Index

Note: Page numbers followed by ‘f’ and ‘t’ denote figures and tables, respectively.

Adaptive immune receptors, diversity of, 36
Adaptive immune system, 28f, 30, 36–51 see also Immune system
antibodies, effector functions of, 40–41, 42f
antigen-presenting cells, role of, 36–38, 47–48
B cells, 40–41
CD4+ T cells, 38–39
CD8+ T cells, 39–40
cytokines, role of, 43
distinguished from innate immune system, 46
immunological memory, 44–46
regulatory T cells, 43
T-cell activation, 38
Addiction, prophylactic and therapeutic vaccines for, 187–189
Adjuvant combinations, in licensed vaccines, 102–106
Adjuvants, 13–14, 153–160
achievements of, 153–155
antigen identification and purification, new approaches to, 155–159
antigen selection and stability, new approaches to, 155
role in future vaccines, 155, 154f, 156t–157t
in vaccines, 89–111, 90f
aluminium salts, 91, 93t, 95–97, 97f
AS01, 107–110
AS03, 94t, 105–106, 106f
AS04, 93t, 103–105, 104f
AS15, 110
benefits of, 92
defined, 89–91
dimensional, 92, 93t, 99–101, 100f
first use of, 91
on immune mechanisms, impact of, 94–95, 96f
innovative adjuvants, need for, 92
microbial DNA immunostimulatory sequences, 107, 108f
Montanide™ ISA51, 93t, 107
natural immune-defence triggers, mimicking, 95
persistence of, 95
role of, 92, 95, 111
safety profile of, 110–111
selection of, 91
synthetic MPL (RC-529), 93t
thermo-reversible oil-in-water emulsion, 94t
virosomes, 93t
Administration of vaccines, 167–171
Advanced market commitments (AMCs), 119
Adverse events and vaccination, temporal associations between, 145
Adverse events of special interest (AESI), 137t, 139
Aerosol delivery, 172
AIDSVAX™, 182

© 2011 Elsevier B.V. Open access under CC BY-NC-ND license.
Alliance for Case Studies for Global Health, 186
Aluminium hydroxide, 95, 97
Aluminium hydroxyphosphate sulphate, 97
Aluminium phosphate, 95, 97
Aluminium salts, 91, 92, 93, 95–97, 97
Antimicrobial limitation of, 97
Anopheles spp mosquito, 178
Antibiotics, 180
Antibodies, 37, 52–54, 64, 82, 83, 91, 92, 134, 142, 159, 164, 174, 184
Antidiaphtheric toxin, 26
anti-HAV, 142, 144
discovery of, 12, 26
effector functions of, 39–40, 42, 53
Anti-diphtheric toxin antibodies, 26
Antigenic drift, 179–180
Antigen-presenting cells (APCs), 28, 30, 34, 57, 94, 98, 101, 155
role of, 36–38, 46–47
Antigens
bacterial vector vaccines, 162–165, 165f, 166t
delivery, new approaches of, 160–167
dendritic cell vaccines, 167
DNA vaccines, 165–167
identification and purification, new approaches to, 155–159
pathogen peptide libraries, 159
poly-epitope vaccines and MHC restriction, 158
reverse vaccinology, 158
presentation, issues affecting, 160–161
research and discovery, key areas of, 157t
selection and stability, new approaches to, 155
stability, 159–160
vaccine see Vaccine antigens
viral vector vaccines, 161, 162f, 163t–164t
Antigen-specific cancer immunotherapeutics (ASCI), AS15 for, 110
Antitoxin, as immune serum, 13, 62
AS01, 107–110, 156t, 179
AS03, 94f, 105, 155
structure of, 106f
AS04, 92t–93t, 103–105, 104f, 155, 157t, 176
-adjuvanted HPV-16 vaccine, 125–126
-adjuvanted HPV-18 vaccine, 125–126
AS15, 157t
for antigen-specific cancer immunotherapeutics, 110
Association of University Technology Managers (AUTM), 186
Attenuation
of live vaccines, loss of, 69
of pathogens, 10, 65, 128
of vaccines, 10, 22
Autism, MMR vaccination and, 146–147
Autoimmune diseases, 125, 149
definition of, 142
Autoimmunity and vaccines, 144–145
Bacille Calmette Guérin (BCG) vaccine, 14, 69, 170, 173
Bacterial pathogen, 55–56
Bacterial vector vaccines, 162–164, 165f
advantages and disadvantages of, 169t
in clinical development, 163t–164t
Balmis, Francisco Xavier de, 8
Behring, Emil von, 12
Bill & Melinda Gates Foundation, The, 163t–164t, 183
Biologics License Application (BLA), 131, 136
Bordetella pertussis infection, 193
Calmette, Albert, 14
Canarypox vector vaccine (ALVAC™), 182
Cancer
cervical, 19, 84
infectious diseases associated with, 188t–189t
immunotherapeutics, antigen-specific, 110
non-small-cell lung, 107
prophylactic and therapeutic vaccines for, 187–189, 188t–189t
prostate, 167
Cathelicidins, 31
CD4+ T cells, 38–39
help, induction of, 53
CD8+ T cells, 39–40
Cell culture era, 14–15
Center for Biologics Evaluation and Research (CBER), 131, 132
Centers for Medicaid and Medicare Services (CMS), 139
Chamberland—Pasteur filter, 15
Charles IV of Spain, 8
Chemokines, 32, 34, 95, 105
Circulating recombinant forms (CRFs), 182, 183f
Clinical assessment or development, of vaccines
overview of, 123–124
Phase I trial, 123
Phase II trial, 123
Phase III trial, 123
Phase IV trial, 123
safety evaluation, 124, 124f
Cocaine candidate vaccine, 187
Cold chain, 119, 152, 159
Gene—environment interaction, 187
Genital HSV-2 infection, 175—176
Genovea
T-cell antigen discovery technology, 159, 160
German measles see Rubella
Germ theory of disease, 8
Glenny, Alexander, 13, 91, 97
Global Advisory Committee on Vaccine Safety (GACVS), 139
Global Alliance for Vaccines and Immunisation (GAVI), 118
Global Solutions for Infectious Diseases, 182
Glycerine, 6
Goodpasture, Ernest, 14
Group A streptococcus, 183—184
Guérin, Albert, 14

H1N1 pandemic influenza, 135, 139, 192
Haemophilus influenzae type b (Hib) vaccine, 20, 81, 86f, 118–119
Heads of Medicines Agencies (HMA), 131
Helper T cells, 38–39
Hepatitis A vaccines, 143–144
active immunization, 144
passive immunization, 144
Hepatitis B virus (HBV) vaccine, 18–19, 69, 76, 125
antigen, recombinant proteins for, 83–84
Herpes simplex virus (HSV), 71, 175–177
vaccines, possible effects and consequences of, 176t
Host—pathogen interactions, 55
diseases with complex, 142
HPV-16, 19
HPV-18, 19
HPV L1 coat protein, 19
HSV-2 glycoprotein D (gD2) candidate vaccine, 176
Human Hookworm Vaccine Initiative (HHVI), 186
Human immunodeficiency virus (HIV), 92, 143, 152
vaccines, 55
candidates, targets of, 184
development of, 183
Human immunodeficiency virus 1 (HIV-1), 182
subtypes, 183f
Human leukocyte antigens (HLA), 38
Human Microbiome Project, The, 187
Human papilloma virus (HPV), 19
L1 synthesis, in yeast expression system, 77f
recombinant antigens for vaccines against, 84
vaccines, 76
AS04-adjuvanted, 105
IC31™, 156t
Immune correlates of protection, 54–55
vaccine development by, 142
Immune system, 28—46
adaptive, 28f, 30, 36–51
innate, 28f, 30–36, 46–51
interaction of vaccines with, 58—59
organs and tissues of, 29f
Immunisation, 13, 118–119, 136, 194
active, 144
neonatal, 193
passive, 144
polio, 17
RRR-TV, 140
Immunity, 3
adaptive, 30
innate, 30
Immunocompromised individuals, vaccines for, 194–195
Immunoevasion, 71
Immunological impediments to vaccination, 57
Immunological memory, 44—46
responses, kinetics of, 45f
Immunological requirements, of vaccines
antigen, identification and selection of, 52
CD4+ T-cell help, induction of, 53
effector cells, selection and targeting of, 53–54
innate immune responses, induction of, 52–53
Immunological senescence, 79
Immunology of vaccines, 25—59
history of, 26–28
Immunostimulatory sequences (ISS), 107, 156t
Immunotherapy, 12—14
Inactivated polio vaccine (IPV), 15
Independent Data Monitoring Committees (IDMCs), 124
Influenza vaccines, 18, 73, 182t
antigens for, 78–79
pandemic, 79
seasonal, 78–79
types of, 77f
Innate immune system, 28f, 30–36, 46–51, 144 see also Immune system
cells of, 30–31
complement system, 34–36
distinguished from adaptive immune system, 46
innate response, effectors of, 34–36, 35f
pathogens, detection of, 31–34
Inoculation, 4, 7f
Interferon-gamma (IFNγ), 39
Interleukin-4 (IL-4), 39
Interleukin-5 (IL-5), 39
Interleukin-13 (IL-13), 39
International AIDS Vaccine Initiative (IAVI), 186

Intramuscular vaccination, 50–51, 51f

ISCOM™ (immune-stimulating complex consisting of cholesterol and phospholipids), 109

ISCOMATRIX™, 156t

Jenner, Edward, 5, 7f, 62, 152

Killed/inactivated pathogen vaccines,
10, 11, 17, 60, 64, 68–69, 89–90
characteristics of, 72f
influenza, 17
Pneumococcus, 19
polio, 15
Kitasato, Shibasaburo, 13
Koch, Robert, 6, 8, 26, 62
postulates, 8

Large-scale vaccine manufacturing, 127
Latency, 71
Lederberg, Joshua, 186
Licensing procedures, for vaccines (in EU), 129–132, 130f
centralised procedures, 129
emergency procedure, 134f,
135–136, 135f
mock-up procedures, 130–131, 130f, 132t
mutual recognition and decentralised procedures, 129–132
Lipkin, Ian, 186
Lipopolysaccharide (LPS), 33
chemical structure of, 103, 104f
Liposomes, 98–99
structure of, 98f
Live, attenuated pathogen vaccines,
10, 14, 15, 21, 65, 68, 77, 70, 184, 192
characteristics of, 72
Live vector vaccine, 184
LT, 156t
LuJo virus, 186
Lysozymes, 31
Macrophages, 94
Madhava Nidana, 4
Major histocompatibility complex (MHC), 38–39
restriction, 158
Measles-mumps-rubella (MMR) vaccine, 17, 119, 144–145
Measles vaccine, aerosolised, 170
Meningococcal polysaccharide vaccines, 19–20
Metchnikoff, Élie, 13, 26
MF59™, 93f, 101–102, 155, 156t–157t,
175, 193 see also Oil-in-water emulsions
structure of, 101f
Microbes, 8
Microbial DNA immunostimulatory sequences, 107
structure of, 108f
Microbiome, 186
Microneedles, 171f
Mock-up procedure, pandemic influenza vaccines authorisation using, 132–134, 133f, 134t
Monocytes, 94
Monophosphoryl lipid A (MPL), 103, 104f, 157t
Montague, Mary Wortley, 5f
Montanide™ ISA51, 93f, 107, 157t
see also Water-in-oil emulsions
Montanidec ISA720, 156t
Multifactorial vaccine development process, 121
Multiple puncture method, 7–8, 8f
Mumps, 146–147
Mycobacterium bovis bacillus, 14, 173
Mycobacterium leprae, 69
Mycobacterium tuberculosis (M. tuberculosis), 55, 71, 173, 174t
Naïve T lymphocytes, 38
NanoBio Corp., 155
Nanoemulsions, 155
NanoStat™, 156t
National Regulatory Authorities (NRA), 132
Natural immunity to infection, 13
Natural killer (NK) cells, 71
Neisseria gonorrhoeae, 53
Neisseria meningitides, 81
Neonatal infants, vaccines for, 193
Neonatal tetanus, 13 see also Tetanus
New onset of chronic disorders (NOCDs), 125
New vaccines, for complex and challenging targets, 172–187
neglected tropical and non-tropical diseases, 185–186
pathogens with complex life cycle, 177–179
exhibiting antigenic variability, 179–184
novel and emerging, 186
persistent infections and malignancy, 172–177
undesirable immune responses, 185
Nicotine vaccine, 189
Nigeria, polio outbreak in, 22
Non-infectious conditions, vaccines for, 185t–186t, 187–191,
188t–189t
addiction, prophylactic and therapeutic vaccines for, 187–189
Cancer, prophylactic and therapeutic vaccines for, 189–191
North America, variolation in, 4
Novartis Vaccines Institute for Global Health, 186
OIL-IN-WATER EMULSIONS, 79, 93f, 100,
100f see also Emulsions in vaccines
MF59™, 93f, 99—100, 99f, 101—102,
101f
thermo-reversible, 94f, 102
Oral polio vaccine (OPV), 15
Pan American Health Organization
Revolving Fund for Vaccine Procurement, 119
Pandemic influenza vaccines, 77
see also Influenza vaccines
EU authorization of, 132—136
using emergency procedure, 134f,
135—136, 135f
using mock-up procedure, 133f,
134—135, 135f
post-authorisation studies of, 133f,
136—142, 137f
Parasites, 39, 56—57, 177, 185
Particulate antigens, 83—85
Pasteur, Louis, 8, 26, 62
Pathogen-associated molecular patterns (PAMP), 31
effectors, 33f
recognition of, 94
sensors, 33f
Pathogen peptide libraries, 159—160
Pathogens attenuation of, 8—11
causing persistent infections, 174f
complexity, 70—71
with complex life cycle, 177—179
detection of, 31—34
exhibiting antigenic variability, 179—184
identification and selection, 120
inactivated, 10
novel and emerging, 186
recognition of, 94—95
split-pathogen, 73
whole organism vaccines for, 17—18
Pattern recognition receptors (PRRs),
31, 94
intracellular, 33f
Peptide approaches to vaccine antigens, 66, 67f
Periodic safety update report (PSUR), 137
Persistent infections pathogens causing, 174f
vaccines addressing, 172—177
Pertussis, 17, 22, 143, 192
Pertussis vaccine, 17, 71, 73
acellular, 193
Phagocytes, 13, 26
Pharmacovigilance, vaccine,
136—142
background incidence of events,
understanding, 140—142
case study, 139—142
considerations, 138f
definition of, 136
regulation processes for safety and immunogenicity, 139—140
Phipps, James, 152
Plasmodium falciparum, 177—178
life cycle of, 178f
Plasmodium parasite, 71
Pneumococcal vaccines, 19—20
Polio, 15—17
eradication of, 2—3
outbreak in Nigeria, 22
outbreak in Tajikistan, 22
vaccine, 21
Poly-epitope vaccines, 158
Polysaccharide conjugate vaccines,
80—81, 82f
Post-licensure surveillance, pandemic influenza vaccines, 136—142,
137f
Pregnant women, vaccines for, 192
‘Prime-boost’ approach, 184
QS21, 107—110
chemical structure of, 109f
Quality-adjusted life years (QALYs), 117
Quality control (QC), of vaccines, 128—129
Ramon, Gaston, 12, 13, 91
Reassortant viruses, 21—22
Recombinant/DNA technology approaches to vaccine antigens, 64—66, 66f
generation of short peptide antigens by, 76, 77f
Recombinant modified vaccinia Ankara (rMVA), 161, 163f, 175f, 191f
Reference Member State (RMS), 131
Regulatory T cells (Treg cells), 43
Resiquimod, 156f
Respiratory syncytial virus (RSV) vaccines, 55, 67—68, 70, 182,
185
Reverse vaccinology, 74, 74f, 158
Rhesus rotavirus tetravalent vaccine (RRV-TV) (Rotashield™),
139—142, 145
Robbins, Frederick, 15
Rotarix™ (RV1), 141
RotaTeq™ (RV5), 141
Rotavirus infection, 140—142
vaccination previous attempts to, 140—141
recent attempts, 141—142
Rotavirus vaccine, 22
Roux, Émile, 8, 12
Royal Jennerian Society, 6
Royal Philanthropic Expedition, 8
RTS,S recombinant malaria candidate vaccine antigen, structure of, 179
Rubella, 146
Sabin, Albert, 15
Safety assessment or monitoring, of vaccines, 124f
clinical safety evaluation, 124–125
continuous improvement in, 148
vaccine ingredients, 147–148
Salmonella enterica, 56
Seasonal influenza vaccines, 78–79
see also Influenza vaccines
Serious adverse events (SAEs), 125
Serious unexpected suspected adverse events (SUSARs), 137
Seroprotection rates, 142
Serotype replacement, 180
Short peptide antigens
direct synthesis of, 76
generation of, by recombinant DNA technology, 76, 77f
Sipuleucel-T, 167
Smallpox, 4f
cowpox vaccination for, 6–7
variolation for, 4, 5f
inoculation procedure, 4, 7f
Speckled monster, 4
Split-pathogen approaches to vaccine antigens, 17–18, 73, 128
see also Pathogens
characteristics of, 75
Streptococcus pneumoniae, 81
Subunit antigens, 17–18, 21–22, 52, 61, 73, 128
characteristics of, 75
defined, 73–75
limitations of, 75
Synthetic MPL (RC-529), 93t
Syphilis, 4

Tajikistan, polio outbreak in, 22
T-cells
activation of, 38
antigen discovery technology, 159, 160f

Tetanus
neonatal, 13
vaccination, 13
Theiler, Max, 14
Thermo-reversible oil-in-water emulsion, 94, 102 see also Oil-in-water emulsions
Thiomersal, 147–148
Toll-like receptors (TLRs), 31, 94
mammalian, 32t
TORCH pathogens, 192
Toxins, 11–13
anatoxin, 13
exotoxins, 12
Toxoids, 12, 62, 81
Transdermal microneedle patches, 170
Tuberculosis (TB), 4, 172–173
Tumour-associated antigens (TAA), 189
Typhoid fever vaccine, 11
‘Typhoid Mary’, 11f

UK National Health Service (NHS), 146
United Nations Children's Fund (UNICEF), 132
United States
impact of vaccines in, 21t
Vaccination
boosting in, 45f
cowpox, 4–6
evolution of, 3
immunological impediments to, 57
intramuscular, 51f
priming in, 45f
programme (first), 8
programmes, adherence to, 22
tetanus, 13
Vaccine Adverse Event Reporting System (VAERS), 139
Vaccine antigens, 60–87
defined, 64
discovery of, 64
future of, 85
HBV vaccine antigen, recombinant proteins for, 83–84
identifying and producing, 64–68, 63f
for influenza vaccines, 78–79
on nature, building and improving, 80
particulate antigens, 83
peptide approaches to, 66, 67f
polysaccharide conjugate vaccines, 80–81, 82f
recombinant/DNA approaches to, 65–66, 66f
short peptide antigens
direct synthesis of, 76
generation of, by recombinant DNA technology, 76, 77f
whole-pathogen-based see Whole-pathogen-based vaccines
Vaccine Safety Data (VSD) link system, 139
Vaccines and Related Biological Products Advisory Committee (VRBPAC), 132
Vaccinology, immunological milestones of, 27t
Varicella zoster virus, 71
Variolation, 6f
in Europe, 4
mortality associated with, 4
in North America, 6
Vascular endothelial cells, 31
Veterans' Health Administration (VHA), 139
Viral vector vaccines, 161, 162f, 163t–164t
advantages and disadvantages of, 169t–170t
Virosomes, 93t, 98–99
structure of, 98f
Viruses, 56
 as infectious agents, 15
Vitamin E, 105

Water-in-oil emulsions, 92, 99, 98f
 see also Emulsions in vaccines
 Montanide™ ISA51, 93f, 107
Wellcome Trust Hilleman Laboratories, 186
Weller, Thomas, 15
Whole-pathogen-based vaccines, 17–18, 65f
 killed/inactivated pathogen vaccines, 68–72, 72f

subunit antigens, 18, 22, 52, 73, 90, 128, 158, 184
World Health Organization (WHO), 2, 132, 185
 CHOICE (CHOosing Interventions that are Cost-Effective) project, 118
 polio position paper, 15–17

Yersin, Alexandre, 12
Zoster vaccine, 172

limitations of attenuation of live vaccines, loss of, 69
 high reactogenicity, 69
 latency and immunoevasion, 71
 pathogen complexity, 70–71
 reduced immunogenicity, 71–72
 reversion, risk of, 70
 unwanted immune response, 70
live, attenuated pathogen vaccines, 69, 70, 72f
split-pathogen, 17–18, 73, 128