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Concentrating photovoltaic (CPV) systems are a key step in expanding the use of solar energy. Solar cells
can operate at increased efficiencies under higher solar concentration and replacing solar cells with
optical devices to capture light is an effective method of decreasing the cost of a system without com-
promising the amount of solar energy absorbed. However, CPV systems are still in a stage of development
where new designs, methods and materials are still being created in order to reach a low levelled cost of
energy comparable to standard silicon based PV systems. This article outlines the different types of
concentration photovoltaic systems, their various design advantages and limitations, and noticeable
trends. This will include comparisons on materials used, optical efficiency and optical tolerance
(acceptance angle). As well as reviewing the recent development in the most commonly used and most
established designs such as the Fresnel lens and parabolic trough/dish, novel optics and materials are
also suggested. The aim of this review is to provide the reader with an understanding of the many types
of solar concentrators and their reported advantages and disadvantages. This review should aid the
development of solar concentrator optics by highlighting the successful trends and emphasising the
importance of novel designs and materials in need of further research. There is a vast opportunity for
solar concentrator designs to expand into other scientific fields and take advantage of these developed
resources. Solar concentrator technologies have many layers and factors to be considered when
designing. This review attempts to simplify and categorise these layers and stresses the significance of
comparing as many of the applicable factors as possible when choosing the right design for an appli-
cation.

From this review, it has been ascertained that higher concentration levels are being achieved and will
likely continue to increase as high performance high concentration designs are developed. Fresnel lenses
have been identified as having a greater optical tolerance than reflective parabolic concentrators but
more complex homogenisers are being developed for both system types which improve multiple per-
formance factors. Trends towards higher performance solar concentrator designs include the use of
micro-patterned structures and attention to detailed design such as tailoring secondary optics to primary
optics and vice-versa. There is still a vast potential for what materials and surface structures could be
utilised for solar concentrator designs especially if inspiration is taken from biological structures already
proven to manipulate light in nature.
& 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
1.1. The benefits of concentrator photovoltaics and review objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
1.2. Concentrator design categorisation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395

2. Primary optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
3. Secondary optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396
4. Overall optical tolerance and acceptance angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399
5. Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399
r Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

s), S.Sundaram@exeter.ac.uk (S. Senthilarasu), T.K.Mallick@exeter.ac.uk (T.K. Mallick).

www.sciencedirect.com/science/journal/13640321
www.elsevier.com/locate/rser
http://dx.doi.org/10.1016/j.rser.2016.01.089
http://dx.doi.org/10.1016/j.rser.2016.01.089
http://dx.doi.org/10.1016/j.rser.2016.01.089
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rser.2016.01.089&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rser.2016.01.089&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rser.2016.01.089&domain=pdf
mailto:kmas201@exeter.ac.uk
mailto:S.Sundaram@exeter.ac.uk
mailto:T.K.Mallick@exeter.ac.uk
http://dx.doi.org/10.1016/j.rser.2016.01.089


K. Shanks et al. / Renewable and Sustainable Energy Reviews 60 (2016) 394–407 395
5.1. Reflective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399
5.2. Refractive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400

6. Novel optics and materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401
6.1. Novel optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401
6.2. Novel materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
6.3. Future outlook and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402

7. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
Fig. 1. Factors affecting CPV performance.
1. Introduction

1.1. The benefits of concentrator photovoltaics and review objectives

The sun delivers 120 petajoules of energy per second to the
Earth. In 1 h the sun delivers more energy to Earth than humanity
consumes over the course of a year. The ability to harvest this solar
energy efficiently and cost effectively however is challenging. For
this reason, there is a growing interest in concentrating photo-
voltaic (CPV) technologies which are systems made up of optical
devices that focus light towards decreased areas of photovoltaic
(PV) material. In this way the expensive PV material is replaced by
more affordable mirrors and/or lenses, reducing the overall cost of
the system but maintaining the area of energy captured and the
efficiency at which it is converted. Not only can CPV systems be
the answer to reducing the cost of solar power but they are more
environmentally friendly than regular flat plate PV panels. This is
due to two reasons; CPV technology uses less semiconductor
components which are made from heavily mined and relatively
rare metals, and CPV technology has a smaller impact on the
albedo change in an area than flat plate PV panels [1,2]. Burg et al.
[1] and Akbari et al. [2] explain this further. Aside from this, the
two main advantages of concentrating photovoltaics (CPV) are
their ability to reduce system costs and to increase the efficiency
limits of solar cells [3].

However, at present it is difficult to produce cost competitive
CPV systems in comparison to those of flat plate photovoltaic (PV)
[4–6]. More reliable optics of higher concentration levels and
lower dependencies on expensive tracking and cooling systems
need to be designed. This requires novel structures and materials
to be investigated. Secondary optics in particular hold a vast
potential for improving the acceptance angle and optical tolerance
of a CPV system and there are many more designs and materials
yet to be tested.

This literature review aims to identify new routes to developing
high performance and reliable optics for solar concentrator
applications. To do this, the subject of solar concentrators must
first be explained as it stands, and then broadened to justify novel
design opportunities. One objective of this review is to give a basis
of the most established methods of solar photovoltaic con-
centrating and group themwhere possible. By categorising designs
effectively, development trends can be seen more clearly and
routes for improved devices substantiated. This also requires
presenting the advantages and disadvantages of each group of
devices which can become very complicated as a solar con-
centrator’s performance depends on multiple factors (Fig. 1). We
also aim to outline the design considerations and in particular
emphasis the importance of surface structure and material on a
concentrator optics performance as shown in Fig. 1. This area of
research hence requires us to branch into the materials science
where inspiration can often be taken by structures found in nat-
ure. Overall, this results in a rather extensive review but one which
is necessary to fully appreciate the potential for solar concentrator
designs and guide them towards a more comprehensive capacity.

1.2. Concentrator design categorisation

Concentrating photovoltaic systems can be categorised in a
variety of ways as shown in Fig. 2. We will provide a simple
grouping of these different designs in order to aid the comparison
of different research areas and literature. The concentration of a
system or optic can be classed as low (o10 suns), medium (10–
100 suns), high (100–2000 suns) and ultrahigh (42000 suns) due
to the different solar tracking requirements outlined by Chemisana
et al. [7]. The main methods of concentration are; reflective,
refractive, luminescent, and total internal reflection (TIR) although
the latter is included within the refractive and luminescent types.
This paper focuses on reflective and refractive photovoltaic sys-
tems. Each type of concentrating photovoltaic system has advan-
tages and disadvantages and it is important to know the applica-
tion and location to choose the most appropriate design. A con-
centrator characterisation table is given in Table 1 to help visualise
the different basic systems and the many combinations possible.
2. Primary optics

The most common and widely adopted primary design con-
cepts are the Fresnel lens and parabolic mirror (Table 1). These two
concentrators differ in a number of ways, allowing them to suit
different applications. One important characteristic is their range
of concentration. Under normal incidence the maximum con-
centration ratio achievable on earth is 46,000� [8]. Languy et al.
[9] investigated the concentration limits of Fresnel lenses and
found the concentration limit to be around 1000� due to



Fig. 2. Concentrator dissemination chart.
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chromatic aberration but this could be increased by combining a
diverging polycarbonate (PC) lens and a converging PMMA lens to
achieve up to �8500� concentration [8]. Canavarro et al. [10]
suggest a singular parabolic trough (with no secondary optics) is
suited to concentrations of only �70� , above which the optical
efficiency, acceptance angle and irradiance distribution begin to
compromise each other. Various research in this field has extended
the concentration of parabolic troughs to �200� [11–15]. These
singular optic designs however still have a severe dependency on
optical tolerance, which includes: acceptance angle, solar tracking,
manufacturing accuracy, wind load effects and the optical finish
quality (see Fig. 1). By matching receiver size to concentrated
beam radius, the optical tolerance can be increased for high con-
centration optics, but not without lowering the topical efficiency
due to the Gaussian shape of solar light [16,17]. The use of a second
concentrator element is needed to bring the concentration value
as close to the limit as possible and relax the demand on the
system accuracy. This is the case for both point focus and line focus
systems [18]. Due to the increasing importance and complexity of
the optical tolerance and acceptance angle of CPV systems, this
area is reviewed on its own in section 2.3.

Brunotte et al. investigated the design of a primary parabolic
trough with a secondary crossed standard CPC, reaching 214�
concentration and concluded ratios exceeding 250� were possi-
ble [19]. Canavarro et al. [10] similarly later proposed the use of a
new ZZ SMS secondary optic to increase the 70� limit to 213�
and achieve an increased acceptance angle. More recently Cana-
varro et al. [12] have proposed a number of potential parabolic
trough concentrator designs with larger aperture areas but still of
only medium concentration levels to maintain acceptable accep-
tance angles.

Fresnel lens designs seemingly can cope better without the aid
of a secondary optic in comparison to parabolic mirrors. There are
a number of reports describing Fresnel lens systems with some-
what enhanced irradiance uniformity, optical tolerance, efficiency
and concentration. This however could be due to the broader
interest in Fresnel lenses, accompanied by more ongoing research
and ingenuity in designs. Gonzalez et al. [20] proposed a curved
cylindrical Fresnel lens with good uniform irradiance but with
significant manufacturing problems. Pan et al. [21] designed a
Fresnel lens where each pitch focused to a different area upon the
receiver, improving uniformity without the aid of a secondary
optic. The design however lacked a good acceptance angle (only
�0.3°) [21]. Benitez et al. [22] and Jing et al. [23] have also both
designed their own unique Fresnel lenses to focus the light rays to
different ‘entry’ areas of the secondary which has also been tailor
designed. Both systems had an improved irradiance distribution,
an optical efficiency of 480% and an acceptance angle of �1.3°.
This suggests fitting secondaries and primaries to complement
each other is important and that CPV technologies would benefit
more from many unique designs, than a few ‘standards’. Although
moving towards new designs, solar concentrators, especially in a
commercial sense, are currently largely in the standards phase.
This is however understandable as the technology is still relatively
new and the conventional Fresnel lens and parabolic concentrators
are the most tested and proven.

Zhenfeng Zhuang et al. [24] more recently also redesigned the
ring structure of a Fresnel lens; rearrangement of the rings
resulted in a significantly improved irradiance uniformity as
shown in Fig. 3. This attention to surface structure again protrudes,
this time for a singular optic, as a strong method to improve
concentrator performance. By tailoring the macro- or micro-
structure (rings in these scenarios) and avoiding continuous sur-
faces on reflectors, high optical efficiencies and improved irra-
diance distributions are achievable. Zanganeh et al. [25] developed
a solar dish concentrator based on ellipsoidal polyester membrane
facets which could reach an optical efficiency of 90% while
maintaining a good optical tolerance, and V-groove reflectors have
shown optical efficiencies of 480% within systems [26] and
helped surpass 2D concentration limits [27]. Nilsson et al. [28]
proposed a stationary asymmetric parabolic solar concentrator
with a micro-structured reflector surface. Three different micro-
structures were tested, the highest optical efficiency obtained was
88% and all distributions had reduced irradiance peaks in com-
parison to the non-micro-structured counterpart. The optical sur-
face, and hence material, structure and quality evidently plays a
key role in concentrator design and performance but expands
extensively into the areas of materials science. The subject is hence
discussed later in Sections 5 and 6.
3. Secondary optics

The compound parabolic concentrator (CPC) (Fig. 4) is the most
studied stationary and secondary optic and is said to be an ideal
concentrator in that it works perfectly for all rays within the
designed acceptance angle (in 2D geometry) [13,29]. The 3D CPC is
also very close to ideal [13]. CPC’s can theoretically be used for
higher concentration ratios than Fresnel lenses and match the
theoretical concentration limit of purely reflective optics at
42,000� [30,31] but their very high aspect-ratio makes them
impractical for implementation at 440� [30]. There have been



Table 1
Concentrator characterisation table.

Type Characterisation by mechanism Concentration Shape

Refractive Reflective (Coating) Reflective (TIR) Luminescent Low Medium High

Flat reflector [26,164] X X X

V-trough [42] X X X X

Light funnel/homogeniser [13,39-44] X X X

Linear Fresnel reflector [165-167] X X X

Parabolic dish/trough [10-15] X X X

Fresnel lens [9,22] X X X X

Compound parabolic concentrator [67] X X

Wedge prism [109] X X X X

luminescent/quantum dot [168] X X X X X
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variations in the CPC design to improve different aspects such as
concentration ratio and irradiance distribution. Some of these
designs include the crossed CPC (CCPC) [32] and similarly the 3D
CPC [33], as well as the polygonal CPC designs [34] and the lens
walled CPC [35–37] (all shown in Fig. 4). The CPC and many of its
variations commonly lack a good irradiance distribution as
described by Victoria et al. [38] who compared different second-
aries for a primary lens, and by Sellami et al. [32] for the CCPC.



Fig. 3. Improved irradiance distribution of Fresnel lens. By rearranging, or horizontally ‘flipping’ the Fresnel lens rings (a) an improved, more uniform irradiance distribution
is obtained as shown in (b) [4,24].

Fig. 4. Variations of CPC: (a) The revolved CPC. (b) The Crossed CPC. (c) The Compound CPC. (d) The Lens-Walled CPC. Examples of 2D profiles and possible 3D transfor-
mations: (e) V-trough. (f) CPC. (g) Compound Hyperbolic Concentrator. (h) 3D square aperture V-trough. (i) Polygonal aperture CPC. (j) Hyperboloid with an elliptical entry
aperture and square exit aperture [4].
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Cooper et al. [34] investigated polygonal CPCs with a varying
number of sides and concluded that the cubic CPC was best suited
when low reflectance materials are being utilised. This is one
example of when the true optimum concentrator design will be an
amalgamation of multiple factors, in this case of the efficiency and
available resources. The lens-walled CPC reduces the amount of
material required and hence has a lower weight than the filled
dielectric CPC. It has been proven to have an improved acceptance
angle and irradiance distribution than the mirror CPC but has a
lower maximum optical efficiency [35–37].

The significance of these differing characteristics is that the
location, incident sunlight conditions and tracker options would
decide which CPC type suited best. Again, this reinforces the idea
that no one design will be absolutely better than another and
specific adaptation, although not the easiest, is likely to be the
most beneficial procedure in concentrator development. The
irradiance distribution uniformity of the CPC seems to be an
inherent flaw which again suggests more novel optics need to be
investigated. It is however recognised that for many systems this
inhomogeneous light and heat distribution has either little effect
or is manageable depending on concentration ratio, solar cell
specifications and cooling methods. Solar cell structures and
cooling technologies are beyond the scope of this review but can
influence optic design as significantly as any other factor already
discussed.

Light funnels and homogenisers (Fig. 4) have been utilised by
many to improve the acceptance angle and irradiance distribu-
tion of a system [13,39–44]. These typically take on the shape of
an inverted cone or pyramid but there are also elliptical and
hyperbolic shapes possible [45–48] such as the square elliptical
hyperboloid (SEH) designed by Nazmi et al. [49–51]. Some
examples of geometries are shown in Fig. 4. The square elliptical
hyperboloid (SEH) based on the ideal trumpet concentrator has
an elliptical entry aperture connected to a square exit aperture



Fig. 5. Performance comparison of various CPV designs on optical efficiency,
acceptance angle and irradiance uniformity upon receiver.

K. Shanks et al. / Renewable and Sustainable Energy Reviews 60 (2016) 394–407 399
via hyperbolic curves [49]. Nazmi et al. concluded a concentra-
tion ratio of 6� for the SEH is the optimum for use as a sta-
tionary solar concentrator despite its low optical efficiency of
55% but the main use of this type of concentrator is for building
integrated photovoltaic applications and its performance as a
final stage light funnel has still to be tested. The 4� con-
centration ratio SEH design has however a higher optical effi-
ciency of 68% [49] and may be more suited in HCPV optical
systems if it can improve optical tolerance significantly.

The dome lens typically uses less material than a filled
dielectric CPC and can be easier to manufacture [38]. The dome
lens and ball lens have proven to have higher acceptance angle
values than even the CPC and with improved irradiance distribu-
tions [38,52]. Due to the ball lens 3D symmetry, any expansion due
to heat should not affect the performance of the ball lens to
redirect the light rays to the intended destination. However the
weight and support of the ball lens is more difficult to accom-
modate and may need another optic at the receiver [52]. More
research is needed to find the full potential of the ball and dome
lenses as secondary optics but there is growing interest in similar
geometries for secondary optics [22,23].

Simple plane mirrors can be used to homogenise the distribu-
tion of solar flux on to the receiver as discussed by Chong et al.
[53] but it has been shown that V-groove reflectors are more
effective as mentioned earlier and investigated by Uematsu et al.
[54–56] and Weber et al. [26].
4. Overall optical tolerance and acceptance angle

The acceptance angle for high concentration devices such as
parabolic dishes and Fresnel lenses, without additional optics is
very low [29,57,58] as depicted in Fig. 5. Akisawa et al. [29] pro-
posed a dome-shaped non-imaging Fresnel lens. The tracking
tolerance of the proposed lens held efficiencies of �90% up to an
incident angle of 0.4°, then dropped to 80% at 0.6° and then to 10%
at 1°. Recently, more focus is given to the acceptance angle and
overall tolerance of a CPV system and higher acceptance angles are
being achieved. Dreger et al. [59] obtained an acceptance angle of
0.75° without the need of a tertiary optic such as a homogeniser
but by instead reducing the path length. ISFOC and Green-
Mountain studies have HCPV modules with acceptance values of
1.2 degrees and 1.4° respectively [60]. Opsun Technologies claim to
have a HCPV system of 380� with an acceptance angle of 3.2° and
an optical efficiency of 87% [60]. They also propose they can design
a CPV system of 1000� with an acceptance angle 1.9° [60]. This
would be a significant achievement in CPV technology if the sys-
tem has a similarly high optical efficiency and acceptable irra-
diance distribution as well.

Low concentration optics (LCO) are not as dependent on solar
tracking as high concentration systems due to the principle of
etendue [41,58]. LCO’s can be static or quasi-static and due to their
typical high acceptance angle they can often gather direct and
diffuse radiation [49,61–63]. This eliminates the need for con-
tinuous sun tracking systems and reduces the overall system cost
[42,64–66]. For a V-trough concentrator, Tang et al. [42] suggests a
concentration less than 2 for a fixed position but for
concentrations 42 several tilt adjustments should be made to
significantly increase annual solar gain and take full advantage of
the systems capabilities. Similarly Li et al. [67] compared a 3� and
6� truncated mirror CPC where the 6� CPC needed adjusted five
times a day but the 3� did not. For higher concentrations, the
frequency and accuracy of the tracking must increase which tends
to lead to very expensive solar trackers for HCPV technologies.
New concentrator optics with improved optical tolerance could
thus be vastly beneficial to developing high and ultra-high
concentrator photovoltaics. There is always an inevitable trade-off
required between acceptance angle, optical efficiency and irra-
diance distribution but recent novel designs are extending when
this compromise is required (Fig. 5). Truncation can increase the
acceptance angle of a mirror CPC but it also reduces the geome-
trical concentration ratio [10]. This could be the condition for most
optics [27,40,61,68–70] and explains why Fresnel lenses, truncated
convex lenses, typically have a higher acceptance angle than
parabolic concentrators of a similar concentration ratio. Truncation
can also be thought of as a method to reduce the light ray path
length within an optical system which has already been said to
increase the acceptance angle [4,59]

Larger opening angles are another option to improve the
optical tolerance and reduce the effect of wind induced deviations,
manufacturing errors and sagging as reported by Canavarro et al.
[10]. This method however can also reduce the optical efficiency
and concentration ratio of a system. The acceptance angle, optical
efficiency and irradiance uniformity are interlinked and hence
systems usually prioritise optical efficiency as shown in Fig. 5. As
mentioned earlier the lens walled CPC has an improved accep-
tance angle in comparison to the refractive CPC but a lower optical
efficiency (Fig. 5). There are studies however that suggest a
decrease in optical efficiency, to gain higher acceptance angles will
still produce more yearly energy output [60,71,72] but this will
depend on the specific application and location.
5. Materials

5.1. Reflective

The optical performance of a CPV system is equally dependent
on chosen material and surface structure as well as geometrical
design. Reflective concentrators for example do not suffer from
selective wavelength absorption and dispersion associated with
dielectric lenses [73–75]. In terms of the overall desired criteria of
a CPV system and its individual components, reflectors technically
use less material than conventional lenses as they are not “filled”.
They are however said to be more prone to manufacturing errors
and are less tolerant to slope error than lenses [30]. The advantage
of reflective secondary optics is they tend to have increased flux
uniformity and colour mixing effects. Dielectric secondaries utilise
TIR and can withstand more internal reflections without much loss
[76]. For both reflective and refractive optics fewer reflections and
stages are always preferred.

The simple polishing of metal can result in a reflective mirror
finish but such polished surfaces are very heavy and specific



Fig. 6. Standard reflectance spectra for aluminium, silver, gold and copper metal
[169]. Graph also shows measured reflectance spectra for a hand polished aluminium
dish and a vacuum metalized acrylonitrile butadiene styrene (ABS) semi-sphere.
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curved shapes are difficult and therefore expensive to manufacture
[77,78]. Reflective film mirrors is a second option but this setup
often has low reflectivity when also applied to complex surfaces
[78]. Polymer mirror films are a more recent third method to gain
reflectance values of 490% but require specially designed struc-
tures to gain the appropriate shapes for a given application
[25,79]. Vacuum metalizing is therefore the current best option
but this process is highly dependent on the material and surface
quality it is bonded with in order to ensure a high quality mirror
finish [77,80]. Due to the limitations of all these materials and
processes it can be concluded that further research into effective
reflective materials for CPV applications is required.

Yin et al. [81] studied the surface qualities of different brittle
materials used for the nano-abrasive fabrication of optical mirrors.
They found that surface roughness in ultra-precision grinding
increased with brittleness and hence brittle materials gave a lower
reflectance after processing. The principal means of shaping and
finishing ceramic optics is abrasive machining with abrasive tools
involved with grinding, lapping and polishing. Laser-assisted
machining is also an option [81–85]. The high hardness of these
materials as well as the inherent brittleness and associated sus-
ceptibility to fracture, makes abrasive machining response an
important issue in the fabrication of optical mirrors. In general,
material responses to machining depend strongly on micro-
structure and mechanical properties [81].

Options for reflectors include mirrored (silvered) glass, alumi-
nized or polished metals or plastics, including silvered polymers,
aluminized polymers and anodised aluminium. Examples of
polymer films used include polymethlmethacrylate (PMMA)
researched by Schissel et al. [86] and polyethylene terephthalate
(PET) film researched by Kennedy et al. [87]. Schissel et al. [86]
demonstrated the environmental durability of silvered-PMMA
reflectors which have an un-weathered solar reflectance as high
as glass reflectors at 97%. The reflectance of freshly deposited sil-
ver is roughly 97% (Fig. 6) dropping to 84% after 3 years due to
weathering. Soiling appears not to be a major issue affecting the
long-term performance of silvered-PMMA reflectors but regular
contact (abrasive) cleaning is required to retain efficiencies up to
about 93%. Fend et al. [88] researched cheaper lighter high
reflectance aluminized sheets which also had good mechanical
properties. Fend et al. [89] then later compared various samples of
reflectors for optical durability in outdoor weather conditions.
SolarBrite 95, a silvered UV-stabilized polyester film, had an un-
weathered reflectance of �92% which dropped below 90% after
2 years. Thin glass mirrors have better durability but are more
costly and difficult to handle. Their un-weathered reflectance was
93% to 96% and can last as long as 5 years with 5% reflectance loss.
A graph of the standard reflectance spectra of the most common
metals is given in Fig. 6 however reflectance spectra will depend
on specific manufacturing process, composition of metal and any
coatings applied. Reflectance Measurements for a hand polished
aluminium dish and a vapour metalized acrylonitrile butadiene
styrene (ABS) semi-sphere are also shown in Fig. 6 to show
example reflectance spectra for these materials and methods of
manufacturing.

Fend et al. [89] also confirmed that different locations and
environments affect durability by as much as 2 years difference.
Front surfaced aluminized reflectors exhibit adequate optical
durability in non-industrial/urban environments but corrode
rapidly in atmospheric pollutants. Their un-weathered reflectance
was �90% and dropped by �4% in 4 years depending on location
[89]. Flabeg thick glass mirrors have excellent durability to scrat-
ches and surface damage but are still fragile if strained and heavy.
Curvature is also difficult and requires slumped glass that is
expensive and in some cases can break due to high winds. The un-
weathered reflectance was reported as 88–92% and dropped by
�2% depending on location for up to 4–5 years [89].

Mallick et al. [90] designed and experimentally tested a non-
imaging asymmetric compound parabolic concentrator with a self-
adhesive multi-layer polymer film, which had a quoted specular
reflectance of 98% in the visible region. The material was also non-
corroding and non-conductive due to it being metal free and also
thermally stable up to a continuous temperature of 150° with low
levels of shrinkage. The designed system was of 2� concentration
however and its performance under higher concentrations and
temperatures needs to be tested. Higher concentration optics as
mentioned have a reduced optical tolerance and hence require
higher accuracy of optical shape and surface smoothness. Given
the limitations of all existing systems, materials and manufactur-
ing processes, further study into possible reflective materials and
structures is important.

5.2. Refractive

Fresnel lenses have traditionally been manufactured out of poly
(methyl methacrylate) (PMMA) which due to the dispersion curve
causes longitudinal chromatic aberration (LCA). The manufactur-
ing processes can include hot-embossing, casting, extruding,
laminating, compression-moulding, or injection-moulding ther-
moplastic PMMA [91]. Sources for refractive lenses and materials
are abundant but not all have been tested for CPV applications.
Optical or mirror-grade PMMA material may come from the
automotive, lighting or skylight industries. Optical-grade poly
(dimethyl siloxane) (PDMS), another material increasingly being
used, has applicable formulations shared with the aerospace,
electronics, and light-emitting diode industries. A heavier lens
technology consists of acrylic or silicone facets patterned onto
glass as researched in the late 1970s by Egger [92] and Lorenzo
et al. [93] in 1979. PMMA and PDMS are at present the preferred
medium to be adhered to glass and patterned as a Fresnel lens.
Polycarbonate (PC) is sometimes suggested as an alternative to
PMMA due to its significantly greater toughness which prevents
mechanical fracture and fatigue. However PC is less scratch
resistant [94] and has a smaller spectral bandwidth, optical
transmittance [95] and suffers more from optical dispersion,
chromatic aberration and solar-induced photo oxidation [96–99].

One of the advantages of Fresnel lens designs is that they double
as the top cover encasing of the system. In reflective systems a cover
glass of high transmittance is used to seal and protect the optics
inside but still adds loss to the system. Refractive lens systems
effectively eliminate this stage and save around 5–10% light loss.
Using the primary lens as the boundary to the outside weather
however, adds other demands. PMMA has a transmittance of �95%
(Fig. 7) but high temperature treatments such as calcination, which is
a preparation method of antireflective and antifogging coatings,
cannot be used on PMMA material. To achieve an anti-reflective



Fig. 7. Optical transmittance spectra of various refractive materials for CPV as measured by Miller et al. [95]. The results for flat-panel PV (soda lime glass) as well as the
normalised direct solar spectral irradiance (AM1.5 in ASTM G173) are provided for reference [95].
Reprinted from Ref [80] Copyright 2014 American Chemical Society.

Fig. 8. Photograph of transmissive solar concentrator designed and tested by Laine
et al. [73].
Reprinted from Ref. [68] Copyright 2014 American Chemical Society.
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property on PMMA (refractive index¼1.49) one method is to layer
coatings of lower refractive indexes. Finding suitable sources of high
transmitting but low refractive index materials however is also
challenging. Zhou et al. [100] overcame both these difficulties and
successfully fabricated antifogging and antireflective coatings on
Fresnel lenses while achieving a transmittance of 98.5%. By spin-
assembling solid and mesoporous silica nanoparticles, which have
voids and result in a lower refractive index, Zhou et al avoided high
temperature treatments and produced coatings with a refractive
index between 1.32 and 1.40. This reinforces the importance of
researching new materials and structures to overcome current CPV
challenges and limitations.

Chromatic aberration is a common problem in refractive lenses.
Chromatic aberration can be reduced if a domed Fresnel lens geo-
metry is used as carried out by Akisawa et al. [29]. As discussed
earlier, Languy et al. [9,30] designed and manufactured an achromatic
Fresnel doublet which combines the advantages of plastic lenses
without being affected by chromatic aberrations. The achromatic
Fresnel doublet is tolerant of manufacturing errors and the dispersion
uncertainty of the refractive index, making it suitable in conditions
where the temperature can alter the refractive index and shape of the
lens. However, a redesignwas required to avoid soiling of the outward
patterned lens [8]. In the latter study, PMMA and PC were suitable
materials at minimising the longitudinal chromatic aberration (LCA)
down to 0.1% with a wavelength range of 380–1680 nm along the
visible and near-infrared regions [8].

For refractive materials under concentrated light conditions there
can be significant temperature and ultraviolet (UV) exposure effects.
Miller et al. [95] investigated the photo degradation of CPV modules
via accelerated UV testing and analysed the optical transmittance
spectra of various CPV refractive materials as shown in Fig. 7. There is
however still a great need for research into material durability and
performance with time in different environments.
6. Novel optics and materials

6.1. Novel optics

Due to the developing state of CPV technology, a variety of
novel designs are still being created and tested. Laine et al. [73]
investigated a transmissive non-imaging Fresnel type reflector
concentrator made of a continuous reflective spiral (shown in
Fig. 8). Stefancich et al. [101] proposed a spectral splitting primary
optic which dispersed different wavelengths to different single
junction solar cells arranged along the focus plane. This was an
alternative to focusing the light to one multijunction solar cell but
still obtaining similar overall conversion efficiencies. This has also
been proposed elsewhere [102,103].

Jing et al. [23] coupled the design of a novel Fresnel lens with a
novel secondary optic with specific ‘entry’ points. This attention to
detailed design and matching primaries with secondaries can yield
simultaneous benefits in concentration ratio, optical efficiency,
acceptance angle and uniform distribution which is otherwise very
difficult to do effectively. Liu et al. [104] use a novel channel
waveguide as a secondary which collects focused light rays from a
Fresnel lens array primary. At each focal point there is a micro-
structure which couples the light into the waveguide. This struc-
ture can reach 800� concentration at 89.1% optical efficiency and
a 0.7° acceptance angle. Similar designs have been tried and tested
by many other researchers [66,105–108]. Jung et al. [70] designed
a novel metal slit array Fresnel lens for wavelength scale coupling
into a nano-photonic waveguide. Although aimed at a different
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application, this paper demonstrates the flexibility of concentrator
optics. Waritanant et al. [109] was able to obtain a maximum
collection efficiency of 54% for a wedge prism concentrator cou-
pled with a diffraction grating. Huges et al. [110] found that a
wedge shaped Luminescent Solar Concentrator (LSC) is able to
produce a larger average power density year round under direct
illumination than a planar LSC but unusually its optimum orien-
tation was when tilted away from the sun and for this reason may
be more suited to latitudes further from the equator. These are just
some examples of the novel designs being explored within CPV
technologies and how they can vary.

6.2. Novel materials

Some applicable concepts for solar concentrators include:
spectrally selective coatings [111–113]; switchable optics which
can change from transparent to reflective; anti-reflective and
reflective enhancing coatings [111,113]; water filled optics; nano-
crystal materials, graphene layers [114,115] as well as other
organic and inorganic materials. Much of this technology is
researched extensively in the glazing and window industry but
less so in the application of CPV’s due to the associated high costs
of such materials. These materials however hold a lot of potential
for advancing solar concentrator technologies, some more than
others for specific applications such as building integrated con-
centrator photovoltaics (BICPV).

Hybrid organic–inorganic (O–I) materials are nano-composite
materials with both an inorganic and organic (bio-organic) com-
ponent. These O–I materials often have impressive characteristics.
For example, the Maya Blue pigment is the incorporation of a
natural organic dye within the channels of micro-fibrous clay. This
hybrid material is of a strong blue colouring which lasts against
weathering and bio-degradation to the extent that 12 century old
vestiges are still appreciable today [116]. The hybrid materials
processed by Avnir et al. [117–120] provided many advances in
many diverse fields including optics. There are now many
industrially developed hybrid materials including films, mem-
branes, fibres, powders, monoliths and micro (and nano) patterns
[121–125]. Graphene has found many uses in a variety of appli-
cations due to its tenability and unique properties. It has a very
promising optical transparency of 97.7% but more research is
required into its use in solar concentrator materials [126].

Nature has a vast range of advanced complex structures which
have been studied by many to be replicated and adapted for our
own use [127–132]. A clear example is the application of light
trapping microstructures, inspired by moth eye facets and other
natural light trapping structures, imprinted upon solar cells to
enhance light collection and conversion efficiencies [132–134].
Nature has created these structures over billions of years and
optimised their functions through evolution. A process which will
forever exceed any ‘trial and error’ optimisation routine carried
out by ourselves. Structures within nature often must fulfil mul-
tiple functions and hence are usually a complex hierarchal multi-
scale system. Such structures may hence appear random to us but
are in fact a controlled balance of compositions [135–144]. Smith
et al. [144] discuss the importance of quasi-random nanos-
tructures found in nature and more recently now also in engi-
neering applications such as blue-ray discs due to their ability to
manage photons efficiently. This reinforces the importance of
surface structures on optical components and why micro-
structures significantly effect: reflectance, distribution and accep-
tance angle [21–24,28,64,100,134,145–147]. Siddique et al. [148]
has discovered butterfly wings which have a reflectance of only 2–
5% over a range of viewing angles. This high transparency at
multiple incidence angles could be very useful for solar con-
centrator optics, in terms of the cover glass encasing and for lens
surfaces to increase the optical efficiency and acceptance angle.
The Pieridae butterfly achieves the opposite; it has an interesting
grooved tiling upon its white wings with an underlying nipple
pattern of pterin beads as shown in Fig. 9. These wings have a
surprisingly high reflectance of 78.9% over the 400–950 nm range
and are used to concentrate light onto the butterflies’ body to help
it heat its flight muscles faster [149]. Shanks et al. [149] suggest
these wing structures (Fig. 9) can be the basis of a new light-
weight, highly reflective materials for concentrator photovoltaics
to greatly improve the power to weight ratio of solar concentrator
technologies as demonstrated in Fig. 10 [149]. In both cases, the
wing structures have a very interesting ‘random’ or ‘chaotic’
structure but as mentioned earlier, this may have some underlying
complex coherence to it that we have yet to understand.

There are numerous studies into how natural structures,
especially insect membranes, can affect light [130,131,150–156].
There are also various bio-replication reviews covering a range of
applications [157–160]. However, at present it is an untapped area
of research for CPV applications.

6.3. Future outlook and discussion

For concentrator photovoltaic technologies to continue to
develop there are some key factors that should and likely will be
focused upon in ongoing research. One of these is increasing the
concentration ratio. High and ultrahigh concentration ratio sys-
tems have a vast potential for increasing efficiencies and reducing
cost. This is relatively well known and discussed elsewhere
[8,60,161]. From the literature reviewed here, other methods to be
highlighted which improve CPV performance include: (1) The use
of secondary/homogenising optics; (2) Reducing the path length of
light rays; and (3) Tailored surfaces structures. Out of these, the
attention to optical surface structure (3) is the most promising
with the resulting systems being able to simultaneously achieve
improved optical efficiency, tolerance and irradiance uniformity
(Figs. 5 and 11). Most CPV systems have to make compromises in
one area or another when trying to attain higher concentration
ratios but the segmented reflectors described here are able to
challenge or at least extend this trade-off which is inevitably
encountered. The most noteworthy designs are those with inge-
nuity and careful geometric design (Fig. 5). Matching the primary
output light to input sections of the secondary optic or to illumi-
nate the receiver in a more effective and reliable manner. Ulti-
mately, future CPV optical systems will become larger in con-
centration ratio but require the use of modular surfaces, facets,
truncation and more acute design. This will also increase the
dependency on the materials available and their properties. It can
be seen from Fig. 5 even in the brief milestones section that one of
the breakthroughs for solar concentrator technology was the dis-
covery of PMMA and its application for Fresnel lenses. Fresnel
lenses were available before this but only became popular in CPV
technology when they became affordable and practical due to
PMMA [4,5,162,163]. It is hence not an unusual notion that further
breakthroughs in the optics for concentrator photovoltaic appli-
cations will be largely due to the development of new materials
for its purpose. The combined balance between reducing path
length, utilising secondary optics and tailoring surface structures
will see the way to ultrahigh concentrator photovoltaics (Fig. 11).
7. Conclusion

An extensive review of solar concentrator research and tech-
nologies has been carried out, comparing different materials and
the optical performance of different designs. There is not enough
consideration into the durability of designs and their performance



Fig. 9. Large white Pieridae wing structures at increased magnification.

Fig. 10. Butterfly wings increase both the output power and the final power to weight ratio of solar cells. (a) Power output of a mono-crystalline silicon (Si) solar cell either
alone, or with large white wings versus reflective film held at the optimal angle of 17°. (b) Histogram representing the relative changes in power, weight and the subsequent
power to weight ratio of large white butterfly wings versus reflective film [149].
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over years of use, especially for concentrators utilising refractive
optics. Recurring challenges and trends in the designs of CPVS
have been highlighted.

The above review gives examples of how solar concentrators
can be designed in a variety of unique ways boasting different
characteristics for different applications. In order to make the
necessary leaps in solar concentrator optics to efficient cost
effective PV technologies, future novel designs should consider not
only novel geometries but also the effect of different materials and
surface structures. Trends towards higher performance solar con-
centrator designs include the use of micro-patterned structures
and attention to detailed design such as tailoring secondary optics
to primary optics and vice-versa. There is still a vast potential for
what materials and hence surface structures could be utilised for



Fig. 11. Timeline of CPV designs and predicted future trends towards high and ultrahigh concentration ratios. Within each CPV types range, the most reliable versions will be
in the bottom half of the circles whereas the upper half designs will require high accuracy manufacturing and quality materials.
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solar concentrator designs especially if inspiration is taken from
biological structures already proven to manipulate light.
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