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Some functions f : R+ → R+ induce mean of positive numbers

and the matrix monotonicity gives a possibility for means of posi-

tive definitematrices.Moreover, such a function f can define a linear

mapping (J
f
D)−1 : Mn → Mn on matrices (which is basic in the

constructions of monotone metrics). The present subject is to check

the complete positivity of (J
f
D)−1 in the case of a few concrete func-

tions f . This problemhas beenmotivatedby applications in quantum

information.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Let D ∈ Mn be a positive definite matrix and f : R+ → R+ be a continuous increasing function.

A linear operator J
f
D : Mn → Mn is defined as

J
f
D = f (LDR

−1
D )RD, (1)

where LD, RD : Mn → Mn,

LD(X) = DX and RD(X) = XD (D ∈ Mn) .
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(The operatorLDR
−1
D appeared in themodular theory of von Neumann algebras.) The operator J

f
D and

its inverse

(J
f
D)

−1 = f−1(LDR
−1
D )R−1

D

occur in several quantum applications [12,14,17]. There the function f should be operator monotone

which means that 0 ≤ A ≤ B implies f (A) ≤ f (B) for all matrices A, B ∈ Mn for every n ∈ N. For

example,

γD(A, B) := 〈A, (Jf
D)

−1B〉
is a kind of Riemannian metric, D > 0 is a foot-point and the self-adjoint matrices A and B are tangent

vectors. This innerproduct is real-valued if xf (x−1) = f (x).Weshall call thematrixmonotone function

f standard if f (1) = 1 and xf (x−1) = f (x). Standard functions are used to define (symmetric) matrix

means:

Mf (A, B) = A1/2f (A−1/2BA−1/2)A1/2,

see [9]. For numbers mf (x, y) = xf (y/x).

It is well-known, see [9], that if f : R+ → R+ is a standard matrix monotone function, then

2x

x + 1
≤ f (x) ≤ x + 1

2
.

For example,

2x

x + 1
≤ √

x ≤ x − 1

logx
≤ x + 1

2
,

they correspond to the harmonic, geometric, logarithmic and arithmetic mean.

The linear mappings (J
f
D)

−1 : Mn → Mn have the monotonicity condition

α∗(Jf

α(D))
−1α ≤ (J

f
D)

−1 (2)

for every completely positive trace preserving mapping α : Mn → Mm, if f is a matrix monotone

function. The monotonicity property is important in the construction of monotone metrics and Fisher

information [11,14] and the requirement of the matrix monotonicity for f is motivated by these appli-

cations.

The linear transformation (J
f
D)

−1 appeared also in the paper [17] (in a different notation) and

the complete positivity was questioned there. The subject of this paper is to find functions f such

that (J
f
D)

−1 (or J
f
D) is completely positive for every D > 0 matrix and to show examples not being

completely positive. Presently we cannot find abstract results, only concrete functions are analyzed

here. When the matrix monotonicity is not known for a function discussed here, it is proven as well.

2. Preliminaries

A linear mapping β : Mn → Mn is completely positive if idn ⊗ β : Mn ⊗ Mn → Mn ⊗ Mn is

positive, or equivalently

β(X) = ∑
i

ViXV
∗
i with Vi ∈ Mn.

In the first definition the matrix size is increased. Since in our context for (J
f
D)

−1 all dimensions n are

included, it will turn out below that complete positivity is the same as positivity (for every n).
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If D = Diag (λ1, . . . , λn), then

(J
f
DA)ij = Aijmf (λi, λj) (A ∈ Mn)

and

((J
f
D)

−1A)ij = Aij

1

mf (λi, λj)
(A ∈ Mn).

Both J
f
D and (J

f
D)

−1 have the form of a Hadamard product A 
→ A ◦ T . Note that for idn ⊗ J
f
D and

idn ⊗ (J
f
D)

−1 we have similar situation, but the diagonal matrix has n2 positive parameters.

Lemma 1. The linear mapping β : Mn → Mn, β(A) = A ◦ T is completely positive if and only if the

matrix T ∈ Mn is positive.

Proof. If β is completely positive, then A ◦ T ≥ 0 for every positive A. This implies the positivity of T .

Themappingβ linearly depends on T . Therefore, it is enough to prove the complete positivitywhen

Tij = λiλj . Then

β(A) = Diag (λ1, λ2, . . . , λn)
∗ADiag (λ1, λ2, . . . , λn)

and the complete positivity is clear. �
Assume that a standardmatrixmonotone function f is given. Let λ1, λ2, . . . , λn be strictly positive

numbers. The positivity of the matrix Xf ∈ Mn defined as

(Xf )ij = mf (λi, λj) (3)

is an interesting question. We call Xf mean matrix. (A stronger property than positivity is the so-called

infinite divisibility [2], this is not studied here, but some results are used.)

The choice λ1 = 1 and λ2 = x shows that

f (x) ≤ √
x

is a necessary condition for the positivity of the mean matrix, in other words mf should be smaller

than the geometric mean. If f (x) ≥ √
x, then the matrix

(Yf )ij = 1

mf (λi, λj)
(4)

can be positive. The matrix (4) was important in the paper [11] for the characterization of monotone

metrics, see also [6–8,12–14].

If f (x) = √
x, then both J

f
D and (J

f
D)

−1 are completely positive, since (Xf )ij = √
λi

√
λj and

(Yf )ij = 1/(
√

λi

√
λj) are positive matrices. We show some other simple examples.

Example 1. If f (x) = (1 + x)/2, the arithmetic mean, then Yf is the so-called Cauchy matrix,

(Yf )ij = 2

λi + λj

= 2

∫ ∞
0

e−sλi e−sλj ds,

which is positive. Therefore, the mapping A 
→ A ◦ Yf is completely positive. This can be seen also

from the formula

(J
f
D)

−1(A) = 2

∫ ∞
0

exp(−sD)A exp(−sD) ds.
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Example 2. The logarithmic mean corresponds to the function f (x) = (x − 1)/logx.
The mapping

(J
f
D)

−1(A) =
∫ ∞
0

(D + t)−1A(D + t)−1 dt

is completely positive.

LetD = Diag (λ1, λ2, . . . , λn)bepositive definite. Since (J
f
D)

−1(A) = A◦Yf is aHadamardproduct

with

(Yf )ij = logλi − logλj

λi − λj

,

the complete positivity of the mapping (J
f
D)

−1 implies the positivity of Yf .

Another proof comes from the formula

logλi − logλj

λi − λj

=
∫ ∞
0

1

s + λi

1

s + λj

ds

due to a Hadamard product.

If the standardmatrixmonotone function f (x) is between
√

x and (x+1)/2, then g(x) := 1/f (x−1)
is a standard matrix monotone function as well and 2x/(x + 1) ≤ g(x) ≤ √

x. It follows that the

positivity of (4) is equivalent to the positivity of the mean matrix

(Xg)ij = mg(λi, λj) = λiλj

mf (λi, λj)
.

3. Results

Example 3. Consider the standard matrix monotone function

f (x) := 1

2
(xt + x1−t) ≥ √

x (0 < t < 1).

(The corresponding mean is sometimes called Heinz mean).

To find the inverse of the mapping

J
f
D(A) = 1

2

(
DtAD1−t + D1−tADt

)

we should solve the equation

2A = DtYD1−t + D1−tYDt,

when Y = (J
f
D)

−1(A) is unknown. This has the form

2D−tAD−t = YD1−2t + D1−2tY

which is a Sylvester equation. The solution is

(J
f
D)

−1(A) = Y =
∫ ∞
0

exp(−sD1−2t)(2D−tAD−t) exp(−sD1−2t) ds.

This mapping is positive.
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The function

ft(x) = 22t−1xt(1 + x)1−2t =
(

2x

1 + x

)t (
x + 1

2

)1−t

(5)

is a kind of interpolation between the arithmetic mean (t = 0) and the harmonic mean (t = 1). This

function appeared in the paper [4] and it is proven there that it is a standardmatrixmonotone function.

Theorem 1. If t ∈ (0, 1/2), then

ft(x) = 22t−1xt(1 + x)1−2t ≥ √
x

and the mapping (J
ft
D)

−1 is completely positive.

Proof. We shall use the mean matrix approach and show that

(Yft )ij = 1

mft (λi, λj)
= 21−2t

(λi + λj)1−2t
(λiλj)

−t

is positive.

For |x| < 1 and 1 − 2t = α > 0 the binomial expansion yields

(1 − x)−α =
∞∑
k=0

akx
k,

where

ak = (−1)k
(−α

k

)
= (−1)k

(−α − 1)(−α − 2) · · · · · (−α − k + 1)

k! > 0.

So that

(λi + λj)
−(1−2t) =

⎛
⎝(

λi + 1

2

) (
λj + 1

2

) ⎛
⎝1 −

(
λi − 1

2

) (
λj − 1

2

)
(
λi + 1

2

) (
λj + 1

2

)
⎞
⎠

⎞
⎠

−(1−2t)

=
(
λi + 1

2

)−(1−2t) (
λj + 1

2

)−(1−2t) ∞∑
k=0

ak

⎛
⎝

(
λi − 1

2

) (
λj − 1

2

)
(
λi + 1

2

) (
λj + 1

2

)
⎞
⎠

k

=
∞∑
k=0

ak

(
λi − 1

2

)k (
λj − 1

2

)k
(
λi + 1

2

)k+(1−2t) (
λj + 1

2

)k+(1−2t)
.

Hence we have

(Yft )ij = 21−2t
∞∑
k=0

ak

(
λi − 1

2

)k
(
λi + 1

2

)k+(1−2t)
λt
i

(
λj − 1

2

)k
(
λj + 1

2

)k+(1−2t)
λt
j

and Yft is the sum of positive matrices of rank one. �
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If t ∈ (1/2, 1) in (5), then

ft(x) ≤ √
x

and the positivity of the matrix

(Xft )ij = mft (λi, λj)

can be shown similarly to the above argument. Therefore J
ft
D is completely positive.

Example 4. The mean

m(x, y) = 1

2

(
x + y

2
+ 2xy

x + y

)

induced by the function

f (x) = 1

2

(
1 + x

2
+ 2x

1 + x

)

is larger than the geometric mean. Indeed,

1

2

(
x + y

2
+ 2xy

x + y

)
≥

√
x + y

2

2xy

x + y
= √

xy.

The numerical computation shows that in this case already the determinant of a 3×3matrix Yf can

be negative. This example shows that the corresponding mapping (J
f
D)

−1 is not completely positive.

Next we consider the function

ft(x) = t(1 − t)
(x − 1)2

(xt − 1)(x1−t − 1)
(6)

which was first studied in the paper [5]. If 0 < t < 1, then the integral representation

1

ft(x)
= sin tπ

π

∫ ∞
0

dλ λt−1
∫ 1

0
ds

∫ 1

0
dr

1

x((1 − r)λ + (1 − s)) + (rλ + s)
(7)

shows that ft(x) is operator monotone. (Note that in the paper [16] the operator monotonicity was

obtained for −1 ≤ t ≤ 2.) The property xf (x−1) = f (x) is obvious.
If t = 1/2, then

f (x) =
(
1 + √

x

2

)2

≥ √
x

and the corresponding mean is called binomial mean or power mean. In this case we have

(Yf )ij = 4

(
√

λi +
√

λj)2
.

The matrix

Uij = 1√
λi +

√
λj
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is a kind of Cauchy matrix, so it is positive. Since Yft = 4U ◦ U, Yft is positive as well.

If γ (A) = A ◦ U, then (J
ft
D)

−1 = 4γ 2. Since

γ (A) =
∫ ∞
0

exp(−s
√

D)A exp(−s
√

D) ds,

we have

(J
ft
D)

−1(A) = 4

∫ ∞
0

∫ ∞
0

exp(−(s + r)
√

D)A exp(−(s + r)
√

D) ds dr. (8)

The complete positivity of (J
ft
D)

−1 is clear from this formula.

For the other values of t in (0, 1) the proof is a bit more sophisticated.

Lemma 2. If 0 < t < 1, then ft(x) � √
x for x > 0.

Proof. It is enough to show that for 0 < t < 1 and x > 0

t
x − 1

xt − 1
� x

1−t
2 , (9)

since this implies

t
x − 1

xt − 1
(1 − t)

x − 1

x1−t − 1
� x

1−t
2 x

t
2 = √

x.

Denote

g(x) := t(x − 1) + x
1−t
2 − x

1+t
2 .

Then inequality (9) reduces to g(x) � 0 for x � 1 and to g(x) � 0 for 0 < x � 1. Since g(1) = 0

it suffices to verify that g is monotone increasing, in other words g′ � 0. By simple calculation one

obtains

g′(x) = t + 1 − t

2
x

−t−1
2 − 1 + t

2
x

t−1
2

and

g′′(x) = 1 − t2

4
x

t−3
2 − 1 − t2

4
x

−t−3
2 ,

which yields g′′(x) � 0 for 0 < x < 1 and g′′(x) � 0 for x � 1. Thus, due to g′(1) = 0, g′ � 0, the

statement follows. �
It follows from Lemma 2 that the matrix

(Yft )ij = t(1 − t) × λt
i − λt

j

λi − λj

× λ1−t
i − λ1−t

j

λi − λj

(1 ≤ i, j ≤ m)

can be positive. It is a Hadamard product, so it is enough to see that

U
(t)
ij = λt

i − λt
j

λi − λj

(1 ≤ i, j ≤ m)
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is positive for 0 < t < 1. It is a well-known fact (see [1]) that the function g : R+ → R is matrix

monotone if and only if the Löwner matrices

Lij = g(λi) − g(λj)

λi − λj

(1 ≤ i, j ≤ m)

are positive. The function g(x) = xt is matrix monotone for 0 < t < 1 and the positivity of U(t) and

Yft follows. So we have:

Theorem 2. For the function (6) the mapping (J
ft
D)

−1 is completely positive if 0 < t < 1.

To see the explicit complete positivity of (J
ft
D)

−1, themappings γt(A) = A◦U(t) are useful, we have

(J
ft
D)

−1(A) = t(1 − t)γt(γ1−t(A)).

Instead of the Hadamard product, which needs the diagonality of D, we can use

γt(A) = ∂

∂x
(D + xA)t

∣∣∣
x=0

.

We compute γt from

(D + xA)t = sinπ t

π

∫ ∞
0

(
I − s(D + xA + sI)−1

)
st−1 ds.

So we obtain

γt(A) = sinπ t

π

∫ ∞
0

st(D + sI)−1A(D + sI)−1 ds

and

(J
ft
D)

−1(A) = t(1 − t)
sinπ t sinπ(1 − t)

π2∫ ∞
0

∫ ∞
0

r1−tst(D + rI)−1(D + sI)−1A(D + sI)−1(D + rI)−1 ds dr.

Example 5. The power difference means are determined by the functions

ft(x) = t − 1

t

xt − 1

xt−1 − 1
(−1 ≤ t ≤ 2), (10)

where the values t = −1, 1/2, 1, 2 correspond to the well-known means: harmonic, geometric,

logarithmic and arithmetic mean. The functions (10) are operator monotone [3] and we show that for

fixed x > 0 the value ft(x) is increasing function of t.

By substituting x = e2λ one has

ft(e
2λ) = t − 1

t

eλt e
λt−e−λt

2

eλ(t−1) eλ(t−1)−e−λ(t−1)

2

= eλ
t − 1

t

sinh(λt)

sinh(λ(t − 1))
.

Since

d

dt

(
t − 1

t

sinh(λt)

sinh(λ(t − 1))

)
= sinh(λt) sinh(λ(t − 1)) − λt(t − 1) sinh(λ)

t2 sinh2(λ(t − 1))
,
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it suffices to show that

g(t) = sinh(λt) sinh(λ(t − 1)) − λt(t − 1) sinh(λ) � 0.

Observe that lim±∞ g = +∞ thus g has a global minimum. By simple calculations one obtains

g′(t) = λ(sinh(λ(2t − 1)) − (2t − 1) sinh(λ)).

It is easily seen that the zeros of g′ are t = 0, t = 1/2 and t = 1 hence g(0) = g(1) = 0 and

g( 1
2
) = sinh2( λ

2
) + λ

4
sinh(λ) � 0 implies that g � 0.

It follows that

√
x ≤ ft(x) ≤ 1 + x

2
(1/2 ≤ t ≤ 2) and

2x

x + 1
≤ ft(x) ≤ √

x (−1 ≤ t ≤ 1/2).

For the values 1/2 ≤ t ≤ 2 the complete positivity holds. This follows from the next lemma which

contains a bigger interval for t.

Lemma 3. The matrix

(Yft )ij := t

t − 1

λt−1
i − λt−1

j

λt
i − λt

j

is positive if 1
2

� t.

Proof. For t > 1 the statement follows from the proof of Theorem 2, since

t

t − 1

λt−1
i − λt−1

j

λt
i − λt

j

= t

t − 1

(λt
i )

t−1
t − (λt

j )
t−1
t

λt
i − λt

j

,

where 0 < t−1
t

< 1, further, for t = 1 as limit (Yf1)ij = (logλi − logλj)/(λi − λj) the statement

follows from Example 2. If 1
2

� t < 1 let s := 1 − t where 0 < s � 1
2
. Then

(Yft )ij = t

t − 1

λt−1
i − λt−1

j

λt
i − λt

j

= 1 − s

−s

λ−s
i − λ−s

j

λt
i − λt

j

= 1 − s

s

(λt
i )

s
t − (λt

j )
s
t

λt
i − λt

j

1

λs
iλ

s
j

so that (J
ft
D)

−1 is the Hadamard product of U and V , where

Uij = (λt
i )

s
t − (λt

j )
s
t

λt
i − λt

j

is positive due to 0 < s
t
� 1 and

Vij = 1 − s

s

1

λs
iλ

s
j

is positive, too. �
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Example 6. Another interpolation between the arithmetic mean (t = 1) and the harmonic mean

(t = 0) is the following:

ft(x) = 2(tx + 1)(t + x)

(1 + t)2(x + 1)
(0 ≤ t ≤ 1).

First we compare this mean with the geometric mean:

ft(x
2) − x = (x − 1)2(2tx2 − (1 − t)2x + 2t)

(1 + t)2(x2 + 1)

and the sign depends on

x2 − (1 − t)2

2t
x + 1 =

(
x − (1 − t)2

4t

)2

+ 1 −
(

(1 − t)2

4t

)2

.

So the positivity condition is (1− t)2 ≤ 4twhich gives 3−2
√

2 ≤ t ≤ 3+2
√

2. For these parameters

ft(x) ≥ √
x and for 0 < t < 3 − 2

√
2 the two means are not comparable.

For 3 − 2
√

2 ≤ t ≤ 1 the matrix monotonicity is rather straightforward:

ft(x) = 2

(1 + t)2

(
tx + t2 − t + 1 − (t − 1)2

x + 1

)
.

However, the numerical computations show that Yft ≥ 0 is not true.

In the rest we concentrate on the matrix monotonicity of some functions. First the Stolarsky mean

is investigated in [10,15].

Theorem 3. Let

fp(x) :=
(
p(x − 1)

xp − 1

) 1
1−p

, (11)

where p �= 1. Then fp is matrix monotone if −2 � p � 2.

Proof. First note that f2(x) = (x + 1)/2 is the arithmetic mean, the limiting case f0(x) = (x −
1)/logx is the logarithmicmean and f−1(x) = √

x is the geometricmean, theirmatrixmonotonicity is

well-known. If p = −2 then

f−2(x) =
(

2x2

x + 1

) 1
3

which will be shown to be matrix monotone at the end of the proof.

Now let us suppose that p �= −2, −1, 0, 1, 2. By Löwner’s theorem [1] fp is matrix monotone if

and only if it has a holomorphic continuation mapping the upper half plane into itself []. We define

logz as log 1 := 0 then in case−2 < p < 2, since zp −1 �= 0 in the upper half plane, the real function

p(x − 1)/(xp − 1) has a holomorphic continuation to the upper half plane, moreover it is continuous

in the closed upper half plane, further, p(z − 1)/(zp − 1) �= 0 (z �= 1) so fp also has a holomorphic

continuation to the upper half plane and it is also continuous in the closed upper half plane.

Assume −2 < p < 2 then it suffices to show that fp maps the upper half plane into itself. We

show that for every ε > 0 there is R > 0 such that the set {z : |z| � R, Im z > 0} is mapped into
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{z : 0 � arg z � π + ε}, further, the boundary (−∞, +∞) is mapped into the closed upper half

plane. By the open mapping theorem the image of a connected open set by a holomorphic function is

either a connected open set or a single point thus it follows that the upper half plane is mapped into

itself by fp.

Clearly, [0, ∞) is mapped into [0, ∞) by fp.

Now first suppose 0 < p < 2. Let ε > 0 be sufficiently small and z ∈ {z : |z| = R, Im z > 0}
where R > 0 is sufficiently large. Then

arg(zp − 1) = arg zp ± ε = p arg z ± ε,

and similarly arg z − 1 = arg z ± ε so that

arg
z − 1

zp − 1
= (1 − p) arg z ± 2ε.

Further,

∣∣∣∣ z − 1

zp − 1

∣∣∣∣ � |z| − 1

|z|p + 1
= R − 1

Rp + 1
,

which is large for 0 < p < 1 and small for 1 < p < 2 if R is sufficiently large, hence

arg

(
z − 1

zp − 1

) 1
1−p = 1

1 − p
arg

(
z − 1

zp − 1

)
± 2ε = arg z ± 2ε

2 − p

1 − p
.

Since ε > 0 was arbitrary it follows that {z : |z| = R, Im z > 0} is mapped into the upper half plane

by fp if R > 0 is sufficiently large.

Now, if z ∈ [−R, 0) then arg(z − 1) = π , further, pπ � arg(zp − 1) � π for 0 < p < 1 and

π � arg(zp − 1) � pπ for 1 < p < 2 whence

0 � arg

(
z − 1

zp − 1

)
� (1 − p)π for 0 < p < 1,

and

(1 − p)π � arg

(
z − 1

zp − 1

)
� 0 for 1 < p < 2.

Thus by

π arg

(
z − 1

zp − 1

) 1
1−p = 1

1 − p
arg

(
z − 1

zp − 1

)

it follows that

0 � arg

(
z − 1

zp − 1

) 1
1−p

� π

so z is mapped into the closed upper half plane.

The case −2 < p < 0 can be treated similarly by studying the arguments and noting that

fp(x) =
(
p(x − 1)

xp − 1

) 1
1−p

=
( |p|x|p|(x − 1)

x|p| − 1

) 1
1+|p|

.
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Finally, we show that f−2(x) is matrix monotone. Clearly f−2 has a holomorphic continuation to

the upper half plane (which is not continuous in the closed upper half plane). If 0 < arg z < π then

arg z
2
3 = 2

3
arg z and 0 < arg(z + 1) < arg z so

0 < arg

⎛
⎝ z

2
3

(z + 1)
1
3

⎞
⎠ < π

thus the upper half plane is mapped into itself by f−2. �
The limiting case p = 1 is the so-called identric mean:

f1(x) = 1

e
x

x
x−1 = exp

(
x log x

x − 1
− 1

)
.

It is not so difficult to show that f1 is matrix monotone.

The inequality

√
x ≤ fp(x) ≤ 1 + x

2

holds if p ∈ [−1, 2]. It is proved in [2] that the matrix

(Yfp)ij =
⎛
⎝ λ

p
i − λ

p
j

p(λi − λj)

⎞
⎠

1
1−p

is positive.

Corollary 1. The Stolarsky mean function is matrix monotone for p ∈ [−1, 2] and the induced mapping

(J
fp
D )−1 is completely positive.

The power mean or binomial mean

m(a, b) =
(
ap + bp

2

) 1
p

is induced by

fp(x) =
(
xp + 1

2

) 1
p

can be also a matrix monotone function:

Theorem 4. The function

fp(x) =
(
xp + 1

2

) 1
p

(12)

is matrix monotone if and only if −1 � p � 1.
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Proof. Observe that f−1(x) = 2x/(x + 1) and f1(x) = (x + 1)/2, so fp could be matrix monotone

only if −1 � p � 1. We show that it is indeed matrix monotone. The case p = 0 as limit f0(x) = √
x

is well-known. Further, note that if fp is matrix monotone for 0 < p < 1 then f−p(x) = 1/fp(x
−1) is

also matrix monotone since x 
→ x−1 is matrix monotone decreasing.

So let us assume that 0 < p < 1. Then, since zp+1 �= 0 in theupperhalf plane, fp has aholomorphic

continuation to the upper half plane (by defining logz as log 1 = 0). By Löwner’s theorem it suffices to

show that fp maps the upper half plane into itself. If 0 < arg z < π then 0 < arg(zp + 1) < arg zp =
p arg z so

0 < arg

(
zp + 1

2

) 1
p

= 1

p
arg

(
zp + 1

2

)
< arg z < π

thus z is mapped into the upper half plane. �

In the special case p = 1
n
,

f1/n(x) =
⎛
⎝x

1
n + 1

2

⎞
⎠

n

= 1

2n

n∑
k=0

(
n

k

)
x

k
n ,

and it is well-known that xα is matrix monotone for 0 < α < 1 thus f1/n is also matrix monotone.

Since the power mean is infinitely divisible [2] and f−p(x) = 1/fp(x
−1), we have:

Corollary 2. The function of the power mean is matrix monotone for −1 � p � 1. The mapping

(J
fp
D )−1 induced by the power mean is completely positive for p ∈ [0, 1] and J

fp
D is completely positive for

p ∈ [−1, 0].

4. Discussion and conclusion

The complete positivity of some linear mappings (J
f
D)

−1 : Mn → Mn has been a question in

physical applications when the mapping is determined by a standard matrix monotone function f :
R+ → R+. Themean inducedby the function f is larger than thegeometricmean. In thepresent paper

several concrete functions are studied, for example, Heinz mean, power difference means, Stolarsky

mean and interpolations between some means. The complete positivity of (J
f
D)

−1 is equivalent to

the positivity of a mean matrix. The analysis of the functions studied here is very concrete, general

statement is not known.
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