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Abstract—In this paper, we prove that x7(G) = 5 for any Halin graph G with A(G) = 4, where
A(G) and x1(G) denote the maximal degree and the total chromatic number of G, respectively.
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1. INTRODUCTION
We quote two definitions.

DEFINITION 1.1. (See [1].) For a 3-connected plane graph G(V, E, F), if all edges on the boundary
of one face fqo of the face set F are removed, it becomes a tree, and the degree of each vertex of
V(fo) is three, then graph G is called a Halin graph, the vertices on V(fy) are called exterior
vertices of G, and the others interior vertices of G.

DEFINITION 1.2. (See [2].) If all of the elements in V U E of the graph G(V, E) can be coloured
by k colours such that no two adjacent or incident elements have the same colour, then this
colouring is called a k-total colouring of G; and

x1(G) = min{k | k-total colouring of G}

is called the (vertex-edge) total chromatic number of G.

From this, the total colouring conjecture can be written in the form

x1(G) < A(G) + 2 for any graph G.
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In (3], the (vertex) chromatic number x(G), the edge chromatic number x/(G), and the total
chromatic number x7(G) of the Halin graphs G were studied in great detail, and it was shown
that if G is a Halin graph with A(G) > 5, then

xr(G) = A(G) +1.

In the end of [3], it was pointed out that determining x7(G) for any Halin graph G with
A(G) = 3,4 is an open problem. In this paper, the case when A(G) = 4 is completely solved.
The other terms and notations can be found in [4-6].

2. THE HALIN GRAPHS WITH A(G) = 4

We denote by W,, the wheel graph of order p.
LEMMA 2.1. Let G(G # W;) be a Halin graph, then there exists an interior vertex w which
adjacent vertices only one is interior vertex and the others exterior vertices.

PRrROOF. Consider the longest path in graph T/ = G — E(f,), where E(fy) denotes the edges set
in the boundary of outer face fp, w denote the second vertex or the reverse second vertex, then w
has the property in Lemma 2.1.

Denote by W the set of all w that satisfy conditions in Lemma 2.1.
THEOREM 2.1. For wheel graph Wy of order five, we have

x7(Ws) = 5.

The proof is obvious. A 5-total colouring of W; is shown in Figure 1.

THEOREM 2.2. For any Halin graph G with A(G) = 4, have
xr(G) = 5.

PRrROOF. We use induction on the number p = |V(G)|.

When p = 5, G = Ws, by Theorem 2.1, the conclusion is true; when p = 6, does not exist
Halin graph G with A(G) = 4; and when p = 7, there is a unique Halin graph G with A(G) =4,
and the conclusion is also true. Now we assume that the conclusion is true for p =k —1 (k > 8),
and consider the case p = k.

Obviously, xr(G) > 5. Hence, it is enough to prove that x7(G) < 5, that is, only to prove
that G has a 5-total colouring.

Among all vertices of W, let w be one of minimum degree, i.e.,

d(w) = min{d(v) | v € W},

where W is the set of all w that satisfy the condition in Lemma 2.1.

Figure 1. Ws. Figure 2. Gos.
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CASE 1. d(w) = 3.

Denote by y1, y2 two exterior vertices adjacent to w, and denote by u an interior vertex adjacent
to w. Suppose that u;,us which are different from y;,y, are adjacent exterior vertices of Y1, Y2,
respectively, that is,

u1 € N(y1) — {2, w}, u2 € N(y2) — {y1, w}.

We consider the graph
Go1 = G — {y1,y2} + {maw, ugw}.
Obviously, Go, is a Halin graph with A(Go1) = 4 and |V (Goy)| = k — 2.
By the induction hypothesis, Go; has a 5-total colouring gg. On the basis of o, we make a

5-total colouring o of G.
Denote by C = {ay, a3, a3, a4, 05} the set of five colours in g¢, and let

’

Y = (V(G) UE(G)) = {y1, y2, vay1, Y192, uaya, wys, wy2 }.
We may suppose without loss of generality that
oo(w) = a1, oo(uw) =0z, oo(uw)=a;, Jo(usw) = ay.

A sketch of the 5-total colouring o of Gy, is shown in Figure 2, where the number i denotes the
colour a; (i = 1,2,...,5). Thus, og(u1) can only take ai, or ay, or ay, or as, and oo(us) can
only take oy, or az, or as, or as, that is, by notation of vector, (oo(u1),00(u2)) can only take
the following 16 pairs of colours:

(alval)v (alaa2)v (a17a3)a (aly05)1
(a2,a1)’ (02,02), (a2»a3)7 (02,05),
(a4,a1), ((14,02), (a4’a3)’ (064,05),

( (

(a57a1)3 05,02)1 a5’a3)7 (051 a5)'

Since a1 & {0o(u1),00(u2)}, and by symmetry of u; and us, it is enough to prove that G has a
5-total colouring o for each case of the following 6 pairs of colours:

(027a2)y (02,(13)3 (02,05),
(04, a3)v ((14, aS)a

(a57a5)'

SUBCASE 1.1. (op(u1),00(u2)) = (a2, as) or (as,as).
Let

o(y1y2) = oo(w), o(y2) = o(wiy1) = as,
o(uye) = o(wy1) = a4, o(wys) = as,
o(y1) = as, if og(u1) = a, or
o(y1) = aq, if o9(u1) = as,
o(y) =oo(y), yEeY.

Obviously, this ¢ is a 5-total colouring of G.
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SUBCASE 1.2. (oo(u1),00(u2)) = (a2, 03).
Let

o(ny2) = a1, o(yz) = g,
o(u1y1) = o(wyz) = a3,
o(uzyz) = o(wy1) = oy,
o(y1) =as, o(y)=oo(y), yeY.

Such a colouring ¢ is obviously a 5-total colouring of G.

SUBCASE 1.3. (do(ul),a'o(U2)) = (02,05).
This case is the same as Subcase 1.2 except the colour on the vertex us.

SUBCASE 1.4. (oo{u1),00(u2)) = (04, a3).
Let

o(yiye) = o1, o(y) = o,
o(u1y1) = o(wyz) = as,
a(ugy2) = o(wy1) = ay,

o(y2) =as, o(y)=o0(y), yev.

This o is obviously a 5-total colouring of G.

SuBcCASE 1.5. (oo(u1),00(u2)) = (a4, as).
This case is the same as Subcase 1.2 except the colours on u; and ug.

CASE 2. d(w) =4.

Suppose that y;,y,,ys are exterior vertices adjacent to w, and that u is an interior vertex

adjacent to w, and uyy;, u2ys € E(G). We consider the graph

Goz = G — {y1, 92, y3} + {vaw, uaw}.

Obviously, Gy is a Halin graph with A(Gg2) = 3 or 4, and |V(Goz)| = k — 3.
By the induction hypothesis, there exists a 5-total colouring oo of Gg2. Now, on the basis

of g, we make a 5-total colouring o of G. Let

Y= (VUE) — {y1, ¥2, y3, wry1, vays, wy1, wy2, WYs, Y1y2, Y2ys}-

We may suppose without loss of generality that a 5-total colouring oo of Gog is the same as
that in Case 1, and it is enough to prove that there exists a 5-total colouring o of G for each of
the six subcases in Case 1. The proofs of six subcases are similar to those in Case 1.

SUBCASE 2.1. (Uo(ul),ao(uz)) = (az,az).
Let

o(ny2) = al, o(y2ys) = oz,
o(u1y2) = o(wys) = o(y2) = o3,
o(wy1) = o(uzys) = oy,
o(y1) = o(ys) = o(wy2) = as,
o(y)=o0(y), yevY.

Obviously, this ¢ is a 5-total colouring of G.
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SUBCASE 2.2. (09(u1),00(u2)) = (a5, as).
Let

o(y1y2) = a1, a(y1) = o(y2ys) = ao,
o(ys) = o(wy1) = o(wyz) = as,
o(wyr) = o(uzys) = au,
o(y2) =o(wys) = a5, o(y) =oo(y), yeY

Such a colouring ¢ is obviously a 5-total colouring of G.

SUBCASE 2.3. (00(U1),Uo(ﬂ2)) = (ag,as).
This case is the same as Subcase 2.1 except the colour on the vertex us.

SUBCASE 2.4. (Uo(’ul),do(u'z)) = ((12,05)‘
Let

o(y2y3) = a1, o(ny2) = o(ys) = ay,
o(y2) = o(uay1) = o(wys) = o3,
o(uays) = o(wy) = oy,
o(y) =o(wy2) =as, o(y)=ooly), yeY

This o is obviously a 5-total colouring of G.

SUBCASE 2.5. (ao(ul),ao(uz)) = (a4,a3).
This case is the same as Subcase 2.4 except the colours on u; and u,.

SUBCASE 2.6. (oo(u1),00(u2)) = (04, 5).
This case is same as Subcase 2.4 except the color on u;.
Combining Case 1 and Case 2 for p = k, there exists the 5-total colouring ¢ of G.
By the induction principle, Theorem 2.2 is proved.
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