$$

We may suppose without loss of generality that

$$
\sigma_{0}(w)=\alpha_{1}, \quad \sigma_{0}(u w)=\alpha_{2}, \quad \sigma_{0}\left(u_{1} w\right)=\alpha_{3}, \quad \sigma_{0}\left(u_{2} w\right)=\alpha_{4}
$$

A sketch of the 5-total colouring σ_{0} of G_{01} is shown in Figure 2, where the number i denotes the colour $\alpha_{i}(i=1,2, \ldots, 5)$. Thus, $\sigma_{0}\left(u_{1}\right)$ can only take α_{1}, or α_{2}, or α_{4}, or α_{5}, and $\sigma_{0}\left(u_{2}\right)$ can only take α_{1}, or α_{2}, or α_{3}, or α_{5}, that is, by notation of vector, $\left(\sigma_{0}\left(u_{1}\right), \sigma_{0}\left(u_{2}\right)\right)$ can only take the following 16 pairs of colours:

$$
\begin{array}{llll}
\left(\alpha_{1}, \alpha_{1}\right), & \left(\alpha_{1}, \alpha_{2}\right), & \left(\alpha_{1}, \alpha_{3}\right), & \left(\alpha_{1}, \alpha_{5}\right), \\
\left(\alpha_{2}, \alpha_{1}\right), & \left(\alpha_{2}, \alpha_{2}\right), & \left(\alpha_{2}, \alpha_{3}\right), & \left(\alpha_{2}, \alpha_{5}\right), \\
\left(\alpha_{4}, \alpha_{1}\right), & \left(\alpha_{4}, \alpha_{2}\right), & \left(\alpha_{4}, \alpha_{3}\right), & \left(\alpha_{4}, \alpha_{5}\right), \\
\left(\alpha_{5}, \alpha_{1}\right), & \left(\alpha_{5}, \alpha_{2}\right), & \left(\alpha_{5}, \alpha_{3}\right), & \left(\alpha_{5}, \alpha_{5}\right) .
\end{array}
$$

Since $\alpha_{1} \notin\left\{\sigma_{0}\left(u_{1}\right), \sigma_{0}\left(u_{2}\right)\right\}$, and by symmetry of u_{1} and u_{2}, it is enough to prove that G has a 5 -total colouring σ for each case of the following 6 pairs of colours:

$$
\begin{array}{lll}
\left(\alpha_{2}, \alpha_{2}\right), & \left(\alpha_{2}, \alpha_{3}\right), & \left(\alpha_{2}, \alpha_{5}\right) \\
\left(\alpha_{4}, \alpha_{3}\right), & \left(\alpha_{4}, \alpha_{5}\right) \\
& \left(\alpha_{5}, \alpha_{5}\right)
\end{array}
$$

SUBCASE 1.1. $\left(\sigma_{0}\left(u_{1}\right), \sigma_{0}\left(u_{2}\right)\right)=\left(\alpha_{2}, \alpha_{2}\right)$ or $\left(\alpha_{5}, \alpha_{5}\right)$.
Let

$$
\begin{aligned}
\sigma\left(y_{1} y_{2}\right) & =\sigma_{0}(w), \quad \sigma\left(y_{2}\right)=\sigma\left(u_{1} y_{1}\right)=\alpha_{3} \\
\sigma\left(u_{2} y_{2}\right) & =\sigma\left(w y_{1}\right)=\alpha_{4}, \quad \sigma\left(w y_{2}\right)=\alpha_{5} \\
\sigma\left(y_{1}\right) & =\alpha_{5}, \quad \text { if } \sigma_{0}\left(u_{1}\right)=\alpha_{2}, \text { or } \\
\sigma\left(y_{1}\right) & =\alpha_{2}, \quad \text { if } \sigma_{0}\left(u_{1}\right)=\alpha_{5} \\
\sigma(y) & =\sigma_{0}(y), \quad y \in Y .
\end{aligned}
$$

Obviously, this σ is a 5 -total colouring of G.

SUBCASE 1.2. $\left(\sigma_{0}\left(u_{1}\right), \sigma_{0}\left(u_{2}\right)\right)=\left(\alpha_{2}, \alpha_{3}\right)$.
Let

$$
\begin{aligned}
\sigma\left(y_{1} y_{2}\right) & =\alpha_{1}, \quad \sigma\left(y_{2}\right)=\alpha_{2}, \\
\sigma\left(u_{1} y_{1}\right) & =\sigma\left(w y_{2}\right)=\alpha_{3} \\
\sigma\left(u_{2} y_{2}\right) & =\sigma\left(w y_{1}\right)=\alpha_{4} \\
\sigma\left(y_{1}\right) & =\alpha_{5}, \quad \sigma(y)=\sigma_{0}(y), \quad y \in Y .
\end{aligned}
$$

Such a colouring σ is obviously a 5 -total colouring of G.

Subcase 1.3. $\left(\sigma_{0}\left(u_{1}\right), \sigma_{0}\left(u_{2}\right)\right)=\left(\alpha_{2}, \alpha_{5}\right)$.

This case is the same as Subcase 1.2 except the colour on the vertex u_{2}.
SUBCASE 1.4. $\left(\sigma_{0}\left(u_{1}\right), \sigma_{0}\left(u_{2}\right)\right)=\left(\alpha_{4}, \alpha_{3}\right)$.
Let

$$
\begin{aligned}
\sigma\left(y_{1} y_{2}\right) & =\alpha_{1}, \quad \sigma\left(y_{1}\right)=\alpha_{2}, \\
\sigma\left(u_{1} y_{1}\right) & =\sigma\left(w y_{2}\right)=\alpha_{3}, \\
\sigma\left(u_{2} y_{2}\right) & =\sigma\left(w y_{1}\right)=\alpha_{4}, \\
\sigma\left(y_{2}\right) & =\alpha_{5}, \quad \sigma(y)=\sigma_{0}(y), \quad y \in Y .
\end{aligned}
$$

This σ is obviously a 5 -total colouring of G.
SUBCASE 1.5. $\left(\sigma_{0}\left(u_{1}\right), \sigma_{0}\left(u_{2}\right)\right)=\left(\alpha_{4}, \alpha_{5}\right)$.
This case is the same as Subcase 1.2 except the colours on u_{1} and u_{2}.
Case 2. $d(w)=4$.
Suppose that y_{1}, y_{2}, y_{3} are exterior vertices adjacent to w, and that u is an interior vertex adjacent to w, and $u_{1} y_{1}, u_{2} y_{3} \in E(G)$. We consider the graph

$$
G_{02}=G-\left\{y_{1}, y_{2}, y_{3}\right\}+\left\{u_{1} w, u_{2} w\right\}
$$

Obviously, G_{02} is a Halin graph with $\Delta\left(G_{02}\right)=3$ or 4 , and $\left|V\left(G_{02}\right)\right|=k-3$.
By the induction hypothesis, there exists a 5 -total colouring σ_{0} of G_{02}. Now, on the basis of σ_{0}, we make a 5 -total colouring σ of G. Let

$$
Y=(V \bigcup E)-\left\{y_{1}, y_{2}, y_{3}, u_{1} y_{1}, u_{2} y_{3}, w y_{1}, w y_{2}, w y_{3}, y_{1} y_{2}, y_{2} y_{3}\right\}
$$

We may suppose without loss of generality that a 5 -total colouring σ_{0} of G_{02} is the same as that in Case 1, and it is enough to prove that there exists a 5 -total colouring σ of G for each of the six subcases in Case 1. The proofs of six subcases are similar to those in Case 1.
SUBCASE 2.1. $\left(\sigma_{0}\left(u_{1}\right), \sigma_{0}\left(u_{2}\right)\right)=\left(\alpha_{2}, \alpha_{2}\right)$.
Let

$$
\begin{aligned}
\sigma\left(y_{1} y_{2}\right) & =\alpha 1, \quad \sigma\left(y_{2} y_{3}\right)=\alpha_{2}, \\
\sigma\left(u_{1} y_{2}\right) & =\sigma\left(w y_{3}\right)=\sigma\left(y_{2}\right)=\alpha_{3}, \\
\sigma\left(w y_{1}\right) & =\sigma\left(u_{2} y_{3}\right)=\alpha_{4}, \\
\sigma\left(y_{1}\right) & =\sigma\left(y_{3}\right)=\sigma\left(w y_{2}\right)=\alpha_{5}, \\
\sigma(y) & =\sigma_{0}(y), \quad y \in Y .
\end{aligned}
$$

Obviously, this σ is a 5 -total colouring of G.

SUBCASE 2.2. $\left(\sigma_{0}\left(u_{1}\right), \sigma_{0}\left(u_{2}\right)\right)=\left(\alpha_{5}, \alpha_{5}\right)$.
Let

$$
\begin{aligned}
\sigma\left(y_{1} y_{2}\right) & =\alpha_{1}, \quad \sigma\left(y_{1}\right)=\sigma\left(y_{2} y_{3}\right)=\alpha_{2}, \\
\sigma\left(y_{3}\right) & =\sigma\left(u_{1} y_{1}\right)=\sigma\left(w y_{2}\right)=\alpha_{3}, \\
\sigma\left(w y_{1}\right) & =\sigma\left(u_{2} y_{3}\right)=\alpha_{4}, \\
\sigma\left(y_{2}\right) & =\sigma\left(w y_{3}\right)=\alpha_{5}, \quad \sigma(y)=\sigma_{0}(y), \quad y \in Y .
\end{aligned}
$$

Such a colouring σ is obviously a 5 -total colouring of G.
SUBCASE 2.3. $\left(\sigma_{0}\left(u_{1}\right), \sigma_{0}\left(u_{2}\right)\right)=\left(\alpha_{2}, \alpha_{3}\right)$.
This case is the same as Subcase 2.1 except the colour on the vertex u_{2}.
SUBCASE 2.4. $\left(\sigma_{0}\left(u_{1}\right), \sigma_{0}\left(u_{2}\right)\right)=\left(\alpha_{2}, \alpha_{5}\right)$.
Let

$$
\begin{aligned}
\sigma\left(y_{2} y_{3}\right) & =\alpha_{1}, \quad \sigma\left(y_{1} y_{2}\right)=\sigma\left(y_{3}\right)=\alpha_{2}, \\
\sigma\left(y_{2}\right) & =\sigma\left(u_{1} y_{1}\right)=\sigma\left(w y_{3}\right)=\alpha_{3}, \\
\sigma\left(u_{2} y_{3}\right) & =\sigma\left(w y_{1}\right)=\alpha_{4}, \\
\sigma\left(y_{1}\right) & =\sigma\left(w y_{2}\right)=\alpha_{5}, \quad \sigma(y)=\sigma_{0}(y), \quad y \in Y .
\end{aligned}
$$

This σ is obviously a 5 -total colouring of G.
Subcase 2.5. $\left(\sigma_{0}\left(u_{1}\right), \sigma_{0}\left(u_{2}\right)\right)=\left(\alpha_{4}, \alpha_{3}\right)$.
This case is the same as Subcase 2.4 except the colours on u_{1} and u_{2}.
SUBCASE 2.6. $\left(\sigma_{0}\left(u_{1}\right), \sigma_{0}\left(u_{2}\right)\right)=\left(\alpha_{4}, \alpha_{5}\right)$.
This case is same as Subcase 2.4 except the color on u_{1}.
Combining Case 1 and Case 2 for $p=k$, there exists the 5 -total colouring σ of G.
By the induction principle, Theorem 2.2 is proved.

REFERENCES

1. R. Halin, Studies on minimally n-connected graph, In Combin. Math. and Its Applications, Proc. Conf. Oxford, 1969, Academic Press, London, (1969).
2. M. Behzad, G. Chartrand and J.K. Kooper, The colour numbers of complete graphs, J. London Math. Soc. 42, 225-228, (1967).
3. H.X. Li, Z.F. Zhang and J.X. Zhang, On the colouring of Halin graphs, (in Chinese), J. Shanghai Inst. of Railway Tech. 15 (1), 19-24, (1994).
4. J.A. Bondy and U.S.R. Murty, Graph Theary with Applications, MacMillan Press, London, (1976).
5. H.P. Yap, Some Topics in Graph Theory, Cambridge University Press, (1986).
6. F. Harary, Graph Theory, Addison-Wesley, Reading, MA, (1969).
