treatment of external genital warts. METHODS: The analysis was performed in accordance with the rules of systematic review, based on the Cochrane Collaboration (Cochrane Reviewer’s Handbook) guidelines and the Health Technology Assessment Agency in Poland (AOTM) recommendations. RESULTS: Imiquimod five percent cream versus vehicle (period 1992 to 2006), pairwise-matched (matching ratio 1:1 to 1:2 if feasible), risk-adjusted cohort study was conducted at the 6-bed burn unit of a university hospital in Belgium. Burn patients with a microbiologically documented BSI (cases, n = 108) matched on basis of burn severity (identical Belgian and control subjects (n = 214), were assessed. Per-protocol analysis showed a significant difference in reduction of total cost was estimated to decrease to 12,513. With the new proportional share, total cost was estimated to decrease to €11,896, a 5% reduction in the hospital budget. Addition of doripenem led to a €617 savings per patient primarily due to a reduction in hospital days and days on mechanical ventilation. Increasing the proportion of doripenem use resulted in larger savings to the hospital budget (€1217 per patient at 100% doripenem use). CONCLUSIONS: Results indicate that adding doripenem to a hospital formulary for treatment of NP and VAP in Germany. METHODS: An Excel-based model was developed in accordance with Good Research Practices for Budget Impact Analysis disseminated by the ISPOR to estimate the annual impact on a hospital’s budget of adding doripenem. Model inputs included annual hospital admissions for NP and VAP, current share of imipenem and meropenem use (50% each, no doripenem use), patient treatment duration and length of stay (LOS) from clinical trials and assumptions, hospitalization costs from published literature and Federal Health Monitoring, list prices for doripenem from the online pharmaceutical database Laster-Trace and discounted prices for imipenem and meropenem from IMS GPK Krankenhaus-Index. All costs were in 2008 Euros. A new proportional share of 50% doripenem, 30% imipenem and 20% meropenem was assumed for this analysis. Sensitivity analyses explored the impact on results of different proportions of doripenem use. RESULTS: The total cost per treated patient (based on NP/VAP pooled population) prior to the introduction of doripenem was estimated to be €12,513. With the new proportional share, total cost was estimated to decrease to €11,896, a 5% reduction in the hospital budget. Addition of doripenem led to a €617 savings per patient primarily due to a reduction in hospital days and days on mechanical ventilation. Increasing the proportion of doripenem use resulted in larger savings to the hospital budget (€1217 per patient at 100% doripenem use). CONCLUSIONS: Results indicate that adding doripenem to a hospital formulary for treatment of NP and VAP in Germany.

BUDGET IMPACT ANALYSIS OF THE NEW 10-VALENT PNEUMOCOCCAL CONJUGATE VACCINATION (PHID-CV) TO ROUTINE INFANT VACCINATION IN CANADA

Imamova AS1, Pereira JA2, Robson RC2, Tabibi SE3, Standaert BA4, Rawson NS5

OBJECTIVES: To estimate the expected impact of the newly licensed 10-valent pneumococcal non-typeable Haemophilus influenzae protein-D conjugate vaccine (PHID-CV) on health care budgets in Canada. METHODS: The budget impact analysis (BSIA) uses the previously published PHID-CV population model. The BSIA compares a 6-dose (3

1) schedule. The population modeled is the entire population of Canada (33.0 million). The vaccinated cohort is 348,000. Analysis was performed from the Canadian health care system perspective assuming a price parity of $70 per dose. The model includes the direct medical costs related to the management of invasive pneumococcal disease, community-acquired pneumonia, and acute otitis media (AOM) obtained from published Canadian studies. Various sensitivity analyses were performed to assess the robustness of the key model assumptions. RESULTS: Assuming a 20% market share in Year 1 (2009), the introduction of PHID-CV will result in a cost-savings of $14.7 million, compared with PCV7 at price parity. In 2013 (Year 5), with PHID-CV market share increasing to 100%, the expected annual direct cost savings is estimated to grow to $23.6 million, resulting in cumulative cost savings of $70.9 million over 5 years. Approximately 70% of the projected savings is due to the superior AOM protection offered by PHiD-CV vaccination. Sensitivity analyses show that change in vaccination price, dosing strategy, and vaccine coverage have the biggest impact on projected cost-savings. CONCLUSIONS: The results suggest that the Canadian health care system can realize substantial cost savings by substituting PCV7 with PHiD-CV in routine infant pneumococcal vaccination programs. With 100% substitution, annual direct cost savings is projected to be $67.9 per child vaccinated.