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ABSTRACT 

Scattered context grammars are defined and the closure properties of the family of 
languages generated are considered. This family of languages is contained in the family 
of context sensitive languages and contains all languages accepted by linear time 
nondeterministic Turing machines. 

INTRODUCTION 

Recently there have been many at tempts  to specify both natural  and programming 
languages by means of a syntactic definition. The  syntactic definition should be such 
that the semantic interpretation of the sentences can be at tached to the syntactic 
structure. A major difficulty with this method is the lack of a suitable class of grammars 
for describing the structures that occur. Context-free grammars are too weak since 
they are not capable of defining a language such as {ww I w in {0, 1}*} which requires 
that information be transmitted between widely separated parts of the sentences. 
Context-sensitive languages are too powerful to be of practical use since they shed 
little light on the problem of attaching meanings to sentences. In  generating a sentence 
of a language, a context-sensitive grammar  may send a nonterminal  symbol back and 
forth through the sentence to t ransmit  information. This  process usually has no 
relation to any desired semantic interpretation. Ideally we would like the capability 
of t ransmit t ing information between widely separated parts of a sentence without the 
necessity of sending a nonterminal symbol  back and forth to t ransmit  the information. 
Th is  suggests considering grammars in which rewriting a symbol depends on context 

* This research was supported in part by the Air Force Cambridge Research Laboratories, 
Office of Aerospace Research, USAF, under contract F1962867C0008, and by the Air Force 
Office of Scientific Research, Office of Aerospace Research, USAF, under AFOSR Grant No. 
AF-AFOSR- 1203 -67. 

tHarvard University and Consultant System Development Corporation. 
* Cornell University and Consultant System Development Corporation 

233 
�9 1969 by Academic Press, Inc. 

S7~/3/3-z 



234 GREIBACH AND HOPCROFT 

as in a context-sensitive grammar but a symbol can be rewritten even if the context is 
not adjacent to the symbol. This leads us to the concept of a scattered context grammar 
about which this paper is concerned. 

The paper is divided into three sections. The  first section is devoted to definitions 
and the development of a normal form for scattered context grammers. The second 
section considers closure properties. The  family of scattered context languages, is 
shown to be an abstract family of languages (i.e., closed under union, product, + ,  
E-free homomorphism, inverse homomorphism and intersection with a regular set). 
Furthermore, the family is shown to be closed under intersection, linear erasing, 
e-free substitution, permutation and reversal. It is not closed under arbitrary homo- 
morphism or quotient with a regular set. 

Section 3 is an attempt to determine the generative power of the scattered context 
grammars. From the definition of a scattered context grammar, it is obvious that they 
generate only context-sensitive languages. A corollary in Section 1 shows that the 
family of languages generated properly contains the family of e-free context-free 
languages. The  main result of Section 3 is that the family of scattered context languages 
include all languages accepted by quasi-realtime n-tape pushdown automata and 
hence (by the results in Section 2) all languages accepted in linear time by non- 
deterministic Tur ing  machines. The  authors are, however, unable to show proper 
containment in the family of context-sensitive languages. 

SECTION I. DEFINITIONS AND BASIC LEMMAS 

In Section 1 we define a scattered context grammar and provide the notation 
necessary to describe the language generated by such a grammar. We then define a 
restricted type of scattered context grammar called a 2-limited grammar and show that 
the families of languages generated are the same. The 2-limited grammar is a very useful 
normal form and is used extensively throughout the remainder of  the paper to simplify 
constructions. 

DEFINITION. A scattered context g r a m m a r  (scg) is a quadruple G --~ (V, 27, P, S) 
where: 

(1) V is a finite set of symbols, 27 is a subset of V, and S is in V - -  27, 

(2) P is a finite set of productions of the form (A 1 ..... An) -+  (w t .... , wn) , n ~ 1, 

each `4i in V - -  27, and each w i in V+. 1 

We now introduce notation to describe the language generated by a scg. 
Let (.41 .... , A n ) - - ~  ( w  1 ..... w,~) be in P and for 1 ~< i ~ n + 1, let x i be in V*. We 

x A + = UT~ A '  and A* = A + U{'}, where,  is the empty word and A '+x = A ' A  for i > I. 
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write xlAlx2A 2 ... x~Anx~+ t ~ XlEUlX2W 2 " ' "  XnWnXn+ 1 . Let :> be the reflexive transitive 
closure of ~ .  We define the language generated by G (denoted L(G)) to be the set 
L(G) ~ {w in 2: + [ S * w}. The set L(G) is called a scattered context language (scl). 

We now define a restricted type of scg. 

DEFINITION. A 2-limited grammar is a scg G = (I/, 27, P, S) such that 

(1) (A t ..... A,~) --~ (w t ..... w,~) in P implies n ~< 2 and for each i, 1 ~< [ wi [ ~ 2 
and wi is in (V - -  {S})*. 

(2) (A) - *  (w) in P implies A = S. ~ 

We will now show by means of two lemmas that every scl can be generated by a 
2-limited grammar. 

LEMMA 1. I. I f  L C 2~* is a language generated by a scg G = (V, S,  P, S)  and i f  c 
is a symbol not in Z, then there is a 2-limited grammar G with L(G) ~- Lc. a 

Proof. Let ~ be the number of productions in P. Number  the productions of P 
from 1 to ~. Let  (Ail ..... Aim) --~ (wa ..... w~,,) be the ith production. Let C and ~q be 
new symbols, let W = {[i,j]] 0 ~< i ~< ~, 1 ~ j  ~ ni} and let 

V= vw{c,S}w w w ( { c }  • {1 ..... ~}). 

Let ~ be the scg (V, 2~ U {c}, P, S) where P is defined as follows. 

(1) (~q)--~(S[C,i]) is in P, for 1 ~ i ~ ft. 

(2) For each i such that ni : 1 and for each k, 1 ~ k ~< if, 

(Aix , [C, i ] )  ~ (wil , [C, k]) 

is in P. 

(3) For each i such that ni > 1, 

(a) ( A a ,  [C, i])--~ ([i, 1], C), 

(b) ([i,j], Ai.~+l)--+ (wit, [ i , j  + 1]), 1 ~ j  ~< ni - -  1, and 

(c) ([i, nil, C) --+ (wins, [C, k]), 1 ~ k ~ ~, are in j6. 

(4) For each i such that ni ~ 1, (Air ,  [C, i]) --~ wac is in P and for each i such 
that ni > 1, ([i, ni], C) --~ wi, t c is in P. 

Clearly L((~) ~ L(G). Since for some i and j, wis may be of length greater than two, 
may not be a 2-limited grammar. However, by making use of standard techniques 

one can obtain a 2-limited grammar (7 from ~ such that L(G) ---- L((~). 

I w [ denotes the length of w. 
s Although not explicitly stated all constructions in this paper are effective. 
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LEMMA 1.2. I f  L C X +, c is a symbol not in X and G = (V, 27 U {c}, P, S)  is a 
2-limited grammar with L( G) = Lc, then there is a 2-limited grammar G with L( G) = L. 

Proof. For each a in X u {S}, let a be a new symbol. Let  

L t = {AIA2A a [ S * A tA2A3,  A~ in V} G 

and 

L 2 = {A1A2A3A 4 [ S ~ AIA2A3A4,  A~ in V}. 

Let  h be the homomorphism of V* defined by h(a) = ~ for each a in Z' and h(A) = A 
for e achA in V - - X .  Let  V = h ( V ) u 2 7 k ) { S } u ( V  • V). Let  Q = (V,X,P,~q)  
where for all a and b in 27, A 1 , A2, A 8 , /14,  A5, and A 6 in V, and A in h(V), P is de- 
fined as follows. 

(1) J 5 contains the productions 

(a) (S) -~ (a) if a is in L. 

(b) (S') -+ (h(Ax)[A2, A3] ) if A1A~A 3 is in L , .  

(c) (~q)-~ (h(AtA~)[A3, At]) if A1A~AaA 4 is in L~. 

(2) If P contains (A1, A2) -+ (wa, w~), then P contains the productions, 

(a) (Z~l, A2) ~ (h(wi), h(w2)), 

(b) (A~, [A2, A3] ) - .  t (h(wO' [w~, A3] ) if i w~ p = 1 
((h(wt), h(A~)[As, A3] ) if w~ = A~A 5 

(c) (Ax, [A3, A2] ) - - .  t (h(wt)' [A3, wt]) if ] w~ ] = 1 
t(h(wO, A3[Aa, A~]) if w~ = A4A s 

((A, [w,,  we]) if]  w 1 [ = I w 21 = 1 
(d) (A, [A1, A2]) --* l (A, h(Aa)[A4, As]) if wtw2 = A~A4A5 

((A,  h(AaA4)[As , A6] ) if wtw 2 = AaA4A5A 6 

(3) i0 contains (d, [b, c]) --~ (a, [b, c]) and (~, [b, c]) -~ (a, b). 

(Note that the construction simply combines the c with the symbol to its left. The  
reason for introducing a new symbol ~ for each a in 27 is to guarantee that there will 
always exist.a nonterminal A whenever a production of type (2d) is to be applied and 
a nonterminal d which enables [b, c] to be converted to a b by a production of type (3). 
ClearlyL(~) = L. (~ may not be a 2-limited grammar since in (2d), 

[h(A3n~)[n3, i6]l = 3. 
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Once again by  s tandard techniques one can obta in  a 2- l imited g rammar  G from 

such that  L(G)  -~ L(G).  
I t  follows immedia te ly  from L e m m a s  1.1 and 1.2 that every scl is generated by a 

2-l imited grammar .  T h u s  we state the following theorem. 

THEOREM 1.1. I f  G is a scg, then there exists a 2-1imited grammar G with 
L(O) = L(G). 

SECTION 2. CLOSURE PROPERTIES 

In  this section we consider the closure propert ies of the family of scl unde r  various 
operat ions and  show that the family of scl properly conta ins  the  family of ~-freO 
context-free languages [2]. Th e  ma in  closure results are that  the family of scl is an 

abstract family of languages [3] (i.e. closed u n de r  union,  product ,  + ,  E-free homo-  
morphism,  5 inverse homomorphism,  and  intersection wi th  a regular  set) which is 
closed u n d e r  intersection,  E-free subs t i tu t ion  6 and  linear erasing.7 

We begin  with a pre l iminary lemma.  

LEMMA 2.1. The family of scl is closed under substitution by an E-free context free 
language, intersection with a regular set and permutations. 

Proof. (1) Subs t i tu t ion  by  E-free context-free languages. 
Let  G = (V, Z,  P,  S)  be scg. For  each a in Z' let d be a new symbol  and  let Z 1 be 

the set {d/a in Z}. Let  h be the h o m o m o r p h i s m  of V* defined by  h(a) = d for each a in  
Z and  h(A) = A for each A in V - -  27. For  each a in  Z l e t L ~  be a eft and  
let Ga = ( V a ,  Z a ,  P~ ,  S~) be a cfg wi th  L(G,)  ~- L~.  Withou t  loss of generality we 

can assume that  for a 7(= b, (V~ - -  Z~) n (V - -  Z )  = (Vb - -  Zb) (h (V~ - -  Z~) = ~ ,  
and  P~ conta ins  no rule A - +  E. Le t  F = h ( V ) u  ([,)~ Ira) and  2 = ( J ~ Z ~ .  Let  
G' = (V, o ,  p ,  S)  where P is defined as follows. 

(a) I f  (A t ,..., An) - ~  (wl .... , w,)  is in  P,  then  (A 1 ..... An) -+ (h(wl) ..... h(wn)) is 

in  P.  

4 A l a n g u a g e  is  e-free i f  i t  does  n o t  c o n t a i n  ~ ; a f a m i l y  of  l a n g u a g e s  is c-free i f  a l l  i t s  m e m b e r s  

a re  ~-free. 
5 A mappingf  is said to be ~-free iff(x) ~ ~ for all x ~ ~. 
e Let L _C Z*. For each a in 2: let L, _C 27,*. Let 7 be the function defined by r(0 = {~}, 

r(a) = L,  for each a in 27, and ~(al "" ak) ~ T(at) "'" ~(a~) for each k > 1 and at in 27. Then 
is called a subsfftution, r is extended to 2 ~ by defining r(X) = U~l~x T(x) for all X _C 27*. A 
family LPl of languages is said to be closed under substitution by a family ~2 if ~(L) is in L~t 
for each L in -s and each substitution T such that ~(a) is in ~ for each a, or simply closed 
under substitution in the case where .o~' 1 = L~'2. 

7 A family L,e of languages is said to be closed under linear erasing if for each L in s homo- 
morphism h and integer k such that I w I ~< k I h(w) I for each w in L, h(L) is in .s 



238 GREIBACH AND HOPCROFT 

(b) For each a in 27, (~) -+ (ea) is in P. 

(c) If A --~ w is in P~,  then (A) ~ (w) is in P. 

I f ,  is the substitution on Z defined by ,(a) = L , ,  then clearly L(G) = r(L(G)). 

(2) Intersection with a regular set. 

L e t L  be a scl and R be a regular set. Let  (3 = (V, X, P, S) be a 2-limited grammar 
such thatL(G) = L and let A = (K, 27, 8, qo, F)  be a finite automaton withL(A) = R. 
We define a scg G = (V, Z, P, S), where 

V = 2 7 u { S } u ( K •  V •  u ( K •  Z V •  K) 

and where P is defined as follows. 

(a) For each p in F, (S) --~ ([qo, S, p]) is in P. 

(b) If (A, B) -+  (wx, w~) is in P, then for each p, p' ,  q and q' in K, 

([p, A, p'], [q, B, q']) --~ ([p, wl,  p'], [q, wz, q']) 

iS in P .  

(c) 
is in P. 

For each p, p '  and p" in K, A and B in V, ([p, AB, p']) ~ ([p, A, p"] [p", B, p']) 

(d) For each p in K, a in Z, ([p, a, 8(p, a)]) --+ a is in P. 

Clearly L(G) = L(G) n R. 

(3) Permutations. 

Let  L be an scl and let G = (V, 27, P, S) be a scg such that L(G) = L. For each 
a in 27 let ~ be a new symbol and let h be the homomorphism of V* defined by h(a) ---- d 
for each a in 27 and h ( A ) = A  for each A in V--27.  Now, let V----h(V) u Z ,  

P = {(At ,..., An) --* (h(wl),..., h(wn))[(dl .... , An) --" (wa ,..., wn) in P} 

t3 {(d, ~) --~ (g, d)[ a, b in Z} t3 {(d) ~ (a)[ a in 27}, and G = (12, Z,/~, S). 

Clearly L(G) contains all and only permutations of members of L(G). 

From Lemma 2.1 we can immediately obtain the following two corollaries. 

COROLLARY. The family of scl properly contains the family of e-free context-free 
languages. 

Proof. Since ({S, a}, {a}, {(S) --~ (a)), S)  is a scg, closure under substitution of an 
e-free cfl clearly implies that every e-free cfl is an sol. But (abc)+ is an e-free eft and the 
intersection of the set of all permutations of (abc) + with the regular set a*b*c* is 
{anbncn/n >~ 1 } which is not context-free. 
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COROLLARY. The family of sc l / s  closed under e-free homomorphism. 

In [3] the concept of an abstract family of languages was introduced. In  what 
follows we shall make use of this concept. 

DEFINITION. An abstract family of languages (AFL)  is a pair  (Z, .~,e), or ~ when Z' 
is understood, where 

(1) Z is a countably infinite set of symbols, 

(2) for each L in S~ there is a finite set Z 1 _C Z such that  L C Z 1., 

(3) L 3& ~ for some L in L~', 

(4) - ~  is closed under the operations of U, ", + ,  inverse homomorphism, e-free 
homomorphism,  and intersection with a regular set. 

An AFL.,L~ a is said to be full if ~ is closed under arbitrary homomorphism.  
Before showing that the family of scl is an A F L  we will establish three preliminary 

lemmas. Fi rs t  we show that the family of scl is closed under  reversal, 8 a result which 
we will use in the proof of Theorem 2.2. 

LEMMA 2.2. l f  L is an scl, then L r is an scl. 

Proof. Let  G = (V, Z, P,  S)  be a 2-l imited grammar with L ( G ) =  L. Let  
p r  : { S - ~  w [ S - *  w r in P} w {(A, B) - ~  (Wx, wa)l(B, A) ~ (w( ,  wl ~) in P).  Let  
G ~ : (V, Z, pr, S). Clearly L ~ : L(G"). 

Next we consider a special type of homomorphism. 

DEFINITION. A homomorphism h from Z'l* into 2:2* is k-restricted on a subset L of 
ZI* if h(w) = E for w in L implies w = e and h(w) =/= ~ for each subword w of length 
greater than or equal to k of each word in L. A family of languages ~ is said to be 
closed under restricted homomorphism if h(L) is in ~ whenever L C Z'l* is in . ~  and h 
is a homomorphism of ZI* which is k - -  1 restricted on L for some k. 

We now show that the family of scl is closed under restricted homomorphism.  

LEMMA 2.3. The family of sol is closed under restricted homomorphism. 9 

Proof. Let  G = (V, Z', P, S)  be a 2-l imited grammar and h a homomorphism of 
Z* which is k-restricted on L(G). Let  L 1 = L(G) n {~ [ ~ in Z'+, I ~ I < k} and 
L z = { ~ l S * ~ , k ~ f ~ ]  ~ < 2 k + l } . F o r e a c h ~ i n V  + s u c h t h a t k ~ < l ~ l  ~ < 2 k + l ,  
let [~] be a new symbol, S 1 = {[~]1 ~ in V +, k ~<1~1 ~< 2k + 1} and 

s Let a" = a and for each word at "'" a . ,  n >/ 1, each a~ in 27, let (at "'" a~) ~ = a.  "" al �9 For 
L _C 2~*, let L" = (w Z w ~ in L}. L" is called the reversal of L. 

9 Although it is unsolvable whether a homomorphism h is k-restricted on a language generated 
by a scg G, given that h is k-restricted on L(G) the construction is effective. 
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$2 = {[~]1 k ~ I ~ I ~< 2k - 1}. Let S be a new symbol, V = 22 k3 S 1 t3 {S}, and 
G : (V, I ,  P,  S) where P is defined as follows. 

(1) For ~ i n L i ,  (S)--~ (h(~)) is in 15; for ~ i nL  2 , (S)--~ ([~]) is i n / 5  

(2) If  (A, B) -+  (wl,  w~) is in P, then 

(a) for each [xiAyl] and [xzBya] in S~, ([xlAyl], [x~Byz])--~ ([xiwlYt] , [x2%Y2] ) 
is in t5, and 

(b) for each [x~AzBy3] in $2,  ([x~AzBys]) --~ ([x3w~zw~y3]) is in/5. 

(3) If  [~], ~ ]  and [V] are in S i a n d  (x = ~ ,  t h e n  ([o~]) ---+ ([~][~])  is i n / 5 .  

(4) For [c~] in S 2 n l *  ([~]) ~ (h(c0) is in/5. 

Since h(~) =/: E, for [a] in S= C~ 22", O is a scg. Clearly L(G) = h(L(G)).  

COaOLLARY. The  family of scl is closed under inverse homomorphism. 

Proof. In  [6] it was shown that any e-free family of languages closed under inter- 
section with a regular set, c-substitution TM and k-limited erasing ai is closed under 
inverse homomorphism. Since c-substitution is a special case of context-free sub- 
stitution and since k-limited erasing is a special case of a k-restricted homomorphism, 
the familly of scl is closed under inverse homomorphism. 

LEMMA 2.4. I f  L C 22+ is a scl and c is a symbol not in 22, then c(Lc) + is a sol. 

Proof. Let G = (V, I ,  P, S) be a double grammar with L(G)  -~ L.  Let c, C i ,  C 2 
and S be new symbols and V = V k) (c, C i ,  Cz, S}. Let G = (V, I ,  P,  S) where/5 
is defined as follows. 

(1) The  production ( S ) ~  (CiSC2) is in /5. Also if (S)--~ (w) is in P, then 
(C a , S, C~) --* (C~, w, C2) is in P. 

(2) I f  (A, B) --~ (wa, %) is in P, then (C1, A, B, Ce) ~ (C1, w~, w2, C2) is in/5. 

(3) (C1,  C2) --~ (c, CaSC~) is in/5. 

(4) (C i , C2) --~ (c, c) is in P. 

(Observe that generations in L(G) proceed in phases: S => CiwC2 => c w C i S C  2 ~ "". 
Between applications of the production (C1, Cz) ~ (c, CiSC2), the generation imitates 

a generation in L(G) .  * " " Thus C1SC 2 ~ C i w C  2 if and only ff S * w. I f  G "guesses" too 
G G 

soon that the string of symbols between C i and C 2 is terminal, then 

C i S C  2 * CixAyC~ ~ cxAyC1SC2.  

i0 A c-substitution is a substitution on Z'* such that r(a) = c*ac* for each a in 27 where c is a 
new symbol not in I .  

li A family ~ is said to be closed under k-limited erasing, k an integer, if whenever c is not in 27 
and L is in s with L _C (1{~, c ..... c~}) *, h(c) = E and h(a) = a for each a in 27, then h(L) is in .L~'. 
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Now the symbol  A can never  be rewr i t ten  and thus  a te rminal  s t r ing  cannot  be  derived). 

Clearly L(G)  = c(Lc) +. 
We now prove one of our  m a i n  results.  

THEOREM 2.1. The family of  scl is an A F L .  

Proof. I n  [6] it was shown that  a family of languages is an  A F L  if it is closed u n d e r  
un ion ,  + ,  E-free homomorphism,  inverse homomorph i sm and  intersect ion with a 

regular  set. We  have already shown that  the family of scl is closed unde r  c-free homo-  
morphism,  inverse homomorph i sm and  intersect ion with a regular  set. T h u s  we need 

only closure u n d e r  u n i o n  and + .  

(1) Un ion .  

For  i = 1 and  2, let Gi = (Vi , Z i  , Pi , Si) be scg. W i t h o u t  loss of generali ty 

let (V 1 - -  Z1) c~ (V 2 - -  Zz) = ~ .  Le t  S be a new symbol,  V = V 1 u V 2 t3 {S}, 
2~ = X 1 t3 Z 2 ,  P = {(S) --~ ($1), (S)  --~ ($2) } u P t  u P 2 ,  and G = (V, 27, P, S).  
Clearly L( G) = L( G1) u L( G2). 

(2) + 
Let L _C Z *  be a scl and  c be a symbol  not  in 27. By L e m m a  2.4, (cL)+ c is a scl and,  

since E is no t  in  L, by L e m m a  2.3, L + is an scl. 

COROLLARY. The family  of  scl is closed under product. 

COROLLARY. The family  of  scl is closed under E-free gsm lz and inverse gsm mappings. 

We shall now prove that  the family of scl is closed unde r  l inear  erasing, intersection 

and subs t i tu t ion .  We  do this by first proving a special case of intersect ion and  a special 
case of l inear  erasing which together yield the general cases. 

LEMMA 2.5. I f  L C X+cX+, c a symbol not in Z,  is a scl, then L n {wcw I w in Z +} is 

a s c l .  

Proof. Let  G ~ (V, ZV3 {c}, P,  S)  be a 2- l imited g rammar  such that L(G) = L. 
Let  e, d, S,  C 1 , C 2 , and C a be new symbols  and for each a in 27, let ~ and ~ be new 

x2 A generalized sequential machine (gsm) is a 6-tuple G = (K, Z, A, ~, A, P0), where (i) K, 27 
and A are finite sets (of states, inputs and outputs, resp.), (ii) 3 is a mapping of K • 27 into K 
(next state function), (iii) A is a mapping of K x Z into A * (output function), and (iv)P0 is in K 
(start state). The mapping 3 is extended to K x Z* by letting 3(q, ~) = q and 3(qx, xa) = 
3(3(q, x), a) for all q in K, x in Z* and a in 27. The function A is extended to K x Z'* by letting 
A(q, ~) = E and A(q, xa) = A(q, x)A(8(q, x), a) for all q in K, x in 27* and a in 27. The mapping 
G defined by G(L) = {A(p0, x) i x in L} is called a gsm mapping. The mapping G-I(L) = 
{x [ A(p0 , x) in L} is called an inverse gsm mapping. 
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symbols. Let  h be the homomorphism on V* defined by h(a) = a for each a in 27, 
h(c) = g, and h(A) = A for each A in V - -  (L" u {c}). Let  

V = V t3 {g, d, ~q, Cx, C~, C3} w {d, ~ { a in 27}. 

Let  G = (V, 27 u {c, d}, P, S) where /~  is defined as follows. 

(1) The  production (8) ~ (C1SC2) is in/~.  

(2) (a) I f  (S) --~ (w) is in P, then (C~, S,  C2) --* (C~, h(w), C~) is in/~. 

(b) I f  (A, B) --* (wa, wz) is in P, then (Ca, A, B, C2) --~ (C 1 , h(Wl), h(w~), C~) 
is in P. 

(3) (a) (C1, ~, g, d, C2) --* (d, a, C3, ~, C2) is in P. 

(b) (a,/~, C 3 , d, b, C~) --~ (a,/~, C3, a,/~, C2) is in P. 

(c) (~, C3, a, C2) ~ (a, c, a, d) is in _P. 

(The productions of (1) and (2) generate strings of the form CI~I "'" d~g/~l "'"/~mC2 
where a 1 .." ancb 1 "" b,~ is L. Production (3a) initiates "signals" which start at C1 and g. 
Note that (3a) can be applied only once. Production (3b) causes the "signals" to 
propagate left to right in synchronism, comparing symbols. As symbols are compared 
they are converted to terminals. If  any symbol is "skipped" it can never become a 
terminal. Finally application of (3c) causes the "signal" to disappear). 

I t  is easily shown that L(G) = d(L ~ {wcw I w in 27+}) d. The  details are omitted. It  
follows from L e m m a  2.3 that L n (wow I w in 27 +) is a sol. 

The  construction in Lemma 2.5 involves sending two "signals" through a string, 
checking if symbols match up, and propagating in one direction such that if a symbol 
is "skipped" then the generation is ultimately blocked and will never yield a terminal 
string. We use the same technique to show closure under a very restricted type of 
linear erasing. 

LEMMA 2.6. Let c and d be symbols not in 27. I f  L C {d~cw I I w [ = k >/ 1, w in X +) 
is an scl, then L 1 = {w I 3k, dkcw is in L} is an scl. 

Proof. Let  g, d be new symbols and for each a in X, let ff be a new symbol. Let 
271 = 27 u (g, d} U (d I a in 27} and let h be the homomorphism defined on 27 u (c, d} 
by h(c) = g, h(d) = d and h(a) = d for a in 27. Then  L 2 = h(L) is an scl and let 
G = (V, X 1 , P, S) be a 2-limited grammar  with L(G) = L z . Let  C, d, S '  be new 
symbols and let a be a new symbol for each a in 27. Let  G = (V, 27 U {c, d}, P ' ,  S ' )  be 
a scg where V = V k) {C, c, d, d, S'} u {~ [ a in 27} and P '  is defined as follows: 

(1) (a)"If dca is in L, (S')  ~ (acdc) is in P ' .  

(b) (S ' )  --~ (SC) is in P ' .  

(2) (a) I f  (S) --~ (w) is in P, (S, C) ~ (w, C) is in P ' .  

(b) I f  (A, B) --* (w 1 , w2) is in P, (~/, B, C) ~ (w I , w e , C) is in P ' .  
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(3) (a) For  each a in 27, (d, ~, d, C) --+ (d, c, d, c) is in P ' .  

(b) For  each a and b in Z, (d, d, d, d, 6) --+ (a, d, d, d,/~) is in P ' .  

(c) For each a and b in 27, (d, d, 8,/~) --~ (a, d, b, d) is in P ' .  

(Rules (la) generate the "small strings", while (1 b) starts off the generation. The  rules 
in (2) simulate the generations of G so that S'  * wC in P '  corresponds to S * w in P. 
Rule (3a) tags the first d and the first ~ after g and ensures that only (3b) and (3c) can be 
applied in the future. I f  the wrong symbol is tagged, the generation blocks as usual. 
Rules in (3b) in effect send two "heads"  down, permuting every other d-symbol with 
the leftmost unpermuted Z' symbol. In  a correct generation (3b) is applied: 

wazddddxd~+ld~+2y => wa~daz+lddXd~z+~y. 

Again, if a symbol is "skipped" it can never become terminal and the generation blocks. 
The  generation must  end with a rule of (3c) which performs a permutation as it 
switches the heads off: 

waflddd~+ld~+2c ~ wazdaz+ldaz+~dc). 

I t  can be shown tha t ,  

L~ = L(O) = {a id '"  a~dcak+ld "" a2kdc I d~'~cal "'" a2k in L} 

k..) { a i d . "  akcdak+ 1 . . .  ao~+ldc [ d2k+lCal --. a2k+a i n  L} 

U {acdc I dca in L}. 

Then  by L e m m a  2.3, with k = 3, we can "erase" the c's and d 's  so tha tL  1 is an scl. 
We use one more preliminary lemma. Actually the lemma concerns A F L  in general 

rather than just  the family of scl. 

L E M ~  2.7. I f  an A F L  is closed under intersection, it is closed under E-free substitu- 
tion. I f  a full  A F L  is closed under intersection, it is closed under substitution. 

Proof. Let  ~ be an A F L  closed under intersection. Let  L _C Zo+ be in s and for 
each a in Z o let L .  C_ Za + be in s Let  T be the e-free substitution on 270* defined by 
�9 (a) = L ~  for each a in 270 . For each a in Z o let ~ be a new symbol and 
Z 1 = {~/a in Zo} td (Ua Z~). Let h 1 be the homomorphism on 271" defined by hl(~ ) = a 
for each a in Z o and ha(b ) = E for each b in Ua 27a" Now 

h~ ' ( L )  = tWoa-lw.a-2w, " "  d . w . l a .  .." a .  i n  L ,  w i in (U z~)*I . 
( I) 

Let L 1 = (Ua aLa) + and L~ = h~-l(L) n L 1 . In  [3] it was shown that each A F L  con- 
tains all E-free regular sets and is closed under restricted homomorphism.  
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Since by definition ~ is closed under  inverse homomorphism, intersection, L 2 is in 
So. Let  h a be the homomorphism on ZI* defined by h2(~) = E for each a in Z o and 
ha(b ) = b for eaeh b in U~ Za"  Now 7(L) = ha(Lz). Observe that  h 2 is k-restricted on 
L~ and hence ~-(L) is in ~ .  I f L  _C Zo* , then observe that r(L) = r (L  - -  {E)) U {E} is in 

since ~ is closed under U{E} whenever any set in ~o contains E. I f  ~o is a full A F L ,  
then s is closed under  arbitrary homomorphism and ~ need not be ~-free. 

We now prove another main result. 

THEOREM 2.2. The fami ly  of  scl is closed under intersection, c-free substitution, and 
linear erasing. 

Proof. (1) Intersection. 

Let  L x and L 2 be scl with L 1 ~3 L 2 __C_ Z* and let c be a new symbol  not in Z. Then 
L 3 = LIcL 2 n {wcw/w in Z +} is a sol. Observe that L 3 = {wcw/w in L 1 n L2}. Let  d be 
a new symbol and let z be the c-free subst i tuion on (27 k) {c})* defined by , (a)  = {a, d} 
for each a in Z and ~-(c) = c. Let  L 4 : ~-(L3) n d+cZ +. By L e m m a  2.1, L 4 is a sol. But 
L 4 = {dkcw/I w I = k, w i n L  1 c3L2} and hence by Lemma 2.6, L 1 n L  a is a sol. 

(2) E-free substitution. 

This  follows immediately from (1) and Lemma 2.7. 

(3) Linear  erasing. 

L e t L  C Z* be a sol and let h be a homomorphism of Z* into Z'I* for which there exists 
a k such that L w I ~ k [ h(w)l for each w in L. Without  loss of generality we assume 
there exists a symbol  c in Z s u c h  that h(c) = E and h(a) : a for each a in Z-{c}. (Other-  
wise, let e be a new symbol and h 1 the homomorphism of Z* defined by  hi(a) : h(a) 
if h(a) =/= E, and hl(a ) : c if h(a) = E. Let  h 2 be the homomorphism on (Z 1 W {c))* 
defined by h2(c ) : E and h2(a ) = a for all a in Z 1 . Clearly h(L) = h2(hl(L)). Obviously, 
ha(L ) is a scl and if k 1 = max{I h(a)l/a in 27) then I hl(w)l ~ k t  k I h2(hl(w))[). 

Let L t be the intersection of the set of all permutations of strings in L with the 
regular set (Z{E, c,..., c~}) *, Let  h3(c ) = c and ha(a ) = E for each a in Z. Let  g be a 
new symbol. Now L a = {WlgWJw ~ in (Z  u {c})*, h(Wl) = h(w2~), hs(wt) = h3(%) } is 
clearly a scl since L 2 = (h-l({w~w " I w in Z*})) n {wlgw 2 J w~ in (Z u {e})* 
h3(wl) = h3(w2)}, where both languages in the intersection are context-free. Let  
L 3 = (L r (L1) n L a . By Lemma 2.2, Theorem 2.1 and part  (1) above, L 3 is a scl. Le t  
d be a new symbol  and let ~- be the substi tut ion on (Z w {e, g})* defined by ~(g) = g and 
1-(a) = {a, d} for each a in 27 u {c}. Let  h 4 be the homomorphism on (27 k9 {c, g, d})* 
defined by h4(d) = E, h4(( ) = E and h4(a ) = a for each a in Z u {c}. Then  

h(L) = h(h,(-~(La) c~ d*~(Z u (c))*)). 

By Lemma 2.1, T(La) r3 d*g(Z  W {c})* C {dYw/] w ] = l} is a sol and by Lemma 2.6, 
ha(-r(L3) n d*g(Z  U {c})*) is a sel. Thus  by  Lemma 2.3, h(L) is a sol. 
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COROLLARY. If L is a recursively enumerable set, then there exists a scl L' and a 
homomorphism h such that h(L') = L. 

Proof. In [4] it was shown that for any recursively enumerable set L there exist 
E-free deterministic cflL a andL~ and a homomorphism h such tha tL  ---- h(L 1 n L~). But 
the family of sol contains all E-free eft and is closed under intersection. Thus  
L '  = L  I n L a is an sol such that h ( L ' ) = L .  

COROLLARY. The  family of scl is not closed under arbitrary homomorphism or 
quotient by a regular set. 

Proof. L 1 and L~ above can be found so that there exists a regular set R such that 
Z = h(r l  n L~) = (r l  n ~.~)/R. 

COROLLARY. The emptiness problem is recursively unsolvable for scg. 

SECTION 3. RELATION OF SCL TO CSL. 

In  this section we will show that the family of scl contains all E-free languages that 
can be accepted by a "quasi-realt ime" n-tape pda. As a corollary we will show that any 
language accepted by a nondeterministic Turing machine in linear time is a scl. 

DEFINITION. -/t quasi-realtime n-pushdown tape pda (qr n-pda for short), n /> 1 is 
an 8-tuple M --~ (K, S, F, 3, qo, F, Zo ,  n) such that 

(1) K,  S, a n d / "  are finite sets (of states, inputs, and tape symbols, respectively), 
q0 in K (the start state), Z o in F, F C K (the set of final states) and n a positive integer. 

(2) 3 is a mapping of K X 27 • F '~ into finite subsets of K • (F* • -"  X F*). 

We now introduce notation to describe the language accepted by a qr n-pda. For 
each q and q' in K, a in 27, w in X*, `4i in F, Yi and zi in F*, 1 ~ i ~ n, we write 
(q, aw, Yt`41 .... , Yn`4,) ~-- (q', w, y t z l  .... , ynz~) if and only if (q', z 1 ..... z , )  is in 
3(q, a, -4 1 ..... An). We let ~-  denote the reflexive transitive closure of ~--. The  lan- 
guage L ( M )  accepted by M by final state is 

{w in 27* [ 3 f i n F ,  Yx ..... y ,  in F*,  (qo, w, Z o ..... Zo) ~-- ( f ,  ~,Yl ..... Y,)}. 

The  language Null (M) accepted by M by empty stack is 

{w in 27* 13q in K, (qo, w, Z o ..... Zo) ~-  (q, ,,  Z o ,..., Zo) }. 

We say that L is a qr n-pda language if and only if there exists a qr n-pda M such 
that L = L(M) .  ~f~ denotes the family of all qr n-pda languages. 
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We state the following result without proof. 

LEMMA 3.1. (1) Every qr n-pda language can be accepted by a one state qr n-pda 
by empty stack. 

(2) For each n, LPn is an AFL. 

We now give the following characterization of the quasi-realtime n-pda languages. 

LEMMA 3.2. L is in s i f  and only i f  there exist n realtime deterministic context-free 

languages L 1 ,..., L~ and a length preserving homomorphism h such that 

L = h(L x n "" c3 Ln). 

Proof. (if) Since every cfl can be recognized by a qr 1-pda [5, 7], -oqa~ clearly 
contains the image of the intersection of n cfl under a ~-free homomorphism.  (only if) 
Let  M = (K, 2J, F, 3, q l ,  F, So,  n) be a qr n-pda and let L = L ( M )  For  each q in K, 
a in S a n d  n-tuple (A 1 ..... A~) in F • ..- • F, order the dements  of  8(q, a, A 1 ,..., A~) 
and let re(q, a, A x ..... An) be the number  of elements in $(q, a, A 1 ,..., As). 

For each i, 1 ~ i <~ re(q, a, A x ..... An),  let [q, a, A 1 ..... A s ,  i] be a new symbol 
and let 2] be the set of all such symbols. Let  h be the length-preserving homomorphism 
on 2]* defined by h([q, a, A 1 .... , A ~ ,  i]) = a. (Note that each symbol in ~ '  contains a 
state, an input symbol from 2:, n tape symbols f r om/ ' ,  and the number  of a move from 
M. We will construct n deterministic pda which accept strings of symbols from 2]. 
T h e j t h  pda will simulate the j th  pushdown store of M and determine if the sequence 
of encoded moves is legitimate and ends in a final state. I f  so, t h e j t h  pda accepts the 
input). Let  D be a new symbol and let K '  = K u {D} For each j ,  1 ~ j <~ n, we 
define a deterministic pda M s = (K' ,  2 ,  F, $j ,  q0, F, Z0) by 

(1) for each q in K and 

[q, a, A 1 ,..., A~ ,  i] in 2~, 3j(q, [q, a, A 1 ..... An ,  i], As) = (q', zj) 

where the ith member  of b(q, a, A 1 ..... A ,  d is (q', z 1 .... , zs ..... zn), 

(2) for each q in K' ,  a in 2] and Z i n / "  such that 3s(q, a, Z )  is not defined in [1], 
3~(q, a, Z) = (D, Z). 

Let  L~ = L(Mj ) .  Let w - -  b 1 ".. b~ where for 1 ~ l ~ k, 

bz = [q~ , a~ , A n ,..., A~n , iz]. 

Note that w is in L s if and only if ql = qo, Ali = Zo, and there exist YlJ ..... Y ~ ,  
Zlj ,..., z~. in U* and qk+x in F such that 

(ql,  b l ,  Alj) v--- (qz , b2 , y z iA~)  ~ "." ~-- (qI:+1, bk , y~iA~j) v--- (qk+x, E, ykjZkj) 
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where (qt+l, .~/+1 . . . . .  Zln ) is the i3h member  of 6(qt, aL, A a  ..... As,  ), I ~ l <~ k, and 
yz+l.iA~+I.i : yz~z~i, for 1 ~ 1 < k. Hence w is in L I c~ L 2 n --- C~ L ,  if and only if  
ql : q0, for each j ,  Al j  : ;s o and there exist YaJ ..... YkJ,z tJ  .... ,zkj  in F*,  and 
qk+leF, such that (qt+t, Z~+l .... , zt~) is the i th member  of $(qz, a t ,  A a  ..... Ate), 
1 ~ l ~< k, and y~+l,iAt+l, i : y , z l i ,  for 1 ~< l ~ k. But this later condition implies 
h(w) is in L(M) .  Further,  icy  is in L(M) ,  then there exists w in L 1 n "" n Ln such that 
y : h(w). Therefore  L ~ L (M)  : h(L t n ... c~ Ln). 

THEOREM 3.1. l f  language L is accepted by qr n-pda then L -- {e} is a scl. 

Proof. Follows immediately from Lemma 3.2 and the fact that  the family of scl 
contains all context-free languages and is closed under  intersection and length 
preserving homomorphism.  

COROLLARY. Any e-free language definable in linear time by a nondeterministic 
n-tape "luring machine is a scl. 

Proof. Any such language is a qr  3-pda language [7]. 
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