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a b s t r a c t

In [6] Hamilton and Thas (2006) describe a link between maximal arcs of Mathon type
and partial flocks of the quadratic cone. This link is of a rather algebraic nature. In this
paper we establish a geometric connection between these two structures. We also define
a composition on the flock planes and use this to work out an analogue of the synthetic
version of Mathon’s theorem (see De Clerck et al. (2011) [3]). Finally, we show how it is
possible to construct a maximal arc of Mathon type of degree 2d, containing a Denniston
arc of degree dprovided that there is a solution to a certain given systemof trace conditions.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

A {k; d}-arc K in a finite projective plane of order q is a non-empty proper subset of k points such that some line of the
plane meets K in d points, but no line meets K in more than d points. For given q and d, k can never exceed q(d − 1) + d.
If equality holds K is called a maximal arc of degree d, a degree d maximal arc or simply, a maximal d-arc. Equivalently, a
maximal arc can be defined as a non-empty proper subset of points such that every line meets the set in 0 or d points, for
some d. The set of points of an affine subplane of order q of a projective plane of order q is a trivial example of a {q2; q}-arc.
A single point is a {1; 1}-arc of the projective plane. We will neglect these two trivial examples for the rest of this paper.

If K is a maximal d-arc in a projective plane of order q, the set of lines external to K is a maximal q/d-arc in the dual
plane, called the dual of K . It follows that a necessary condition for the existence of a maximal d-arc in a projective plane
of order q is that d divides q. Denniston showed that this necessary condition is sufficient in the Desarguesian projective
plane PG(2, q) of order q when q is even [4]. Ball, Blokhuis and Mazzocca showed that no non-trivial maximal arcs exist in
a Desarguesian projective plane of odd order [2].

In [7], Mathon gave a construction method for maximal arcs in Desarguesian projective planes that generalized the
previously known construction of Denniston [4]. We will begin by describing this construction method of Mathon. From
now on let q = 2h.

1.1. Mathon maximal arcs

Let Tr denote the usual absolute tracemap from the finite field GF(q) onto GF(2). A point p of the Desarguesian projective
plane PG(2, q) can be represented by a vector line ⟨(a, b, c)⟩, for short we will represent it as a triple (a, b, c) over GF(q)
(up to a scalar factor). In the same spirit the lines are represented as triples [u, v, w] over GF(q). A point (a, b, c) is incident
with a line [u, v, w] if and only if au + bv + cw = 0. For α, β ∈ GF(q) such that Tr(αβ) = 1 and λ ∈ GF(q)∗ = GF(q) \ {0}
we define Fα,β,λ to be the conic

Fα,β,λ = {(x, y, z) : αx2 + xy + βy2 + λz2 = 0}.
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Let F be the set of all such conics. Remark that all the conics in F have the point n(0, 0, 1) as their nucleus and that, due to
the trace condition, the line z = 0 is external to all conics.

For given λ ≠ λ′, define a composition

Fα,β,λ ⊕ Fα′,β ′,λ′ = Fα⊕α′,β⊕β ′,λ⊕λ′

where the operator ⊕ is defined as follows:

α ⊕ α′
=

αλ + α′λ′

λ + λ′
, β ⊕ β ′

=
βλ + β ′λ′

λ + λ′
, λ ⊕ λ′

= λ + λ′.

The following lemma was proved by Mathon in [7].

Lemma 1. Two non-degenerate conics Fα,β,λ, Fα′,β ′,λ′ , λ ≠ λ′ and their composition Fα,β,λ ⊕ Fα′,β ′,λ′ are mutually disjoint if
Tr((α ⊕ α′)(β ⊕ β ′)) = 1.

Given some subset C of F , we say C is closed if for every Fα,β,λ ≠ Fα′,β ′,λ′ ∈ C, Fα⊕α′,β⊕β ′,λ⊕λ′ ∈ C. We can now state
Mathon’s theorem.

Theorem 1 ([7]). Let C ⊂ F be a closed set of conics in PG(2, q), q even. Then the union of the points on the conics of C together
with their common nucleus is a degree |C| + 1maximal arc in PG(2, q).

We will sometimes call n the nucleus of the Mathon maximal arc; by [5] this is well defined. Note that a maximal arc of
degree d of Mathon type contains Mathon sub-arcs of degree d′ for all d′ dividing d (see [7]). Every maximal arc isomorphic
to one as constructed above will be called a maximal arc of Mathon type. As we mentioned above, Mathon’s construction is
a generalization of a previously known construction of Denniston. This can be seen as follows. Choose α ∈ GF(q) such that
Tr(α) = 1. Let A be a subset of GF(q)∗ such that A ∪ {0} is closed under addition. Then the point set of the conics

KA = {Fα,1,λ : λ ∈ A}

together with the nucleus n(0, 0, 1) is the set of points of maximal arc of a degree |A| + 1 in PG(2, q). Every maximal arc
isomorphic to such an arc will be called amaximal arc of Denniston type. The conics in KA are a subset of the standard pencil
of conics given by

{Fα,1,λ : λ ∈ GF(q)∗}.

This pencil partitions the points of the plane, not on the line z = 0, and distinct from n(0, 0, 1), into q − 1 disjoint conics
on the common nucleus n. The line z = 0 is often called the line at infinity of the pencil. It has been proved in [7] that all
degree-4 maximal Mathon arcs are necessarily of Denniston type.

The following lemma was proved by Aguglia, Giuzzi and Korchmaros.

Lemma 2 ([1]). Given any two disjoint conics C1 and C2 on a common nucleus. Then there is a unique degree-4 maximal arc of
Denniston type containing C1 ∪ C2.

In [3] this was generalized to a synthetic version of Mathon’s construction.

Theorem 2 (Synthetic Version of Mathon’s Theorem). Given a degree-dmaximal arc M of Mathon type, consisting of d−1 conics
on a common nucleus n, and a conic Cd disjoint fromM with the same nucleus n, then there is a unique degree-2d maximal arc of
Mathon type ⟨M, Cd⟩ containing M ∪ Cd.

1.2. Partial flocks

This subsection will serve as an introduction to partial flocks as well as a brief description of the algebraic link between
partial flocks and maximal arcs of Mathon type as it was proved in [6]. Suppose that K is a quadratic cone in PG(3, q) with
vertex x. A partial flock F of K is a set of disjoint (non-singular) conics on the cone K . A partial flock is called complete if
it is not contained in a larger partial flock. A flock F of K is a partial flock of size q. The planes containing the conics of the
partial flock are called the flock planes. If all the flock planes of a partial flock have a line in common, then this partial flock is
called linear. Flocks are related to some elation generalized quadrangles of order (q2, q), line spreads of PG(3, q) and, when
q is even, families of ovals in PG(2, q), called herds ([8]).

Suppose that the cone K has equation X1X3 = X2
2 . The vertex is the point x(1, 0, 0, 0) and does not belong to any plane

of a (partial) flock F . The conics of F are defined by k planes Vi, i ∈ {1, . . . , k}, of which the equations can be written in the
form

X0 + f (t)X1 + tX2 + g(t)X3 = 0, (1)
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with t ∈ B, where B is some subset of GF(q), and f and g are functions from B to GF(q). The property that every two conics
of F are disjoint is equivalent to

Tr
 (f (s) + f (t))(g(s) + g(t))

(s + t)2


= 1, ∀s, t ∈ B, s ≠ t. (2)

It is well-known ([7]) that a closed set of conics C, which can be used to construct maximal arcs of Mathon type, may be
written in the form

C = {(x, y, z) : p(λ)x2 + xy + r(λ)y2 + λz2 = 0, λ ∈ A},

where A is a subset of GF(q) \ {0} such that A ∪ {0} is closed under addition and p and r are functions from A to GF(q).
Hamilton and Thas proved in [6] that the functions p and r associated to C give rise to a partial flock in the following

way. Set B = A ∪ {0} and define the functions f and g on B by f (0) = g(0) = 0 and f (t) = tp(t), g(t) = tr(t) for t ∈ A.
Since A, p and r define a closed set of conics we know that

sp(s) + tp(t)
s + t

= p(s + t) and
sr(s) + tr(t)

s + t
= r(s + t), (3)

for s, t ∈ A, with s ≠ t . As s + t ∈ A the trace condition for the closed set of conics gives us

1 = Tr[p(s + t)r(s + t)] = Tr


sp(s) + tp(t)
s + t

 
sr(s) + tr(t)

s + t


= Tr

 (f (s) + f (t))(g(s) + g(t))
(s + t)2


.

This implies that f , g and B define a partial flock.
From (3) we know that sp(s) + tp(t) = (s + t)p(s + t) and sr(s) + tr(t) = (s + t)r(s + t), or equivalently that

f (s) + f (t) = f (s + t) and g(s) + g(t) = g(s + t). In other words, the functions f and g arising from a closed set of conics
are additive on B and also B is closed under addition. A partial flock with these properties is called an additive partial flock
in [6].

Conversely, suppose an additive partial flock is given with functions f and g on an additive subgroup B of GF(q). Now
define A = B \ {0} and functions p(t) = f (t)/t and r(t) = g(t)/t , t ∈ A. It can be checked that these functions have the
required trace and closure conditions on A to give a closed set of conics, and hence amaximal arc of Mathon type in PG(2, q).
Knowing all the above, the following theorem holds.

Theorem 3 ([6]). A degree-d maximal arc of Mathon type gives rise to an additive partial flock of size d of the quadratic cone in
PG(3, q), and conversely.

It was also mentioned in [6] that a partial flock, corresponding to a maximal arcM of degree d of Mathon type is linear if
and only ifM is of Denniston type. We will frequently rely on this property throughout this paper.

2. Projection

As became clear in the previous section a maximal arc of degree d of Mathon type gives rise to an additive partial flock of
size d of the quadratic cone in PG(3, q), and conversely. The link between these two geometric structures is of an algebraic
nature and is based on the trace condition of Mathon’s construction. The authors of [6] also remark in their paper that a
closed set of conics of size d − 1 on a common nucleus in PG(2, q), q even, can be projected from a point onto the quadratic
cone and in this way induces a partial flock of the quadratic cone. However, this partial flock does not have as many nice
properties as the one arising from the algebraic approach.

In this sectionwewill establish amore geometric link between themaximal arcs of Mathon type in PG(2, q) and additive
partial flocks in PG(3, q). This is done by obtaining a geometric link between the partial flock arising from projection from
a point and the additive partial flock. We will see that the relation between the two partial flocks basically is an ‘‘inversion’’
on the nuclear line of the cone (which is the line through the vertex and the nuclei of the conics in the partial flock).

Before continuing we first provide a short lemma that guarantees that our projections are well defined.

Lemma 3. Let K be a quadratic cone with vertex x in PG(3, q), let N be its nuclear line, and let π be any plane not through x.
Denote N ∩ π by n, and let p be any point on N distinct from x and n. Then the projection from p of any conic C in π with nucleus
n onto the cone K is a conic on K .

Proof. First note that every line through p intersects the cone in a unique point. Hence the projection of C results in q + 1
points on K . We need to show they form a conic.

Consider any plane γ in PG(3, q) not containing x and not containing p. Then γ clearly intersects K in a conic, and if we
project this conic from p onto π then we obtain a conic in π having n as its nucleus. In this way we obtain q2(q − 1) conics
in π with nucleus n.
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On the other hand, in PG(2, q) every conic with nucleus (0, 0, 1) is of the form αX2
0 + X0X1 +βX2

1 +λX2
2 = 0 with λ ≠ 0

and α, β arbitrary elements of GF(q). Hence there are q2(q − 1) conics having a given point as their nucleus.
It follows that the conics with nucleus n in π are in one-to-one correspondence with the planes not through x or p. The

lemma follows. �

Now letM be a degree-dmaximal arc of Mathon type in the plane PG(2, q). Embed PG(2, q) in PG(3, q) and assume that
PG(2, q) is the plane with equation X0 = 0. To simplify the calculations ahead we will assume that the conics contained in
M have equations

α2X2
1 + X1X3 + β2X2

3 + λ2X2
2 = 0, (4)

with α, β and λ elements of GF(q). Of course the quadratic polynomial α2x2 + x + β2 has to be irreducible over GF(q) and
this is satisfied if Tr(α2β2) = Tr(αβ) = 1. Hence the change of notation does not alter the trace condition. In the plane
X0 = 0 all conics contained in M have nucleus n(0, 1, 0). These conics will sometimes be denoted by C : (α2, β2, λ2).

Next, let K be a quadratic cone in PG(3, q). Suppose the cone K has equation X1X3 = X2
2 . The vertex is the point

x(1, 0, 0, 0) and does not belong to the plane X0 = 0. Notice that the conic which is the intersection of K and the plane
X0 = 0 is not contained inM since the elements α and β cannot be zero. It is clear that the nuclear line N is the intersection
of the planes X1 = 0 and X3 = 0which is the line with points (t, 0, 1, 0), t ∈ GF(q) and the vertex x. Notice thatN intersects
X0 = 0 in the point n(0, 0, 1, 0), the common nucleus of all conics inM .

Take the point p(1, 0, 1, 0) on the line N . If α2X2
1 + X1X3 + β2X2

3 + λ2X2
2 = 0 is the equation of a conic C in M , then, by

Lemma 3 it is enough to project three points of the conic from p on the cone K and to calculate the equation of the plane
spanned by the three projected points. One easily checks that this plane has equation

λX0 + αX1 + (λ + 1)X2 + βX3 = 0. (5)

These planes will be called conic planes. These planes together with the plane X0 + X2 = 0, called the singular plane, define
a partial flock with d elements on the cone K . However this partial flock is not additive, opposed to the one defined in [6].
Note that in our notation the additive flock is formed by the planes

X0 + α2λ2X1 + λ2X2 + β2λ2X3 = 0 (6)

together with the plane X0 = 0.
Now, consider the automorphism δ ∈ PGL(4, q) given by

X0 → X0 + X2,

Xi → Xi, i > 0,

that fixes the cone K . This automorphism δ will map the singular plane X0 + X2 = 0 on the plane X0 = 0 while the conic
planes are mapped on

λX0 + αX1 + X2 + βX3 = 0. (7)

The planes found in (7) intersect the nuclear line in the points (1, 0, λ, 0). Next, consider the inversion ι on the nuclear
line defined by

(1, 0, y, 0) → (1, 0, 1/y, 0), y ≠ 0
(1, 0, 0, 0) → (0, 0, 1, 0),
(0, 0, 1, 0) → (1, 0, 0, 0).

Then ι induces an involution on the points of the nuclear line, fixing the point p(1, 0, 1, 0). We can now use ι to construct
a map φ on each plane V that does not intersect any of the points x(1, 0, 0, 0) nor n(0, 0, 1, 0). Each one of these planes
intersects the plane X0 = 0 in a unique line L and the nuclear line in a point (1, 0, y, 0), y ≠ 0. Define the map φ on the
planes V as follows:

φ(V ) = ⟨L, ι(1, 0, y, 0)⟩ = ⟨L, (1, 0, 1/y, 0)⟩.

Applying φ on the planes (7) results in the planes

X0 + αλX1 + λX2 + βλX3 = 0. (8)

Finally, we apply the automorphism κ ∈ PGL(4, q) given by

(a, b, c, d) → (a2, b2, c2, d2),

that fixes the cone K . This yields

X0 + α2λ2X1 + λ2X2 + β2λ2X3 = 0,

and so, the conic planes found in (5) are mapped on the planes given in (6).
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We can summarize as follows. Let M be a maximal arc of Mathon type in the plane X0 = 0 in PG(3, q) with nucleus
n(0, 1, 0) and X2 = 0 as line at infinity, i.e., given the coefficients (α2, β2, λ2). Projection from the point p(1, 0, 1, 0) (being a
point on the nuclear line) onto the cone K gives rise to a partial flock equivalent to the onewith flock planes (7) and X0 = 0.
This partial flock is not yet additive. Applying the simplemapφ, arising from an inversion on the nuclear line, to these planes,
and then the automorphism κ gives us the planes (6) found in [6], i.e., an additive partial flock. Of course all the above works
in both ways. By the way, note that the point p from which we project is completely arbitrarily on the line N .

3. Plane composition

It is natural to wonder about the relation between these conic planes and the singular planes and to check whether the
equations of these planes can be calculated directly. We already know from Lemma 2 that, given any two disjoint conics on
a common nucleus in a plane, there is a unique third disjoint conic on the same nucleus such that the three conics form a
degree-4 maximal arc of Denniston type. This result can be translated to a result concerning conic planes.

We start by introducing a standard equation for planes not containing the point p(1, 0, 1, 0). A plane with an equation
of the form

aX0 + bX1 + (a + 1)X2 + cX3 = 0, a, b, c ∈ GF(q) (9)

is said to have a standard equation.

Lemma 4. Let V and W be two planes in PG(3, q), not passing through the vertex x of a cone K , and intersecting the cone K in
two disjoint conics. Let p be a point of the nuclear line which is not contained in one of the planes, then there is a unique third plane
such that the projection of the intersection of these three planes withK from p onto the plane X0 = 0 induces a degree-4maximal
arc of Denniston type.

Proof. Suppose the cone K has equation X1X3 = X2
2 . We may assume that the two conic planes V and W have a standard

equation V : λX0 + αX1 + (λ + 1)X2 + βX3 = 0 and W : λ′X0 + α′X1 + (λ′
+ 1)X2 + β ′X3 = 0. These conic planes are

associated to the conics C1 : (α2, β2, λ2) and C2 : (α′2, β ′2, λ′2) in X0 = 0. Using Lemma 2 we know that the conic

C1 ⊕ C2 :

α2λ2
+ α′2λ′2

λ2 + λ′2
,
β2λ2

+ β ′2λ′2

λ2 + λ′2
, λ2

+ λ′2


is the unique conic inducing a degree-4 maximal arc of Denniston type containing both C1 and C2. The unique conic plane
corresponding to C1 ⊕ C2 has equation

V ⊕ W : (λ + λ′)X0 +
αλ + α′λ′

λ + λ′
X1 + (λ + λ′

+ 1)X2 +
βλ + β ′λ′

λ + λ′
X3 = 0. �

Notice that the partial flock associated to a maximal arc of Denniston type should be linear. One easily checks that the
three planes in the above lemma indeed have a line in common. Also note that the coefficients in the standard equation of
the plane V ⊕ W are obtained using a Mathon composition.

We know that, if the equation of the conic plane associated to a conic C : (α2, β2, λ2) is given by λX0 + αX1 +

(λ + 1)X2 + βX3 = 0 this equation is standard. Once the conic plane is set in standard notation we can use the following
lemma to determine the singular plane associated to a degree-4 maximal arc of Denniston type.

Lemma 5. Given two conic planes V and W in PG(3, q), the singular plane inducing the line at infinity of the unique degree-
4maximal arc of Denniston type induced by V and W can be found by the sum of the equations of V and W.

Proof. The conic planes V : λX0 +αX1 + (λ+ 1)X2 +βX3 = 0 andW : λ′X0 +α′X1 + (λ′
+ 1)X2 +β ′X3 = 0 are associated

to the two conics C1 : (α2, β2, λ2) and C2 : (α′2, β ′2, λ′2) in X0 = 0. We are looking for the singular conic in the pencil

{µC1 + νC2 : µ, ν ∈ GF(q), µ, ν ≠ 0}.

Since both conics C1 and C2 have 1 as coefficient of the term X1X3 the singular conic in the pencil above can be found by
simply taking the sum of both conics, i.e., µ = ν = 1. This gives us (α2

+ α′2)X2
1 + (λ2

+ λ′2)X2
2 + (β2

+ β ′2)X2
3 = 0 which

is equivalent to

(α + α′)X1 + (λ + λ′)X2 + (β + β ′)X3 = 0, (10)

yielding the equation of the line at infinity of the unique degree-4 maximal arc of Denniston type induced by V and W in
the plane X0 = 0. Taking the sum of the equations of the two conic planes V andW gives us the plane with equation

(λ + λ′)X0 + (α + α′)X1 + (λ + λ′)X2 + (β + β ′)X3 = 0.

Intersecting that plane with the plane X0 = 0 results in the same equation of the line at infinity. �
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Remark that if we take the sum of the equations of the conic planes V and V ⊕ W in the proof of Lemma 5 we do not
exactly find Eq. (10). However, we do find the same line at infinity. By multiplying that equation by the right scalar we can
always attain Eq. (10). It is clear thatwe obtain a different singular plane if the equations of the conic planes are not standard.
In that case Lemma 5 does not work.

Next we consider the intersections of each of the planes in the partial flock, i.e., the conic planes and the singular plane,
with the nuclear line N . We know that N consists of the points (t, 0, 1, 0), t ∈ GF(q) and the vertex x(1, 0, 0, 0). Since the
singular plane should always induce a line at infinity on the plane X0 = 0 in the projection from p(1, 0, 1, 0) we know
that this singular plane intersects the nuclear line in the point p. Furthermore, suppose the planes V ,W and V ⊕ W , as
seen in the proof of Lemma 4, are the three conic planes associated to a random degree-4 maximal arc of Denniston type.
Their intersections with the nuclear line gives us the points (λ + 1, 0, λ, 0), (λ′

+ 1, 0, λ′, 0) and (λ + λ′
+ 1, 0, λ + λ′, 0),

respectively. If, to these three points, we add the vertex x(1, 0, 0, 0) we see that, in the X2-component, the elements of the
additive group of order 4 that induce the Denniston 4-arc are given.

4. An analogue of the synthetic theorem

In Theorem 2 we described a synthetic version of Mathon’s theorem. With the tools given above it is possible to
translate this theorem to a theorem concerning partial flocks. First we will extend the additive linear partial flock of size 4
corresponding to a degree-4 maximal arc of Denniston type.

Theorem 4. Let F be an additive linear partial flock of size 4 and let V ′ be a plane not containing the point n(0, 0, 1, 0) nor
x(1, 0, 0, 0), and such that V ′ intersects K in a conic disjoint from the elements of F . Then there is a unique additive partial
flock of size 8 containing the conics determined by V ′ and the four planes defining F .

Proof. This follows immediately from the analysis in the previous sections, Theorems 1 and 2. �

Remark that, if the plane V ′ in the previous theorem contains the intersection line of the four planes V ′

1, . . . , V
′

4 defining
F , the partial flock of size 8 will be linear, and hence will induce a degree-8 maximal arc of Denniston type.

The previous theorem can be generalized to maximal arcs of Mathon type in the following way, the proof is analogous
to the proof of Theorem 4.

Theorem 5. Let F be an additive partial flock of size d and let V ′ be a plane not containing the point n(0, 0, 1, 0) such that V ′

intersects K in a conic disjoint from the elements of F . Then there is a unique additive partial flock of size 2d containing the
conics determined by V ′ and the d planes defining F .

Using Lemma 5 and the equation of the singular planes we can deduce some properties concerning the lines at infinity
of a Mathon maximal arc, i.e., the lines at infinity of the Denniston subarcs contained in a Mathon maximal arc. To simplify
the notation we will call these lines Denniston lines.

Lemma 6. Let M be a degree-2d maximal arc of Mathon type that contains a degree-d maximal arc D of Denniston type. Then all
Denniston lines of M are concurrent.

Proof. After projection from the point p(1, 0, 1, 0) the maximal arc D gives rise to a linear partial flock on the cone K . In
other words, all the planes inducing this partial flock intersect in a common line L. Using Theorem 5we can choose a suitable
plane V to construct the partial flock of size 2d that corresponds to the degree-2d maximal arc M . However, this plane V
cannot contain the common line L and hence V must intersect L in a point r in PG(3, q). Furthermore, using Lemma 5, since
all planes defining M actually are linear combinations of V and the conic planes in the linear partial flock corresponding to
D, it is clear that r will be contained in all Denniston planes. Finally, after projection from p on the plane X0 = 0, we see that
all the Denniston lines must be concurrent as they all contain the projection of r . �

Another property regarding the Denniston lines concerns the coefficients α and β in the equation of the conics given
by (4).

Lemma 7. The Denniston lines of a maximal arc of Mathon type are concurrent if the coefficient α or β is a constant.

Proof. Suppose that α ∈ GF(q) is a constant in the equation of the conics contained in a maximal arc of Mathon type as
given in (4). In this case let V : λX0 + αX1 + (λ + 1)X2 + βX3 = 0 and W : λ′X0 + αX1 + (λ′

+ 1)X2 + β ′X3 = 0 be two
random conic planes. Using Lemma 5 we know that the singular plane induced by V and W has equation

(λ + λ′)X0 + (λ + λ′)X2 + (β + β ′)X3 = 0.

It is clear that the point (0, 1, 0, 0) is always contained in this plane. This implies that all Denniston lines are concurrent. An
analogous argument holds if β is a constant. �
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5. An additive group

Consider an additive group G of order 2d. In this section we will discuss how, under certain circumstances, it is possible
to construct a degree-2d maximal arc M of Mathon type (having G as its related additive group), and containing a degree-d
maximal arc of Denniston type. Let G := {0, 1, λ1, λ2, . . . , λ2d−2} and let H := {0, 1, λ1, . . . , λd−2} be an additive subgroup
of order d of G. The elements of H define in the plane π0 with equation X0 = 0 a degree-d maximal arc D of Denniston type
consisting of the conics

Cλ2 : X2
1 + X1X3 + X2

3 + λ2X2
2 = 0,

with λ2
= 1, λ2

1, . . . , λ
2
d−2, together with their common nucleus n. The line at infinity of D is the line X0 = X2 = 0.

We choose an element in G that is not contained in H , say λd. It is clear that H ∪ {λd} generates G. Because we are trying
to construct a degree-2d maximal arc M of Mathon type that contains D we need, using Theorem 2, in the plane π0 a conic
C : α2X2

1 + X1X3 + β2X2
3 + λ2

dX
2
2 = 0, with α, β ∈ GF(q), disjoint from D on the same nucleus n. However, sinceM contains

the degree-d maximal arc D we can assume without loss of generality, using Lemmas 6 and 7, that α = 1. It follows that if
we can find a suitable element β , we will be able to construct the entire maximal arcM .

We know that the two conics C1 and C uniquely determine a third conic C1 ⊕ C in order to form a degree-4 maximal arc
of Denniston type. This 4-arc has a unique line at infinity L, which is also uniquely determined by C1 and C (see Lemma 5),
moreover, C1 and L induce the conic C . This implies that it suffices to determine L in order to find C and thus M .

Since α = 1 we can assume that L has an equation of the form

ρX2 + X3 = 0, X0 = 0,

ρ ∈ GF(q). The singular plane S associated to L has an equation of the form AX0 + ρX2 + X3 = 0. As we know that this plane
has to contain the point p(1, 0, 1, 0) we find that A = ρ. Hence S has equation

ρX0 + ρX2 + X3 = 0. (11)

Furthermore, the conic plane that determines C1 has equation X0 + X1 + X3 = 0 and the conic plane that determines C has
equation λdX0 + X1 + (λd + 1)X2 + βX3 = 0. Since these two equations are standard, their sum also provides us with the
equation of the associated singular plane S. We find that S must have the equation (λd +1)X0 + (λd +1)X2 + (β +1)X3 = 0,
or equivalently

λd + 1
β + 1

X0 +
λd + 1
β + 1

X2 + X3 = 0. (12)

From (11) and (12) we see that ρ = (λd + 1)/(β + 1), or equivalently

β =
λd + 1

ρ
+ 1. (13)

So, the conic C given by the equation

X2
1 + X1X3 +

λd + 1
ρ

+ 1
2

X2
3 + λ2

dX
2
2 = 0

has to be disjoint from the conics Cλ2 : X2
1 + X1X3 + X2

3 + λ2X2
2 = 0, with λ2

= 1, λ2
1, . . . , λ

2
d−2. Suppose that the point

r(0, x1, x2, x3) in X0 = 0 is a point of C ∩ Cλ2 , for some λ ∈ {1, λ2
1, . . . , λ

2
d−2}. Then

x2 =
(λd + 1)
ρ(λd + λ)

x3.

It follows that the conics Cλ2 and C are disjoint if and only if

x2 + x +


1 + λ2 (λd + 1)2

ρ2(λd + λ)2


= 0

has no solutions in GF(q). This will be the case if and only if

Tr

1 + λ2 (λd + 1)2

ρ2(λd + λ)2


= 1. (14)

Distinguishing the cases q = 2h, h odd and h even, we can simplify condition (14) further. If h is odd we know that Tr[1] = 1
and condition (14) is equivalent to

Tr
 λ(λd + 1)
ρ(λd + λ)


= 0. (15)
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On the other hand, if h is even then Tr[1] = 0 and we analogously find

Tr
 λ(λd + 1)
ρ(λd + λ)


= 1. (16)

We conclude that all elements ρ that satisfy condition (14) give rise to a suitable element β as given in (13). Substituting this
β in the equation X2

1 +X1X3+β2X2
3 +λ2

dX
2
2 = 0, where we assumed α = 1 as seen above, gives us a conic C which is disjoint

from the degree-d maximal arc D and therefore induces a degree-2d maximal arc of Mathon type where the coefficients of
the term X2

2 are the squares of the elements in G \ {0}.
Hence, as soon as the above system of trace conditions has a non-trivial solution we can construct a proper maximal

degree-2d arc of Mathon type, containing a degree-d maximal arc of Denniston type. In a worst case scenario all the trace
conditions could be linearly independent (over GF(2)). In such case, with q = 2h we are guaranteed of the existence of a
Mathonmaximal arc of degree 2⌊log2(h)⌋+1 having the prescribed additive group, containing amaximal arc of Denniston type
of degree 2⌊log2(h)⌋. So in general one should be able to analyze the linear (in)dependence of the trace conditions. Though
we do not believe that in general they are all independent, the analysis of dependence seems to be a hard problem, and an
interesting topic for future research.
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