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The group of endotrivial modules in the normal case
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Abstract

The group of endotrivial modules has recently been determined for a finite group having a normal Sylow p-subgroup. In this
paper, we give and compare three different presentations of a torsion-free subgroup of maximal rank of the group of endotrivial
modules. Finally, we illustrate the constructions in an example.
c© 2006 Elsevier B.V. All rights reserved.

MSC: 20C20

1. Introduction

Endotrivial modules play an important role in the modular representation theory of finite groups, and this may
explain why many group theorists have been studying them intensively, since the late seventies. The classification of
endotrivial modules of a finite p-group was recently achieved in [11]. Thereafter, in a joint work, Jon Carlson, Daniel
Nakano and the author tackled the question of the classification of endotrivial modules for an arbitrary finite group,
and they were able to give an almost complete classification in the case of a finite group of Lie type in its defining
characteristic (cf. [8]). The general case is still an open question, in the sense that no presentation by generators and
relations of the group of endotrivial modules is yet known. However, the obstacles have been overcome in the case of
a finite group having a normal Sylow p-subgroup. The results are presented in [8, Theorem 3.4], where the authors
show that in this case, the group of endotrivial modules is generated by the classes of the indecomposable endotrivial
modules that are extended from the Sylow p-subgroup. Then, by means of cohomological tools, they construct a
minimal set of generators for the group of endotrivial modules.

The primary aim of these notes is to give an alternative construction of a torsion-free subgroup of maximal rank
of the group of endotrivial modules of a finite group having a normal Sylow p-subgroup, that does not appeal to any
cohomological knowledge. The method refers to a theorem proven by Dade, and it is presented in Section 3; after
that basic facts about endotrivial modules are recapitulated in Section 2. In Section 4, we review the modules and the
techniques used in [7,8], and we compare with the approach presented in the previous section. Finally, in Section 5,
we work out thoroughly an “odd extraspecial” example.
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2. Preliminaries

Throughout these notes, we let k be an algebraically closed field of prime characteristic p. If G is a finite group,
we write mod(kG) for the category of finitely generated kG-modules and stmod(kG) for the stable module category.
That is, the objects of stmod(kG) are the same as those of mod(kG), and the morphisms are equivalence classes
of morphisms. Namely, two morphisms are equivalent if their difference factors through a projective module (cf. [6,
Section 5]). In addition, we write k for the one-dimensional trivial kG-module, and if M is a finitely generated kG-
module, then Endk M = Homk(M, M) denotes the kG-module that is the k-algebra of k-linear endomorphisms of M .
Recall that, for two kG-modules M and N , there is an isomorphism of kG-modules Homk(M, N ) ∼= M∗

⊗ N , where
M∗

= Homk(M, k) is the k-linear dual of M , and the tensor product “⊗” is the tensor product over the field k.

Definition 2.1. Let G be a finite group. A finitely generated kG-module M is endotrivial provided that Endk M ∼= k
in stmod(kG), or equivalently, Endk M ∼= k ⊕ (proj) in mod(kG), for some projective kG-module (proj).

We say that two endotrivial kG-modules are equivalent if they are isomorphic in stmod(kG). The set T (G) of
isomorphism classes in stmod(kG) of endotrivial kG-modules is an abelian group, called the group of endotrivial
modules. The composition law is defined by [M] + [N ] = [M ⊗ N ].

In particular, in T (G), we have 0 = [k] and −[M] = [M∗
].

Endotrivial kG-modules were defined by Dade (cf. [12]), in 1978, for finite p-groups, as a particular case of the
capped endo-permutation kG-modules. A capped endo-permutation kG-module, for a finite p-group G, is a finitely
generated kG-module whose endomorphism algebra is a permutation module having a trivial direct summand. Modulo
a suitable equivalence relation, they form a finitely generated abelian group D(G), and the group T (G) identifies with
a subgroup of D(G).

Also, for a subgroup H of G, the restriction map ResG
H : mod(kG) → mod(k H) (also denoted by “·↓G

H ”) induces
a group homomorphism ResG

H : T (G) → T (H).
Non-trivial examples of endotrivial modules are the syzygies of the trivial module, whereas, in the case of a finite

p-group, most of the relative syzygies are capped endo-permutation modules (not endotrivial in general; cf. [1]). Let
us recall their definitions.

Definition 2.2. If X is a finite G-set, then Ω1
X (k) is the relative (to X ) syzygy of k, that is, the kernel of the

augmentation map k X → k.
If X = G, then we define the syzygy Ωn

G(k) of k, for each n ∈ Z, as follows. If n ≥ 1, we let Ωn
G(k) be the kernel

of the (n − 1)-st differential in a minimal projective resolution of k.

. . .
∂n+1 // Xn

∂n //

"" ""EEEEEEEE Xn−1
∂n−1 // . . . ∂2 // X1

∂1 //

"" ""EE
EE

EE
EE

X0
∂0 // // k

Ωn
G(k)

- 


;;wwwwwwwww
Ω1

G(k)

- 


<<yyyyyyyy

If n ≤ −1, we let Ωn
G(k) = Homk(Ω−n

G (k), k), and we set Ω0
G(k) = k.

Let G be a p-group and suppose that Ω1
X (k) is a capped endo-permutation kG-module. Then we let ΩX denote its

class in D(G), or T (G) in the case where it is endotrivial. In particular, for any finite group G, and for any integer
n, the syzygies Ωn

G(k) are indecomposable endotrivial modules and we have [Ωn
G(k)] = nΩG in T (G). We refer the

reader to Section 4 in [6] for more properties of the syzygies, and to Sections 2–5 in [4] for those of the relative
syzygies.

Elementary abelian p-subgroups play an important role in the analysis of T (G). In particular, we will need the
following group theoretical notions for our purposes.

Definition 2.3. Let G be a finite group and p be a prime.

(1) The p-rank of G is the largest integer r such that G has an elementary abelian p-subgroup of rank r .
(2) We write E≥2(G) for the poset of G-conjugacy classes of elementary abelian p-subgroups of G of p-rank at least

2.
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Note that the p-rank of a finite group G is the p-rank of a Sylow p-subgroup of G. Moreover, if a Sylow p-subgroup
P is normal in G, then E≥2(G) identifies with the quotient of E≥2(P) by the action by conjugation of G.

The number of connected components of E≥2(G) and the torsion-free rank of T (G) are closely related, as shown
by the next two theorems. We state them here as they appear in [11] and in [8] respectively. Let us point out the fact
that the first result was first obtained by J. Alperin (cf. [1, Theorem 4]).

Let P be a finite p-group. Assume that P has p-rank at least 2 and is not semi-dihedral. Let F1, . . . , Fm denote a
set of representatives of the components D1, . . . ,Dm of the poset E≥2(P). By [11], we know that we can make such
a choice satisfying that all Fi ’s have p-rank 2, all but possibly Fm are maximal, and Fm is normal in P . For each
1 ≤ i ≤ m let Si be a non-central subgroup of P of order p that is contained in Fi . By [11, Lemma 2.2], if Fi is
maximal then CP (Si ) = Si × L i , where L i has normal p-rank one. That is, L i is cyclic if p is odd, and can be either
cyclic or generalized quaternion in the case p = 2.

Theorem 2.4 ([11], Theorem 3.1). The group T (P) of endotrivial k P-modules is torsion-free of rank m and it is
generated by ΩP and the classes of the modules Ni for i = 1, . . . , (m − 1), where Ni is the unique indecomposable
summand with vertex P of

M⊗2
i if CP (Si )/Si is cyclic of order ≥ 3,

Mi if p = 2 and |CP (Si )/Si | = 2,

M⊗4
i if p = 2 and CP (Si )/Si is generalized quaternion,

and where Mi = Ω−1
P (k) ⊗ Ω1

P/Si
(k). Moreover,

ResP
F j

Ni ∼=

{
Ωai

Fi
(k) ⊕ (proj) if i = j

k ⊕ (proj) otherwise

where

ai = −2p if CP (Si )/Si is cyclic of order ≥ 3,

ai = −2 if p = 2 and |CP (Si )/Si | = 2,

ai = −8 if p = 2 and CP (Si )/Si is generalized quaternion.

In particular, if T (P) is cyclic, then T (P) = 〈ΩP 〉.
We refer the reader to [9,11,12] for a detailed description of the group of endotrivial modules in the case that

m = 1, since we will not consider that situation later.
Let G be a finite group having a normal Sylow p-subgroup P , and let F1, . . . , Fm be as above. Choose

representatives E1, . . . , En of the components C1, . . . , Cn of the poset E≥2(G).

Remark 2.5. If P has p-rank at least 3 and m ≥ 2, then, for any index 1 ≤ i ≤ m − 1, the subgroups Fi and Fm
are not G-conjugate. Indeed, since P is normal in G, then P contains all p-subgroups of G, and since the p-rank is
at least 3, then Fm is contained in an elementary abelian p-subgroup F of rank 3. Thus, if g Fi = Fm < F , for some
g ∈ G, then Fi < Fg < P . But this means that Fi is not maximal in P , which implies i = m. In other words, there
is only one connected component of elementary abelian p-subgroups of rank at least 3, which is thus invariant by any
automorphism of P , in particular here by G-conjugation.

This observation allows us, without loss of generality and only for the convenience of the notation, to choose the
indexes of the Fi ’s so that Ei = Fi , for 1 ≤ i ≤ n − 1 and En = Fm . The structure of T (G) is as follows (cf. [8]).

Theorem 2.6. The group T (G) is finitely generated, and hence, it splits as a direct sum TT(G) ⊕ TF(G), where
TT(G) denotes the torsion subgroup and TF(G) is a torsion-free subgroup of maximal rank (as a Z-module).

Moreover, T (G) is generated by the classes of the indecomposable endotrivial kG-modules whose restriction to P
is an indecomposable module, and TF(G) ∼= Zn .

In particular, if TT(P) is trivial, then TT(G) is generated by the classes of the one-dimensional kG-modules. Also,
if n = 1, then TF(G) = 〈ΩG〉.

Besides the purpose of the classification of endotrivial kG-modules, the fact that the syzygies of k are
indecomposable endotrivial modules has the following consequence.
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Corollary 2.7. Let P be a normal Sylow p-subgroup of a finite group G, and let (X., ∂.) be a kG-projective resolution
of the trivial module k. Then, (X., ∂.) is minimal ⇐⇒ (X.↓G

P , ∂.↓G
P ) is a minimal k P-projective resolution of k.

Proof. “⇐H” is obvious.
“H⇒” A projective kG-resolution of k is minimal if and only if it is the splice of short exact sequences, one for

each integer n ≥ 0,

0 // Ωn+1
G (k)

in // Xn
∂n // Ωn

G(k) // 0.

By restriction to P , we get then

0 // Ωn+1
P (k) ⊕ (proj)

in↓
G
P // Xn ↓

G
P

∂n↓
G
P // Ωn

P (k) ⊕ (proj) // 0.

But the kG-modules Ωn
G(k) are indecomposable endotrivial and P C G, and so, by Theorem 2.6, Ωn

G(k)↓G
P is

indecomposable. Therefore the projective factors “(proj)” are all zero. In other words, for each integer n ≥ 0, the
above short exact sequence is in fact

0 // Ωn+1
P (k)

in↓
G
P // Xn ↓

G
P

∂n↓
G
P // Ωn

P (k) // 0.

Hence, (X.↓G
P , ∂.↓G

P ) is a minimal k P-projective resolution of k. �

3. Dade’s result and its consequences

Throughout this section, we assume that G is a finite group and that P is a normal Sylow p-subgroup of G. We
continue with the notation used in the previous section.

The only cases in which generators for the group TF(G) are not given by Theorem 2.6 are for TF(G) not cyclic,
i.e. for n ≥ 2, according to our notation. Hence, we will assume that n ≥ 2. In this case, we also have m ≥ 2,
and so TT(P) = 0, by Theorem 2.4. Moreover, this also implies that the center of P is cyclic non-trivial. Thus,
it has a unique cyclic subgroup Z of order p, which is contained in any maximal elementary abelian p-subgroup.
Furthermore, Z C G, since Z is characteristic in P .

A key tool for determining which endotrivial k P-modules extend to G is provided by the following theorem,
proven by Dade and never published (as far as we are aware of).

Theorem 3.1 (Theorem 7.1, [13]). Let G be a finite group having a normal Sylow p-subgroup P, let k be an
algebraically closed field of characteristic p, and let M be an endo-permutation k P-module. Then M extends to
a kG-module if and only if M is G-stable.

By definition, if H is a normal subgroup of G and M is a k H -module, then we define the conjugate k H -module
g M of M by setting h ·

gm︸ ︷︷ ︸
in g M

=
g
(hg

· m︸ ︷︷ ︸
in M

), ∀ h ∈ H, ∀ m ∈ M, ∀ g ∈ G. We say then that M is G-stable if we

have an isomorphism of k H -modules M ∼=
g M, ∀ g ∈ G. Equivalently, a k H -module M is G-stable if and only if

g M ∼= M, ∀ g ∈ G/H .
Since an endotrivial module is an endo-permutation module, and since a module is endotrivial if and only if its

restriction to a Sylow p-subgroup is, we have the following.

Corollary 3.2. The map ResG
P : T (G) → T (P) induces an isomorphism of abelian groups TF(G) ∼= TF(P)G/P ,

where TF(P)G/P is the subset of the G/P-fixed points. That is, TF(P)G/P is the subgroup of TF(P) generated by
the classes of the G-stable endotrivial k P-modules.

Proof. By Theorem 2.6, we have ker(ResG
P ) = TT(G), and the image of ResG

P is necessarily a subgroup of T (P)G/P .
Hence, ResG

P induces an injection TF(G) → TF(P)G/P . Now, by Theorem 3.1, an endotrivial k P-module M extends
to a kG-module (necessarily endotrivial) if and only if M is G-stable. That is, the above map is also surjective. �
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At this stage, determining a set of generators for TF(G) comes down to a question of linear algebra. Indeed, if
x ∈ T (P) then x is uniquely expressible as a Z-linear combination x =

∑m
i=1 xi ei , where ei = [Ni ], for the module

Ni defined in Theorem 2.4, for 1 ≤ i ≤ m − 1, and em = ΩP .

Lemma 3.3. For all g ∈ G, and for all 1 ≤ i ≤ m, we have g Ni = Nσg(i), for the permutation σg , acting on the set
{1, . . . , m}, defined by g S j =P Sσg( j), ∀ 1 ≤ j ≤ m.

Here, the notation “=P ” means “is P-conjugate to”.

Proof. Fix an index 1 ≤ i ≤ m − 1, and write S = Si and N = Ni . Let g ∈ G and consider the map
ϕ :

gk[P/S] −→ k[P/
g S], defined by ϕ(

g
(uS)) =

gu g S on a k-basis {
g
(uS) | uS ∈ P/S} of the permutation

k P-module gk[P/S]. Let us verify that ϕ is an isomorphism of k P-modules. It is immediate that ϕ is an isomorphism
of k-vector spaces, and so we only need to check that ϕ commutes with the action of P:

v · ϕ(
g
(uS)) = v ·

gu g S =
g
(vg u)

g S = ϕ
(g

(vg uS)
)

= ϕ(v ·
g
(uS)), ∀ u ∈ P, ∀ uS ∈ P/S, ∀ g ∈ G.

It follows that we have exact sequences forming the commutative diagram:

0 // g Ω1
P/S(k) //

ϕ↓ker(gε)

��

gk[P/S]
gε //

ϕ

��

gk //

Id

��

0

0 // Ω1
P/g S(k) // k[P/g S]

ε′

// k // 0

Since ϕ is an isomorphism, the left hand k P-modules gΩ1
P/S(k) and Ω1

P/
g S

(k) are isomorphic. Similarly, we have
gΩ1

P (k) ∼= Ω1
P (k) and the result follows. �

This lemma has an immediate consequence.

Proposition 3.4. x =
∑m

i=1 xi ei ∈ T (P)G
⇐⇒ xi = x j whenever Si =G S j , ∀ 1 ≤ i ≤ m − 1.

We will need a group theoretical result, complementary to Lemma 2.2 in [11]. For this, let us fix an index
1 ≤ i ≤ n − 1 and write S = Si , E = Ei and N = Ni . Recall that our choice of the Ei ’s forces Ei = F j for
some j .

Lemma 3.5. The stabilizer of the P-conjugacy class of S is the subgroup PNG(E) of G.

Proof. By [11, Lemma 2.2], we know that CP (S) = NP (S) = S × L , where L has normal p-rank 1 and L contains
the unique central subgroup Z of P of order p. Moreover, the index of NP (S) in NP (E) is p. In particular, we deduce
that E = S × Z , and that NP (E)/NP (S) acts transitively (by conjugation) on the p non-central subgroups of order p
of E .

Since Z C G, we have NG(S) ≤ NG(E), and so PNG(S) ≤ PNG(E).
Conversely, for g ∈ NG(E), we have g S ≤

g E = E . Thus, there exists v ∈ P (actually, we can take
v ∈ NP (E) − NP (S)) such that g S =

v S, and so, v−1g ∈ NG(S). It follows then that g ∈ PNG(S), as was to
be shown. �

Since PNG(E) is the stabilizer of the P-conjugacy class of S, Theorem 3.1 implies that N extends to a k[PNG(E)]-
module Ñ , which is necessarily endotrivial.

Let C be a set of representatives of the left cosets G/PNG(E). Then the correspondence c 7→
c N is a bijection

from C to the G-conjugacy class of N .

Definition 3.6. Let H be a subgroup of G and let M be a k H -module. We define the tensor induced module TenG
H M

as follows (cf. [14, Section 5.1]). It is the k-vector space⊗
s∈[G/H ]

(s ⊗ M) , where [G/H ] is a set of representatives of the left cosets G/H
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endowed with the structure of kG-module given by

g · ⊗s(s ⊗ ms) = ⊗s(τg(s) ⊗ hsms) = ⊗s(s ⊗ h
τ−1

g (s)mτ−1
g (s)),

where gs = τg(s)hs , with hs ∈ H and a permutation τg of [G/H ].

Proposition 3.7. The kG-module TenG
PNG (E) Ñ is endotrivial.

Proof. It is enough to check that ResG
P TenG

PNG (E) Ñ is endotrivial. By the tensor version of Mackey formula (cf. [14,
Prop. 5.2.1]), and since P C G, we have isomorphisms of k P-modules

ResG
P TenG

PNG (E) Ñ ∼=

⊗
c∈C

TenP
P∩

c(PNG (E))Res
c(PNG (E))

P∩
c(PNG (E))

c Ñ

=

⊗
c∈C

Res
c(PNG (E))

P
c Ñ ∼=

⊗
c∈C

c
(

ResPNG (E)
P Ñ

)
∼=

⊗
c∈C

c N

which is a tensor product of endotrivial k P-modules and hence is endotrivial. �

For any elementary abelian p-group E of rank at least 2, we may identify the group T (E) = 〈ΩE 〉 with Z, via
nΩE 7→ n.

Definition 3.8. Let H be a finite group and let E1, . . . , El be representatives of the connected components of E≥2(H).
The product of all restriction maps ResH

Ei
: T (H) −→ T (Ei ), composed with the isomorphism T (Ei ) ∼= Z, 1 ≤ i ≤ l,

yields a well-defined homomorphism

resE(H) : T (H) // ∏l
i=1T (Ei )

// Zl .

For any endotrivial k H -module M , the element resE(H)([M]) ∈ Zl is called the type of M .

Throughout these notes, δi, j denotes the Kronecker symbol.

Proposition 3.9. We have ker(resE(G)) = TT(G). Moreover,

resE(G)([TenG
PNG (E j )

Ñ j ]) = (δi, j ai )
n
i=1,

where ai is the integer defined in Theorem 2.4.

Proof. The first statement has been proved in [8, Proposition 2.3], so we only need to show the second one.
By transitivity of the restriction and Proposition 3.7, we have

ResG
Ei

TenG
PNG (E j )

Ñ j ∼=

⊗
c∈C j

ResP
Ei

c N j

where C j is a set of representatives of the left cosets G/PNG(E j ). We may assume that 1 ∈ C j for all j . Now, for
any c ∈ C j , the k P-module c N j is endotrivial and defined in Theorem 2.4 as the “unique” indecomposable direct
summand with vertex P of a r -fold tensor product of the module

c
(
Ω−1

P (k) ⊗ Ω1
P/S j

(k)
)

∼= Ω−1
P (k) ⊗ Ω1

P/c S j
(k)

where the integer r is either 1, 2 or 4. By “unique”, we mean unique up to isomorphism.
Even though it is not an endotrivial module, ResP

Ei
Ω1

P/c S j
(k) has a “unique” indecomposable summand V with

vertex Ei , and V is isomorphic to Ω1
(P/c S j )↓

P
Ei

(k). By the Mackey formula (for Ei -sets) we have that

(P/c S j )↓
P
Ei

∼=

∐
x∈[Ei \P/c S j ]

Ei/
(

Ei ∩
xc S j

)
.
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If i 6= j then E j 6=G Ei and no G-conjugate of S j is contained in Ei , since Ei = Si × Z and Z C G. It follows that

(P/c S j )↓
P
Ei

∼=

∐
x∈[Ei \P/c S j ]

Ei .

Thus, V ∼= Ω1
Ei

(k) if i 6= j , by [4, Lemma 3.2.7], and therefore c N j is trivial.

Otherwise, we have i = j . If xc Si < Ei , for x ∈ P , then there is y ∈ NP (Ei )−CP (Si ) such that xc Si =
y Si , since

NP (Ei )/CP (Si ) acts transitively on the p non-central subgroups of order p of Ei . It follows that y−1xc ∈ NG(Si ),
and so c ∈ PNG(Si ) = PNG(Ei ). By the choice of representatives in Ci , this implies c = 1. Then, Theorem 2.4
shows that ResP

Ei
Ni ∼= Ωai

Ei
⊕ (proj).

Finally, if i = j and c 6∈ PNG(Ei ), then the previous argument shows that xc Si is not contained in Ei , for any
x ∈ P . Therefore, ResP

Ei
c N i

∼= k ⊕ (proj), as in the case i 6= j .
In conclusion, by tensoring all the pieces together, we deduce that

ResG
Ei

TenG
PNG (E j )

Ñ j ∼=

⊗
c∈C j

ResP
Ei

c N j
∼=

{
Ωai

Ei
(k) ⊕ (proj) if i = j

k ⊕ (proj) if i 6= j. �

Theorem 3.10. Let G be a finite group having a normal Sylow p-subgroup P. Consider the same notation as above,
and write the group T (G) of endotrivial kG-modules as a direct sum T (G) = TT(G) ⊕ TF(G), where TT(G) is the
torsion subgroup and TF(G) is torsion-free. Then, we may choose the set{

ΩG , xi = [TenG
PNG (Ei )

Ñi ] | 1 ≤ i ≤ n − 1
}

as a basis for the free Z-module TF(G).

Moreover, we have resE(G)(ΩG) = (1)n
i=1, and resE(G)(x j ) = (δi, j ai )

n
i=1.

Proof. The kG-modules TenG
PNG (Ei )

Ñi are endotrivial and their classes are linearly independent, by Theorem 2.4 and
the proof of Proposition 3.7. Hence they generate a torsion-free submodule of T (G) of rank equal to the rank of
TF(G).

Moreover, the proof of Proposition 3.7 shows that in T (P) we have

ResG
P [TenG

PNG (Ei )
Ñi ] =

∑
c∈Ci

[
c N i ]

where Ci denotes a set of the representatives of the left cosets G/PNG(Ei ). Since {
c N i | c ∈ Ci } is a sequence

without repetition that contains all the G-conjugates of Ni , it also makes the element
∑

c∈Ci
[
c N i ] of T (P) satisfy the

minimal necessary condition for being G-stable, by Proposition 3.4. This proves the first statement. The second claim
has been proved in Proposition 3.9. �

4. Alternative constructions

Throughout this section, we let G be a finite group having a normal Sylow p-subgroup P . We assume n ≥ 2,
and we choose the representatives E1, . . . , En and F1, . . . , Fm of the connected components of E≥2(G) and E≥2(P),
respectively, such that Ei = Fi , ∀ 1 ≤ i ≤ n − 1 and En = Fm , as before. Write also Z = 〈z〉 for the unique central
subgroup of P of order p. Finally, let ai be the integer defined in Theorem 2.4.

The purpose of this section is to review the two constructions of endotrivial modules providing free sets of
generators for TF(G), as given in [8]. Then, we compare the modules obtained for each construction. We assume
that the reader is familiar with the notions of cohomology of finite groups and (cohomological) varieties of modules
given in [6] or [14]. The notation we use in this section is as follows. For an inclusion of finite groups H → K , we
denote the induced restriction map in cohomology H∗(K , k) → H∗(H, k) as either ResK

H or ↓
K
H indiscriminately.

Meanwhile, we denote by Res∗

K ,H : VH (k) → VK (k) the induced map on the varieties.
Let us now recall the presentation of TF(G) given in [8].
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Theorem 4.1 ( [8, Theorem 3.4]). For each 1 ≤ i ≤ n − 1 there exists an endotrivial kG-module Ui such that

Ui↓
G
Ei

∼= Ωai
Ei

⊕ (proj) and Ui↓
G
E j

∼= k ⊕ (proj), ∀ j 6= i,

where the ai ’s are the integers defined in Theorem 2.4.

The classes ΩG , [Ui ], 1 ≤ i ≤ n − 1 form a free set of generators for TF(G).

The structure of the modules Ui is described in the proof, which uses the construction originating from [10] and
quoted by the authors as the “deconstruction method”. Briefly, it consists in analysing the variety V = VG/Z (Ωai

G (k)),

where Ωai
G (k) is the kG/Z -module that is the quotient of Ωai

G (k) by the submodule (z − 1)p−1Ωai
G (k). The arguments

of [7, Theorem 7.2] show that for each index j , the variety V decomposes as a union of varieties V j ∪ V ′

j such that

V j ∩ V ′

j = {0}, V j = Res∗

G/Z ,E j /Z (VE j /Z (k)) and Res∗

G/Z ,El/Z (VEl/Z (k)) ⊆ V ′

j , ∀ l 6= j.

Then, by [7, Corollary 4.3], there exists an endotrivial module of the desired type, whose construction appeals to
previous results (and ultimately from a theorem of [2], applied to the Lyndon–Hochschild–Serre spectral sequence of
the group extension 1 → Z → G → G/Z → 1). Indeed, it turns out that each V j is the variety of the kG/Z -module
that is the quotient U j/(z − 1)p−1U j of an indecomposable endotrivial kG-module U j .

We now turn to the third construction. Note that it does not require P C G, and that, instead, it necessitates an
additional assumption on the cohomology group H∗(G, k).

Proposition 4.2 ([7, Corollary 4.6]). Suppose that Z is a subgroup of order p in the center of a Sylow p-subgroup
P of G. Suppose that for d > 0 the group H2d(G, k) has an element ζ such that ResG

Z (ζ ) 6= 0. Then G has an
endotrivial module of type (2dδi, j )

n
i=1 for each 1 ≤ j ≤ n.

Let us recall how these endotrivial modules are obtained, starting from a generalization of the definition of Carlson’s
Lζ ’s modules (cf. [6, Section 6]).

Definition 4.3. Let ζ ∈ Hs(G, S) be non-zero, where S is a one-dimensional kG-module and s ≥ 1. Let ζ̃ ∈

HomG(Ω s
G(k), S) represent ζ . We define the kG-module Lζ,S = ker ζ̃ .

Among many properties of these modules, all that we need to know for our concerns is that the modules Lζ,S are
defined up to isomorphism by the class ζ ∈ Hs(G, S). In particular, for s = 2d, as in Proposition 4.2, we have a short
exact sequence of kG-modules

0 // Lζ,S // Ω2d
G (k)

ζ̃ // S // 0

which does not depend on the choice of ζ̃ , and which does not involve any projective summand. Since Ω2d
Z (k) = k,

we have that Ω2d
G (k)↓G

Z
∼= k ⊕ (proj). Thus, the assumption that ζ↓

G
Z 6= 0 implies that Lζ,S↓

G
Z is projective. By the

Quillen Dimension Theorem (cf. [14, Corollary 8.3.3]), it follows that the variety VG(Lζ,S) of Lζ,S is disconnected,
since the number n of connected components of E≥2(G) is at least 2. More precisely, VG(Lζ,S) is a union of n
subspaces V1, . . . , Vn , each Vi being the variety of a kG-submodule L i of Lζ,S , such that Lζ,S decomposes as the
direct sum L1 ⊕ · · · ⊕ Ln . Note that Vi is a line for each 1 ≤ i ≤ n − 1. Similar reasoning applies to the group P
instead of G, and since ΩG(k)↓G

P
∼= ΩP (k), we conclude that Lζ,S↓

G
P

∼= Lζ↓
G
P

splits as a direct sum X1 ⊕· · ·⊕ Xm ,

where m ≥ 2 is the number of connected components of E≥2(P). Moreover, if VP (Lζ,S↓
G
P ) = W1 ∪ · · · ∪ Wm , with

Wi = VP (X i ), then G acts by permutation on the Wi ’s and hence on the X i ’s. It follows that L i↓
G
P

∼= ⊕g∈[G/Gi ] g·X i ,
for the stabilizer Gi = PNG(Fi ) of the P-conjugacy class of Fi , as in the previous section.

For each index 1 ≤ i ≤ n, set L ′

i = ⊕ j∈Ji L j , where Ji = { j | 1 ≤ j ≤ n, i 6= j}.
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Proposition 4.4. Each L i gives rise to an indecomposable endotrivial kG-module Mi , of type (2dδi, j )
n
j=1, built as

the push-out in the following commutative diagram.

0

��

0

��
L ′

i

��

L ′

i

��
0 // Lζ,S //

��

Ω2d
G (k)

ζ̃ //

��

S // 0

0 // L i //

��

Mi //

��

S // 0

0 0

Proof. The proof is a paraphrase of an argument used in the demonstration of [8, Theorem 3.1], and goes as follows.
Let 1 ≤ i, j ≤ n. We need to show that

Mi↓
G
E j

∼=

{
Ω2d

E j
(k) ⊕ (proj) if i = j

k ⊕ (proj) otherwise.

We have L i↓
G
P = ⊕g∈[G/Gi ] g · X i , with X i↓

P
E j

projective (and hence injective) if and only if j 6= i , i.e. E j 6= Fi ,
by our choice of the representatives of the connected components of E≥2(P) and E≥2(G). This implies that exactly one
of the restrictions to E j of the exact sequences consisting in the second column or the bottom row is split, depending
on whether X j is a summand in L i↓

G
P or not. Namely, the restriction to E j of the second column splits if and only if

X j | L i↓
G
P , that is, if and only if X j = g · X i , for some g ∈ G. This happens if and only if i = j , and in this case we

have

M j↓
G
E j

⊕ (proj) ∼= Ω2d
P (k)↓P

E j
∼= Ω2d

E j
(k) ⊕ (proj).

Hence M j↓
G
E j

∼= Ω2d
E j

(k) ⊕ (proj).

Otherwise, i 6= j and the restriction to E j of the bottom row splits, since the left term is injective. In this case, we
have Mi↓

G
E j

∼= k ⊕ (proj).

Thus Mi↓
G
E j

is endotrivial for all 1 ≤ i, j ≤ n, and the type of Mi is (2dδi, j )
n
i=1, as asserted. �

We discuss the possible additional assumptions needed for this construction to be carried out. That is, we want to
give a sufficient and necessary condition on the cohomology group H2d(P, k), that would detect when there exists a
one-dimensional kG-module S such that H2d(G, S) contains an element that restrict non-trivially to Z .

Let H be a normal subgroup of G. Then HomH (M↓
G
H , k) is a kG-module, for any kG-module M , and since the

restriction map commutes with the differentials in complexes of kG-and k H -modules, it induces a map of kG-modules
ResG

H : Hs(G, k) −→ Hs(H, k) in cohomology (cf. [14, Section 4.1]). In fact, H acts trivially on HomH (M↓
G
H , k),

and so, we can consider ResG
H as a map of kG/H -modules. Similarly, for G, P, Z and 2d as in Proposition 4.2,

the map ResP
Z : H2d(P, k) −→ H2d(Z , k) is a map of kG/P-modules. Since p does not divide the order of G/P ,

the map ResP
Z splits. Now, the fact that H2d(Z , k) is one dimensional implies that, if ResP

Z is non-zero, then any
non-zero element β ∈ H2d(Z , k) lifts to an element ζ ∈ H2d(P, k) that restricts non-trivially to Z and such that
(g · ζ )↓P

Z = g · ζ↓
P
Z = µgβ, for some |G : P|-root of unity µg ∈ k, for any g ∈ G.

On the other hand, we also have that the action of G on the one-dimensional k-vector space Hs(Z , k), for
any integer s ≥ 0, defines a representation ρ : G → Aut(Hs(Z , k)) of G. Set H for the kernel of ρ, that is,
H = {g ∈ G | g · ζ = ζ, ∀ ζ ∈ Hs(Z , k)} is the stabilizer of Hs(Z , k) in G. In particular, H is a normal subgroup of
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G containing P , and the quotient group G/H is cyclic of order prime to p, since it is isomorphic to a finite subgroup
of the group of units in k. Hence, Hs(Z , k) is a kG/H -module.

Lemma 4.5. Let s ≥ 0 be an integer and assume there exists ζ ∈ Hs(P, k), such that ζ↓
P
Z 6= 0. Then

TrH
P ζ ∈ Hs(H, k) and we have (TrH

P ζ )↓H
Z 6= 0, where TrH

P denotes the transfer in cohomology (cf. [14, Section 4.2]).

Proof. Let ζ ∈ Hs(P, k), for some s ≥ 0, and assume that ζ↓
P
Z 6= 0. By definition of H , we have

ResH
Z TrH

P ζ =

∑
g∈[H/P]

g · ζ ↓
P
Z = |H : P| · ζ↓

P
Z .

Since |H : P| is invertible in k, we have that ResH
Z TrH

P ζ 6= 0 if ζ↓
P
Z 6= 0. �

This observation leads us to a sufficient and necessary condition for determining when the last construction of
endotrivial modules can be applied, provided that it applies for T (P).

Proposition 4.6. There exist a one-dimensional kG-module S and η ∈ Hs(G, S) such that η↓
G
Z 6= 0 if and only if

there exists ζ ∈ Hs(P, k) such that ζ↓
P
Z 6= 0.

In particular, for s = 2d, there exists then an indecomposable endotrivial module of type (2dδi, j )
n
i=1, for each

index 1 ≤ j ≤ n.

Proof. The “if ” part is clear.
Assume there exists ζ ∈ Hs(P, k) such that ζ↓

P
Z 6= 0, and let H be the stabilizer of Hs(Z , k) in G, as above.

By Lemma 4.5, we have that TrH
P ζ ∈ Hs(H, k) and that (TrH

P ζ )↓H
Z 6= 0. By the Eckmann–Shapiro Lemma (cf. [14,

Proposition 4.1.3]), we have Hs(H, k) ∼= Hs(G, k↑
G
H ). Thus, the image of TrH

P ζ under this isomorphism is an element
of Hs(G, k↑

G
H ) that restricts non-trivially to the subgroup Z . Now, k↑

G
H is a direct sum of one-dimensional kG-

modules, since G/H is a cyclic group of order prime to p, as noted above, and since k is algebraically closed.
Therefore, there is a one-dimensional direct summand S of k↑

G
H and η ∈ Hs(G, S) such that η↓

G
Z 6= 0, as was to be

shown.
The last assertion is then the application of Proposition 4.2. �

We end this section with the comparison of the modules obtained in each construction, and, for convenience,
we use the same notation. First, observe that a module TenG

Gi
Ñi of Section 3 is not indecomposable and it has a

large dimension, in general. Moreover the corresponding k P-module Ni is the cap of a (larger, in general) endo-
permutation module. That is, Ni is the unique direct summand with vertex P of a capped endo-permutation k P-
module. Consequently, if one wishes to compute T (G) with a computer support, the generators for TF(G) provided
by the TenG

Gi
Ñi are likely to involve time-consuming algorithms. Instead, the modules of Section 4 are indecomposable

and their construction by an algebra software is likely to be more handy.
In order to compare the three presentations of TF(G), we use the injectivity of the restriction map

resE(G): TF(G) →
∏n

i=1 T (Ei ). Then, there is the simple matter of comparing the computations in Theorems 3.10
and 4.1, and Proposition 4.2.

Remark 4.7. In stmod(kG), we have isomorphisms TenG
Gi

Ñi ∼= U∗

i
∼= M∗

i , ∀ 1 ≤ i ≤ n. In particular, since Ui and
Mi are indecomposable, we have Ui ∼= Mi in mod(kG), for all 1 ≤ i ≤ n.

It is remarkable, and remains unexplained, that the modules Ui and Mi are isomorphic, since their construction is
apparently different. Moreover, the modules Mi cannot be built in general, whereas the modules Ui always exist.

5. Odd extraspecial example

Let p be an odd prime and let P be a Sylow p-subgroup of PSL3(p). That is, P is an extraspecial p-group of order
p3 and exponent p. Let G be its normalizer in PSL3(p).

There are p +1 conjugacy classes in P of maximal elementary abelian p-subgroups of rank 2, each consisting of a
single maximal normal subgroup of P . Let us call these subgroups F1, . . . , Fp+1. Choose also non-central subgroups
Si < Fi , 1 ≤ i ≤ (p + 1) of order p.
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By Theorem 2.4, the group T (P) of endotrivial modules is free abelian of rank p + 1 and admits a presentation
T (P) = 〈ΩP , [Ni ], 1 ≤ i ≤ p〉, where [Ni ] denotes the class of the indecomposable endotrivial summand of the

k P-module
(
Ω−1

P (k) ⊗ Ω1
P/Si

(k)
)⊗2

, for each index i . The elements [Ni ], for 1 ≤ i ≤ p + 1, verify a non-trivial

relation in T (P) (cf. also [5, Section 11])

p+1∑
i=1

[Ni ] = 2p ΩP , since both have the same type, namely (2p, . . . , 2p) ∈ Zp+1.

Let us also point out that, for each index i , the module (Ω−1
P (k) ⊗ Ω1

P/Si
(k))⊗2 is not endotrivial (and hence it is

decomposable). Indeed, it has dimension (p3
− 1)2(p2

− 1)2, which is not congruent to ±1(mod p3), ∀ p > 2.
Let us now consider T (G). By Theorem 2.6, the torsion subgroup TT(G) is generated by the one-dimensional

kG-modules, since TT(P) is trivial. That is, TT(G) is isomorphic to the character group of the abelian p′-group
G/P ∼= C p−1 × C p−1. On the other hand, for TF(G), we note that there are exactly two elementary abelian p-
subgroups which are normal in G, and the p − 1 others form a unique G-conjugacy class. Say F1, F2 C G, and
F3 =G · · · =G Fp+1. Then, we may choose Ei = Fi , 1 ≤ i ≤ 3, and so we get G1 = G2 = G and G3 has index p − 1
in G, where Gi = PNG(Ei ) = NG(Ei ) for 1 ≤ i ≤ 3. Indeed, by the Class Formula, the cardinality of the G-orbit of
E3 is p − 1, which is hence the index in G of the stabilizer PNG(E3) of the G-conjugacy class of E3.

From Proposition 3.4 and Lemma 3.5, we get T (P)G/P
= 〈ΩP , [N1], [N2]〉 ∼= Z3. Note also that

∑p+1
i=3 [Ni ] =

2pΩP − [N1] − [N2] ∈ T (P)G/P .
Theorem 3.1 implies that the modules N1 and N2 extend to G, into indecomposable endotrivial modules Ñ1 and

Ñ2, respectively. Therefore, TF(G) = 〈ΩP , [Ñ1], [Ñ2]〉, by Theorem 3.10.
By Proposition 3.7, the module N3 extends to an indecomposable endotrivial kG3-module Ñ3, yielding then an

endotrivial kG-module TenG
G3

Ñ3. Moreover, [TenG
G3

Ñ3] + [Ñ1] + [Ñ2] ∈ TT(G).
Lastly, we remark that in the presentation of TF(G) above, the underlying modules are indecomposable, which

is not the case in general. But it need to be pointed out that the modules Ni are proper direct summands of (endo-
permutation) modules of dimension (p3

− 1)2(p2
− 1)2, and that at this point we do not know what Dim(Ni ) is. The

second half of this section will give us the answer.
We turn now to the presentation of T (P) and TF(G) described in Section 4, and for convenience, we adopt the

same notation. In particular, since p is odd, we have ai = 2p, for the integer ai of Theorem 2.4. Hence, we can apply
Proposition 4.2 to find generators for T (P). Indeed, by [3, Theorem 10.1] (or [15, Theorems 6 and 7]), there exists
ζ ∈ H2p(P, k) such that ζ↓

P
Z 6= 0. In fact, ζ ∈ H2p(P, Fp) and ζ is obtained as the norm from any F ∈ E≥2(P) to

P of the inflation of a non-zero element η ∈ H2(Z , Fp), and where Z is identified with a quotient of F .

Let ζ̃ : Ω2p
P (k) → k represent ζ and set Lζ = ker ζ̃ . Then Lζ is the direct sum L1 ⊕· · ·⊕ L p+1 of indecomposable

k P-modules. Moreover, all the modules L i have the same dimension, since the automorphism group Aut(P) of P
permutes transitively the subgroups F1, . . . , Fp+1 and hence Aut(P) also acts by permuting transitively the L i ’s.

Now, the endotrivial modules Mi , for 1 ≤ i ≤ p + 1, are obtained as the push-out

Lζ //

��

Ω2p
P (k)

���
�
�

L i //____ Mi .

In addition, by [10, Corollary 4.4], we have Dim(Ω2p
P (k)) = p3(p + 1) + 1. Therefore, we get Dim(L i ) = p3, and

so Dim(Mi ) = p3
+ 1. Note that this is the minimal possible dimension that we could expect for Mi . Indeed, it has to

be greater than 1 and congruent to 1 (mod |P|).
Last but not least, we handle TF(G). Note that since H2p(P, k) contains an element that restricts non-trivially to

Z , we can apply any of the two constructions presented in Section 4. We choose the “deconstruction method” (cf.
Theorem 4.1).

We consider the kG/Z -module

U = Ω2p
G (k) / (z − 1)p−1Ω2p

G (k).
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Note that the action of (z − 1)p−1
=

∑p−1
i=0 zi on a k Z -module M annihilates any non-free summand of M , and

sends a free module onto its socle. By a dimension argument (cf. [10, Corollary 4.4]), we deduce that Ω2p
G (k)↓G

Z
∼=

k ⊕ (k Z)p2(p+1), and so (z −1)p−1Ω2p
G (k) has dimension p2(p +1). It follows that Dim(U ) = p2(p +1)(p −1)+1.

In addition, in the notation of the discussion after Theorem 4.1, the variety V = VG/Z (U ) decomposes as the union
V1∪V2∪V3∪W , where W = V ′

1∩V ′

2∩V ′

3. This is because E≥2(G) consists of three isolated vertices E1, E2, E3. Then,
each Vi is the variety of the kG/Z -module Ūi = Ui/(z − 1)p−1Ui , for an indecomposable endotrivial kG-module Ui
satisfying

Ui↓
G
E j

=

{
Ω2p

Ei
(k) ⊕ (proj) if i = j

k ⊕ (proj) if i 6= j.

Since the group Aut(G) of automorphisms of G permutes transitively E1, E2 and E3, the induced action on V
permutes transitively V1, V2 and V3. Consequently, the modules Ū1, Ū2 and Ū3 have the same dimension. Since
the Ui ’s are endotrivial, we have Ui↓

G
Z = k ⊕ (proj). It follows that Dim(Ui ) = 1 + pDim(Ūi ), for 1 ≤ i ≤ 3, and

thus the modules Ui have the same dimension.
Now, Ei = Fi , for 1 ≤ i ≤ 3, and E3 =G Fi , ∀ 3 ≤ i ≤ p + 1. That is, the G-conjugacy classes of F1

and F2 coincide with their respective P-conjugacy classes. Therefore, U1↓
G
P and U2↓

G
P are isomorphic to the

indecomposable endotrivial modules obtained using the techniques of Theorem 4.1 applied to P instead of G, and
corresponding to F1 and F2 respectively. By Remark 4.7, we have Ui↓

G
P

∼= Mi for i = 1, 2. Thus, Dim(Ui ) = p3
+1

and Dim(Ūi ) = p2, for i = 1, 2 and 3. Note also that the isomorphism U3↓
G
P ⊕ (proj) ∼= ⊗

p+1
i=3 Mi tells us that

Dim((proj)) = (p3
+1)p−1

−(p3
+1). On the other hand, the variety W is the variety of a kG/Z -module of dimension

Dim(U ) − 3Dim(Ū1) = p2((p + 1)(p − 1) − 3) + 1.
We can now answer the question concerning the dimension of the modules Ñ1, Ñ2 and TenG

G3
Ñ3. Indeed, by duality

and indecomposability, we have Dim(Ñi ) = p3
+ 1 for i = 1, 2, whereas Dim(TenG

G3
Ñ3) = (p3

+ 1)p−1.

In particular, TenG
G3

Ñ3 is not indecomposable, since

Dim(M3) = (p − 1)p3
+ 1 < (p3

+ 1)p−1
= Dim(TenG

G3
Ñ3), ∀ p > 2.

More precisely, we have TenG
G3

Ñ3 ∼= M∗

3 ⊕ (proj), where

Dim((proj)) = Dim(TenG
G3

Ñ3) − Dim(M3) =

p−1∑
i=2

(
p − 1

i

)
p3i.
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