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A b s t r a c t - - I n  this paper, we prove that XT(G) = 5 for any Halin graph G with A(G) = 4, where 
A(G) and XT(G) denote the maximal degree and the total chromatic number of G, respectively. 
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1 .  I N T R O D U C T I O N  

We quo te  two  def ini t ions.  

DEFINITION 1.1. (See [1].) For a 3-connected plane g r a p h  G(V, E, F), flail edges on the  boundary 
of one face fo of the face se t  F are removed, it becomes a tree, and the degree of each vertex of 
V(fo)  is three, then graph G is ca/ led a H a l i n  g r a p h ,  the vertices on V(fo)  are ca~led e x t e r i o r  

v e r t i c e s  of G, and the others i n t e r i o r  v e r t i c e s  o f  G. 

DEFINITION 1.2. (See [2].) I[ all of the elements in V U E of the graph G(V, E) can be colored 
by k colours such that no two adjacent or incident elements have  the  s a m e  colour, then this 
colouring is caned  a k - t o t a l  c o l o u r i n g  of G; and 

XT(G) = min{k  [ k-tota/ colouring of G} 

is ca//ed the (vertex-edge) total chromatic number of G. 

From this, the total colouring conjecture can be written in the form 

XT(G) ~ A(G) + 2 for any graph G. 
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In [3], the (vertex) chromatic number x(G), the edge chromatic number x'(G), and the total  
chromatic number XT(G) of the Halin graphs G were studied in great detail, and it was shown 
tha t  if G is a Halin graph with A(G) > 5, then 

XT(G) = A(G) + 1. 

In the end of [3], it was pointed out that  determining XT(G) for any Halin graph G with 
A(G) ---- 3, 4 is an open problem. In this paper, the case when A(G) -- 4 is completely solved. 

The other terms and notations can be found in [4-6]. 

2.  T H E  H A L I N  G R A P H S  W I T H  A ( G ) =  4 

We denote by W o the wheel graph of order p. 

LEMMA 2.1. Let G(G ~ Wp) be a Hadin graph, then there exists an interior vertex w which 
adjacent vertices only one is interior vertex and the others exterior vertices. 

PROOF. Consider the longest path in graph T' = G - E(fo),  where E(fo) denotes the edges set 
in the boundary of outer face f0, w denote the second vertex or the reverse second vertex, then w 
has the property in Lemma 2.1. 

Denote by W the set of all w that  satisfy conditions in Lemma 2.1. 

THEOREM 2.1. For wheel graph W5 of order five, we have 

XT(Ws) : 5. 

The proof is obvious. A 5-total colouring of W5 is shown in Figure 1. 

THEOREM 2.2. For any HMin graph G with A(G) = 4, have 

XT(G) = 5 .  

PROOF. We use induction on the number p = [V(G)[. 

When p = 5, G = Ws, by Theorem 2.1, the conclusion is true; when p = 6, does not exist 
Halin graph G with A(G) = 4; and when p = 7, there is a unique Halin graph G with A(G) = 4, 
and the conclusion is also true. Now we assume that  the conclusion is true for p = k - 1 (k _> 8), 
and consider the case p = k. 

Obviously, XT(G) _> 5. Hence, it is enough to prove that  XT(G) < 5, that  is, only to prove 
tha t  G has a 5-total colouring. 

Among all vertices of W, let w be one of minimum degree, i.e., 

d(w) = min{d(v) [ v E W}, 

where W is the set of all w that  satisfy the condition in Lemma 2.1. 

1 

4 5 

to 

Figure 1. Ws. Figure 2. G01. 
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CASE 1. d(w)  = 3. 

Denote by Yl, Y2 two exterior vertices adjacent to w, and denote by u an interior vertex adjacent 
to w. Suppose that  Ul, u2 which are different from Yl, Y2 are adjacent exterior vertices of Yl, Y~, 
respectively, tha t  is, 

Ul • g ( y l )  - {y2 ,w} ,  u2 • N ( y 2 )  - { y l , w } .  

We consider the graph 

Go1 = G - {Yl ,Y2}  -t- {UlW, U~W}. 

Obviously, G01 is a Halin graph with A(G01) = 4 and IV(G01)[ = k - 2. 

By the induction hypothesis, G01 has a 5-total colouring a0. On the basis of a0, we make a 
5-total colouring a of G. 

Denote by C = {0/1,0/2, a3, 0/4,0/5} the set of five colours in co, and let 

We may suppose without loss of generality that  

Go(W) ~- 0/1, O'o(UW) ~-~ 0/2, dr0(UlW) = 0/3, dr0(tt2W) ---- 0/4. 

A sketch of the 5-total colouring a0 of G01 is shown in Figure 2, where the number i denotes the 
colour 0/i (i = 1 ,2 , . . .  ,5). Thus, a0(Ul) can only take 0/1, or 0/2, or o/a, or 0/5, and a0(u2) can 
only take a l ,  or c~2, or 0/3, or 0/5, that  is, by notation of vector, (aO(Ul) ,ao(u2))  can only take 
the following 16 pairs of colours: 

(0/1,0/1), (0/1,0/2), (0/1,0/3), (0/1,0/5), 
(0/2,0/1), (0/:,0/2), (0/~,0/3), (0/2,0/5), 
(0/4, 0/1), (0/4, 0/2), (0/4, 0/3), (0/4, 0/5), 
(0/5,0/1), (0/5,0/~), (0/5,0/3), (0/5,0/5)" 

Since 0/1 ~ {aO(Ul) ,ao(u2)} ,  and by symmetry of ul and u2, it is enough to prove that  G has a 
5-total colouring a for each case of the following 6 pairs of colours: 

(0/5,0/:), (0/5,0/3), (0/2,0/5), 
(0/4, 0/3), (0/4, 0/5), 

(0/5,0/5). 

SUBCASE 1.1. (go(u1), ao(U2)) = (a2, a2) or (as, 0/5). 
Let 

a(ylY2)  = ao(w),  a(y2) = a ( u l y l )  -= a3, 

a(u2Y2) = a ( w y l )  = a4, a (wy2)  = as ,  

a ( y l ) = a s ,  if ao(u l )  = a2, or 

a ( y l )  = a2, if a o ( u l ) = a s ,  

o ( y ) = o 0 ( y ) ,  y e Y. 

Obviously, this a is a 5-total colouring of G. 
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SUBCASE 1.2. (aO(Ul), o'O(U2)) ---- (a2, a3). 
Let 

~ ( y i y 2 ) = a l ,  ~ (y2 )=a2 ,  

a(UlYl)=a(wy2)=a3,  

a(u2y2) =a(wy l )=a4 ,  

o ( y l ) = a s ,  o (y )=~0(y ) ,  y e Y .  

Such a colouring a is obviously a 5-total colouring of G. 

SUBCASE 1.3. (aO(Ul),ao(u2)) = (a2 ,as ) .  
This  case is the same as Subcase 1.2 except the colour on the vertex u2. 

SUBCASE 1.4. (aO(Ul),ao(u2)) = (a4,a3) .  
Let 

f f(yly2)=al, G ( y l ) = a 2 ,  

ff(UlYl)  = ~ (w y2)  --  aS,  

~(u2y2)=~(Wyl)=a4, 

~ ( y 2 ) = a s ,  ~(y) =~o(y) ,  y E Y .  

This a is obviously a 5-total colouring of G. 

SUBCASE 1.5.  (0"0(•1), ~r0(u2)) = (a4 ,  a5) .  
This case is the same as Subcase 1.2 except the colours on ux and u2. 

CASE 2. d(w) = 4. 
Suppose tha t  Yl,Y2,Y3 are exterior vertices adjacent to w, and tha t  u is an interior vertex 

adjacent to w, and Ulyl,u2y3 E E(G). We consider the graph 

G02 = G -- {Yl, Y2, Y3} + '{UlW, U2W}. 

Obviously, G02 is a Halin graph with A(G02) = 3 or 4, and IV(G02)[ = k - 3. 

By the induction hypothesis, there exists a 5-total colouring a0 of G02. Now, on the  basis 
of a0, we make a 5-total colouring a of G. Let 

Y = ( V U E )  - {yl,y2,y3,ulyl,u2y3,wyl,wy2,wy3,yly2,y2y3}. 

We may  suppose without  loss of generality tha t  a 5-total colouring a0 of G02 is the same as 
tha t  in Case 1, and it is enough to prove tha t  there exists a 5-total colouring a of G for each of 
the six subcases in Case 1. The proofs of six subcases are similar to those in Case 1. 

SUBCASE 2 .1 .  (O'0(Ul), Cr0(U2)) = (a2 ,  a2 ) .  
Let 

o'(YlY2) = a l ,  a(y2ys) = a2, 

O'(Uly2) = O'(wy3) = if(Y2) = a3 ,  

a(wyl) = a(u2ya) = a4, 

~(yl) = ~(y3) = ~(wy2) = as, 
~(y) = ~o(y), y e Y. 

Obviously, this a is a 5-total colouring of G. 
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SUBCASE 2.2.  (a0(ut) ,  a0(u2)) = (as,  as) .  
Let  

a(y ly2)  = a l ,  a ( y l )  = a(y2y3)  = a2,  

a(y3) = a(Ulyl) = a(wy2) = a3, 

6r(w~/1) = 0"(U2~3) = 0~4, 

y e Y .  

Such a colouring a is obviously a 5-total  colouring of  G. 

SUBCASE 2.3.  (ao(ul) ,  ao(u2)) = (a2, a3). 
This  case is the  same as Subcase 2.1 except the  colour on the  vertex u2. 

SUSCASE 2.4 .  (aO(Ul), a0(u2))  = (a2,  as ) .  
Let 

Cr(y2y3) ~- Oil, cr(ylY2) = o'(y3) = a2, 

u(~/2) = u(~/lYl) = u(wy3)  = 013, 

a(u2y3) = a(Wyl) = ~4, 

~ ( y l )  = a ( w y 2 )  = ~5,  a ( y )  = ao(~) ,  y e Y .  

This a is obviously a 5-total colouring of G. 

SUBCASE 2.5 .  (a0(Ul) ,  a0(u2))  = (a4,  ~3).  
This  case is the  same as Subcase 2.4 except the  colours on Ul and u2. 

SUBCASE 2.6.  (a0(Ul) ,a0(u2))  = ( a4 , a s ) .  
This  case is same as Subcase 2.4 except the  color on ut .  

Combining  Case 1 and Case 2 for p = k, there  exists the 5-total  colouring a of  G. 
By  the  induct ion principle, Theorem 2.2 is proved. 
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