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Ascorbic acid is a regulator of the intracellular cAMP concentration:
Old molecule, new functions?
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Abstract Recently, using an animal model of Charcot-Marie-
Tooth human disorder, we showed that ascorbic acid (AA) re-
presses PMP22 gene expression by acting on intracellular
cAMP concentrations. In this work, we present kinetics data
on the inhibitory effect of AA upon adenylate cyclase activity.
The data show that this molecule acts as a competitive inhibitor
of the enzyme, a finding that opens new pharmacological
avenues.
� 2008 Published by Elsevier B.V. on behalf of the Federation of
European Biochemical Societies.
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1. Introduction

Using a YAC transgenic murine line (C22) that mimics the

human Charcot-Marie-Tooth type 1A disorder (CMT-1A)

[1], we showed that high concentrations of ascorbic acid

(AA) can result in a significant amelioration of the CMT phe-

notype in mice [2]. AA treatment reduced PMP22 expression

to a level below which that is necessary to correct the CMT-

1A phenotype [2]. These data provided the background for a

clinical phase II/III trial in humans.

Then, we showed that AA inhibits cAMP-dependent expres-

sion of the PMP22 gene, and that this action was dose depen-

dent [3]. According to this work high doses of AA added to the

Schwann cells culture resulted in decrease of the intracellular

concentration of the second messenger, and we proposed that

AA might be considered as a ‘‘global regulator’’ of intracellu-

lar cAMP level [3]. By this property AA would affect any path-

way in which cAMP is implicated. In addition, we demonstrate

that this property is not shared with other anti oxidants [3].

Intracellular cAMP concentrations are controlled by two

mechanisms: a production pathway of cAMP via the activity

of nine adenylate cyclase isoforms and a degradation pathway

via the activity of specific phosphodiesterases. Both pathways

could be modulated either by variations of gene expression

encoding the corresponding enzymes or by a direct modifica-

tion of their enzymatic activities. In the present work, we ad-

dress this question using two independent set of experiments:
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1. We analyzed first the expression of genes coding for aden-

ylate cyclase, and demonstrate that AA did not affect their

expression.

2. The second hypothesis is that AA directly affects adenylate

cyclase activity. To this end we have analyzed in vitro kinet-

ics data of the action of AA on a membrane mixture iso-

lated from murine Schwann cell cultures. This allowed us

evaluating the inhibitory mode of action of AA on adenyl-

ate cyclase activity.
2. Materials and methods

2.1. Murine Schwann cell culture
The MSC80 cell line used in this study was derived from murine sci-

atic nerve primary Schwann cells [4]. These cells express the same set of
markers than those expressed in vivo by Schwann cells. The cells were
cultured in Dulbecco�s Modified Eagle Medium (DMEM) supple-
mented with 10% foetal calf serum, penicillin (100 U/ml) and strepto-
mycin (100 lg/ml), as described previously [4]. These cells are bipolar
and their doubling time was approximately 17 h.
2.2. RNA extraction and RT-PCR
Total RNA was extracted from cell cultures using the Trizol reagent

(Invitrogen) and resuspended in RNAase-free water. The concentra-
tion of total RNA was determined using the NanoDrop technology
instrument. Two micrograms total RNA was then used for RT reac-
tion, which was performed using SuperScript II kit (Invitrogen)
according to the manufacturer�s instructions. The resulted cDNAs
were stored at �80 �C until use.

Levels of mRNA encoding adenylate cyclase isoforms were quanti-
fied by real-time RT-PCR employing the LightCycler 480 (Roche). All
measurements were performed in triplicate in SyberGreen Master Mix
(Roche) using 96-well optical PCR plates.

Appropriate primers for the adenylate cyclase isoforms were de-
signed using the primer3 web site (http://www-genome-wi.mit.edu/
cgi-bin/primer/primer3_www.cgi). Ribosomal 18S RNA was used as
an internal standard.

For each reaction, 5 ll diluted cDNA (1/50), 12.5 ll SyberGreen
Master Mix, 0.5 ll reverse primer (1 lM), 0.5 ll forward primer
(10 lM) and 6.5 ll sterile water were employed.

Real-time PCR was carried out according to a standard manufac-
turer�s protocol involving 40 cycles of denaturation–annealing. Expres-
sion level of each gene were analysed by the relative quantification
calculation software of the Roche light cycler.
2.3. Adenylate cyclase assay
Cultured MSC80 cells were homogenized in 2 ml TEOP buffer con-

taining 20 mM Tris–HCl (pH 7.5), 1 mM EDTA, 1 mM orthovana-
date, and protease inhibitors (1 mM PMSF and 1/2 tablet of
complete mini peptidase inhibitors per 50 ml buffer; Roche Applied
Science). Unbroken cells and nuclei were removed by low-speed centri-
fugation at 900 · g for 5 min at 4 �C. Then the supernatant was centri-
fuged at 19,000 · g for 20 min at 4 �C and the resulting pellet was
ation of European Biochemical Societies.
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Table 1
Adenylate cyclase primer sequence

Gene Sequence

Adcy1 5 0CAGGGACGAATTCAGGTGAT30

5 0TGCACACAAACTGGTATGAGC30

Adcy2 5 0CTGCTCGCCGTCTTCTTC3 0

5 0GAACGGTTATTAAAAATGCCACA30

Adcy3 5 0GAAGATGAATCTGGAGGAGCA30

5 0GGCAGGATGGAAAGCATAAG30

Adcy4 5 0ATGTCATTGGCCAACCA30

5 0CTGTGATGTGCACTCGTCCT30

Adcy5 5 0TCAATGAGATCATCGCAGACTT3 0

5 0CATGTAGGTGCTGCCTATGG30

Adcy6 5 0CATGATCGAAGCCATCTCG3 0

5 0CCATTTCCGTAGGCCAAG3 0

Adcy7 5 0TGTGGGACTCTTTGGAGAATG30

5 0CCACAAAGACGACAAACAGG30

Adcy8 5 0CTTTCAATTCCTCAGCTGTGTTT30

5 0CAACACCCCAGTGAAGACAA30

Adcy9 5 0TTGGGGCAATCTTGGTGT3 0

5 0CAGAGCCAGTGAACATGGTG30
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resuspended in 200 ll buffer containing 20 mM Tris–HCl (pH 7.5) and
1 mM EDTA. These membrane preparations after appropriate dilu-
tions (2 lg protein per ll buffer composed of 20 mM Tris–HCl,
1 mM EDTA and 1 mM DTT) were used consequently for adenylate
cyclase activity assays.

Assay for the determination of adenylate cyclase activity was based
on the estimation of the quantity of cAMP formed under standard
conditions (linearity versus reaction time and versus enzyme concen-
tration) using a highly specific quantitative test (DE0355; R&D Sys-
tems). This assay is based on the competitive binding technique in
which cAMP present in a sample competes with a fixed amount of
Horseradish (HPR)-labeled cAMP for sites on a mouse monoclonal
antibody. During the incubation, the monoclonal antibody becomes
bound to the goat anti-mouse antibody coated onto the microplate.
Following a wash to remove excess conjugate and unbound sample,
a substrate solution is added to the wells to determined the bound en-
zyme activity. The color development is stopped and the absorbance is
read at 450 nm. The intensity of the color is inversely proportional to
the concentration of cAMP in the sample. The reaction mixture (total
volume of 0.1 ml) contained 25 lg total membrane proteins, 50 mM
triethanolamine–HCl (pH 7.4), 0.1 mM EGTA, 2 mM MgCl2, 1 mM
DTT, 1 mM isobutyl-methylxanthine, 0.2% bovine serum albumin
(BSA), and 50 lM GTP. After incubation for 10 min at 30 �C, 5 ll
of substrate solution (1 mM ATP) were added to start the reaction,
which was terminated 5 min later by adding 0.4 ml of 0.1 M HCl. A
standard curve with known concentrations of cAMP was used to ex-
press data in pmol cAMP per min. Protein content of membrane prep-
arations was estimated using the bicinchoninic acid (BCA)-protein
assay (Sigma–Aldrich).

Inhibition studies were performed using fixed concentrations of neu-
tralized Na-ascorbate preparations for different concentrations of
ATP.
3. Results

3.1. Expression of genes coding for adenylate cyclase isoforms

In a first step, we performed RT-PCR experiments using

primers specific of each individual gene (Table 1) and RNA ex-

tracted from cultured Schwann cells. Among the nine genes

encoding adenylate cyclase, only four were significantly ex-

pressed in our culture conditions, corresponding to isoforms

6, 7, 8 and 9 (Fig. 1A). Among them, two genes corresponding

to isoforms 6 and 9 were the most highly expressed.

In a second step, the role of AA on the expression of these

four genes was investigated. This was realized using a specific

combination of primers/probes and performing quantitative

PCR with extracted RNA from cell cultures grown in the ab-

sence or presence AA. In the latter case two AA concentrations

were used, of 0.56 and 1.7 mM, respectively. From the data

presented in Fig. 1B–E the possibility that AA acted at the

transcriptional level can be excluded since the expression of

none of the four genes encoding adenylate cyclase isoforms

that are expressed in our cell culture conditions was affected

in the presence of this molecule.

3.2. Kinetics data

The potential impact of AA on adenylate cyclase activity

was then assessed in vitro using membrane preparations from

Schwann cells (see Section 2) as a source of the enzyme. First

the standard conditions for assaying this enzyme were investi-

gated (Fig. 2A and B). Linearity of cAMP product formation

was observed up to 10 min of reaction time, while velocity pat-

terns versus membrane concentration were linear up to 30 lg

protein in the reaction mixture. From these data, all subse-

quent kinetic experiments were carried out using 25 lg total

protein for a reaction time of 5 min at 37 �C and varying

ATP concentrations (see Section 2).
Increasing concentrations of AA, from 0.2 mM up to 5 mM,

resulted in an increased inhibition of adenylate cyclase activity

(Fig. 3A). It is important to note that a neutralized form of AA

has been used to avoid adverse effects of changing the pH value

of the reaction mixture. The kinetic data were also expressed in

form of double reciprocal plots (Lineweaver–Burk plots) of the

reciprocal of velocity versus the reciprocal of substrate concen-

tration (Fig. 3B). Based on these graphical representations it is

apparent that the Vmax of the enzyme was not affected by AA.

In contrast the apparent KM value was dependent on AA con-

centration. By linear regression analysis, all straight lines in

Fig. 3B converged at the same point on the Y-axis, clearly indi-

cating that AA behaves as a competitive inhibitor of adenylate

cyclase under our experimental conditions. Based on second-

ary plots (Fig. 3C) the Ki value for the formation of the postu-

lated enzyme–AA complex was estimated to be around

1.2 mM.
4. Discussion

The role of AA as cofactor of specific hydroxylation reac-

tions and its antioxidant properties are well known for dec-

ades. In this context, the role of AA of the in vitro

differentiation of axon-related Schwann cells was attributed

to the property of this molecule to act as a cofactor in the

hydroxylation of collagen proline and lysine residues, which

are essential for basal lamina collagen chains to associate to

triple helices [5,6]. The formation of myelin was hypothesized

to be promote indirectly by AA and as a sequence of stabilized

by triple-helical type IV collagen basal lamina of Schwann cells

[6]. Despite intensive work, the biological properties of AA are

not probably fully understood and remain to be unraveled. Re-

cently, using an animal model of the CMT-1A, the most com-

mon form of CMT, we demonstrated that AA proved able to

revert the CMT-1A phenotype [2]. This observation provided

the rationale for the first phase II clinical assay of AA as a no-

vel means to combat this disease.

The CMT-1A disorder is characterized by peripheral demy-

elination and has been associated with a partial duplication of

the PMP22 gene in the human chromosome 17, resulting in a
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Fig. 1. (A) Adenylate cyclase gene expression. RNAs from Schwann cells have been extracted and reverse transcribed (see Section 2). Transcripts
corresponding to genes coding for adenylate cyclase and expressed in Schwann cells, have been amplified (lanes 3, 6, 9 and 11). As a control of
primers efficiency, we also perform RT-PCR using RNAs extracted from whole mouse embryos (lanes 2, 5, 8 and 10). We also perform RT-PCR
without RNAs (lanes 1, 4, 7 and 12) as a control. (B–E) qPCR evaluation of genes respectively coding for adenylate cyclase 6, 7, 8 and 9, has been
performed using specific primers. RNAs have been extracted from Schwann cells after incubation with 0.56 mM, or 1.7 mM of AA or without
incubation and qPCR processed as described in methods. Level of expression is expressed with respect to the expression in cells not treated with AA
(100%) (D Ct).

Fig. 2. Evaluation of kinetics parameters. Membranes of Schwann cells were extracted as described in Section 2 and the associated adenylate cyclase
activity was evaluated using a highly specific test for the estimation of the cAMP produced by the action of the enzyme. (A) Curve of the time course
of the reaction (substrate and enzyme concentrations were kept constants). (B) Curve of the reaction velocity (cAMP pmols per min) versus the
enzyme concentrations (12.5 up to 100 lg total proteins) in the reaction mixture contained 1 mM ATP as substrate (total reaction time 5 min).
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1.5 overproduction of the peripheral myelin protein (PMP22)

possibly disturbing the native formation of myelin [7,8]. Phe-

notypic correction by AA might result from an action of this

molecule on PMP22 gene expression. Indeed, we previously

showed that expression of this gene is under the control of

the second messenger cAMP [9]. Furthermore, we recently

documented that feeding Schwann cells with increasing con-

centrations of AA entails a lowering in the cAMP intracellular

concentration [3]. In addition, we recently demonstrate that

addition of tocopherol of retinol did not enhance the action

of AA on the CMT1A phenotype but compete with this mol-
ecule (Kaya et al, in press). Therefore, it is obvious that AA

acts on the CMT-1A phenotype by an unknown new biological

function, not described so far, but different from the antioxi-

dant property of this molecule.

In the present work, we present data that

(a) Exclude any role of AA on the expression of the genes

encoding major forms of adenylate cyclase.
(b) Provide evidence that AA behaves as a competitive inhib-

itor of adenylate cyclase. Since this enzyme catalyses the

formation of cAMP using ATP as substrate, its inhibition



Fig. 3. Influence of ascorbic acid on adenyalte cyclase activity. Adenylate cyclase activity associated to Schwann cells membranes was studied in the
absence or presence of increasing concentrations of AA up to 5 mM. (A) Michaelis–Menten representation of the variations of the reaction velocities
versus ATP and ascorbic acid concentrations. (B) Lineweaver–Burk representation of the same data as in 3A. (C) A second derivative graph was
drawn from the same kinetics data. A Ki of 1140 lM was estimated from that curve.
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most presumably accounts for the observed decrease in

cAMP concentration in cell cultures treated by AA. Hence,

our present data are in general agreement with previous

studies suggesting that AA acts on cAMP concentration

[10,11] and on adenylate cyclase activity [12].

Considering these findings, we propose a new property of

AA, which is of being a global regulator of cAMP pool by act-

ing as a competitive inhibitor of adenylate cyclase activity.

Based on our data, it is likely that AA binds to adenylate cy-

clase and interferes with its enzyme activity. The actual binding

site is presently unknown but it is noted that the ribosyl moiety

of ATP and the AA molecule share common structural prop-

erties, for example exhibiting a pentagon heterocyclic ring with

an oxygen atom and two –OH groups each on the two carbons

facing the oxygen atom of the ring (five-membered furan-based

ring structure).

AA as a competitive inhibitor of adenylate cyclase is inter-

esting in modulation of adenylate cyclase activity and not com-

pletely inhibiting it. This is probably fortunate for

pharmacology, because a strong inhibitor will probably be

toxic.

Finally, this in vitro data ask the question of the occurrence

of this phenomenon in physiological conditions. In our exper-

iments, a concentration up to 1 mM of ATP and 5 mM of AA

has been used.

The intracellular concentration of ATP has been reported

as variable, but is generally between 1 mM and 5 mM

[13,14]. Regarding AA, a transporter, SVCT2, is involved

in the intracellular transport of this molecule [15]. Therefore,
the intracellular concentration of AA could be 100/200 times

higher inside than outside cells, leading to intracellular con-

centrations ranging between 1 mM and 15 mM [16,17].

These data clearly indicate that the respective intracellular

concentrations of ATP and AA that have been reported

by authors are within the range (mM) of concentrations of

these two molecules used in our in vitro experiments. The

competitive inhibition of adenylate cyclase activity we

observed in vitro, could thus happen in vivo, in physiologi-

cal conditions.

In conclusion, AA could possibly be used as a pharmaco-

logical substance, acting as a competitor of adenylate cyclase,

regulating by this the intracellular cAMP concentration

and consequently the expression of specific genes. The discov-

ery of this new property of AA opens new fascinating

research areas concerning the exact biological function(s)

of this molecule and its potential novel therapeutical proper-

ties.
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