Note

Subharmonicity of $|f|^{p}$ for quasiregular harmonic functions, with applications

Vesna Kojić ${ }^{\text {a }}$, Miroslav Pavlović ${ }^{\text {b,*, }}{ }^{1}$
${ }^{\text {a }}$ Fakultet organizacionih nauka, Jove Ilića 154, Belgrade, Serbia
${ }^{\text {b }}$ Matematički fakultet, Studentski trg 16, 11001 Belgrade, p.p. 550, Serbia

Received 26 July 2007
Available online 5 December 2007
Submitted by P. Koskela

Abstract

We prove that if f is a quasiregular harmonic function, then there exists a number $q \in(0,1)$ such that $|f|^{q}$ is subharmonic, and use this fact to generalize a result of Rubel, Shields, and Taylor, and Tamrazov, on the moduli of continuity of holomorphic functions.

© 2007 Elsevier Inc. All rights reserved.
Keywords: Subharmonic functions; Quasiregular functions; Moduli of continuity

It is well known that if f is a complex-valued harmonic function defined in a region G of the complex plane \mathbb{C}, then $|f|^{p}$ is subharmonic for $p \geqslant 1$, and that in the general case is not subharmonic for $p<1$. However, if f is holomorphic, then $|f|^{p}$ is subharmonic for every $p>0$. In this paper we consider k-quasiregular harmonic functions $(0<k<1)$. We recall that a harmonic function is k-quasiregular if

$$
|\bar{\partial} f(z)| \leqslant k|\partial f(z)|, \quad z \in G,
$$

where

$$
\bar{\partial} f(z)=\frac{1}{2}\left(\frac{\partial f}{\partial x}+i \frac{\partial f}{\partial y}\right) \quad \text { and } \quad \partial f(z)=\frac{1}{2}\left(\frac{\partial f}{\partial x}-i \frac{\partial f}{\partial y}\right), \quad z=x+i y .
$$

We prove that $|f|^{p}$ is subharmonic for $p \geqslant 4 k /(1+k)^{2}=: q$ as well as that the exponent $q(<1)$ is the best possible (see Theorem 1). The fact that $q<1$ enables us to prove that if f is quasiregular in the unit disk \mathbb{D} and continuous on \bar{D}, then $\tilde{\omega}(f, \delta) \leqslant$ const. $\omega(f, \delta)$, where $\tilde{\omega}(f, \delta)$ (respectively $\omega(f, \delta))$ denotes the modulus of continuity of f on \mathbb{D} (respectively $\partial \mathbb{D}$); see Theorem 2. In the case $k=0$ (when f is holomorphic) this fact is known and was proved by Rubel, Shields, and Taylor [2], and Tamrazov [3].

[^0]
1. Subharmonicity of $|f|^{p}$

Theorem 1. If f is a complex-valued k-quasiregular harmonic function defined on a region $G \subset \mathbb{C}$, and $q=$ $4 k /(k+1)^{2}$, then $|f|^{q}$ is subharmonic. The exponent q is optimal.

Recall that a continuous function u defined on a region $G \subset \mathbb{C}$ is subharmonic if for all $z_{0} \in G$ there exists $\varepsilon>0$ such that

$$
\begin{equation*}
u\left(z_{0}\right) \leqslant \frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(z_{0}+r e^{i t}\right) d t, \quad 0<r<\varepsilon \tag{1}
\end{equation*}
$$

If $u\left(z_{0}\right)=\left|f\left(z_{0}\right)\right|^{2}=0$, then (1) holds. If $u\left(z_{0}\right)>0$, then there exists a neighborhood U of z_{0} such that u is of class $C^{2}(U)$ (because the zeroes of u are isolated), and then we may prove that $\Delta u \geqslant 0 \in U$. Thus the proof reduces to proving that $\Delta u(z) \geqslant 0$ whenever $u(z)>0$. In order to do this we will calculate Δu. Before that, we state some lemmas. The next two lemmas are well known and easy to prove.

Lemma 1. If $u>0$ is a C^{2} function defined on a region in \mathbb{C}, and $\alpha \in \mathbb{R}$, then

$$
\begin{equation*}
\Delta\left(u^{\alpha}\right)=\alpha u^{\alpha-1} \Delta u+\alpha(\alpha-1) u^{\alpha-2}|\nabla u|^{2} . \tag{2}
\end{equation*}
$$

Lemma 2. If $u>0$ is a C^{2} function defined on a region in \mathbb{C}, then

$$
\begin{equation*}
|\nabla u|^{2}=4|\partial u|^{2} \quad \text { and } \quad \Delta u=4 \partial \bar{\partial} u . \tag{3}
\end{equation*}
$$

Lemma 3. If $f=g+\bar{h}$, where g and h are holomorphic functions, then

$$
\begin{equation*}
\Delta\left(|f|^{2}\right)=4\left(\left|g^{\prime}\right|^{2}+\left|h^{\prime}\right|^{2}\right) . \tag{4}
\end{equation*}
$$

Proof. Since $|f|^{2}=(g+\bar{h})(\bar{g}+h)$, we have

$$
\begin{aligned}
\Delta\left(|f|^{2}\right) & =4 \partial\left(\overline{h^{\prime}}(\bar{g}+h)+(g+\bar{h}) \overline{g^{\prime}}\right) \\
& =4\left(\overline{h^{\prime}} h+g \overline{g^{\prime}}\right) \\
& =4\left(\left|g^{\prime}\right|^{2}+\left|h^{\prime}\right|^{2}\right) .
\end{aligned}
$$

Lemma 4. If $f=g+\bar{h}$, where g and h are holomorphic functions, then

$$
\begin{equation*}
\left|\nabla\left(|f|^{2}\right)\right|^{2}=4\left(\left|g^{\prime}\right|^{2}+\left|h^{\prime}\right|^{2}\right)|f|^{2}+8 \operatorname{Re}\left(\overline{g^{\prime}} h^{\prime} f^{2}\right) . \tag{5}
\end{equation*}
$$

Proof. We have

$$
\begin{aligned}
\left|\nabla\left(|f|^{2}\right)\right|^{2} & =4\left|\partial\left(|f|^{2}\right)\right|^{2} \\
& =4|\partial((g+\bar{h})(\bar{g}+h))|^{2} \\
& =4\left|g^{\prime} \bar{f}+f h^{\prime}\right|^{2} \\
& =4\left(\left|g^{\prime}\right|^{2}+\left|h^{\prime}\right|^{2}\right)|f|^{2}+8 \operatorname{Re}\left(\overline{g^{\prime}} h^{\prime} f^{2}\right) .
\end{aligned}
$$

Lemma 5. If $f=g+\bar{h}$, where g and h are holomorphic functions, then

$$
\begin{equation*}
\Delta\left(|f|^{p}\right)=p^{2}\left(\left|g^{\prime}\right|^{2}+\left|h^{\prime}\right|^{2}\right)|f|^{p-2}+2 p(p-2)|f|^{p-4} \operatorname{Re}\left(\overline{g^{\prime}} h^{\prime} f^{2}\right) \tag{6}
\end{equation*}
$$

whenever $f \neq 0$.
Proof. We take $\alpha=p / 2, u=|f|^{2}$, and then use (2), (4) and (5) to get the result.

Proof of Theorem 1. We have to prove that $\Delta\left(|f|^{p}\right) \geqslant 0$, where $p=4 k /(1+k)^{2}$. Since $p-2<0$, we get from (6) that

$$
\begin{aligned}
\Delta\left(|f|^{p}\right) & \geqslant p^{2}\left(\left|g^{\prime}\right|^{2}+\left|h^{\prime}\right|^{2}\right)|f|^{p-2}+2 p(p-2)|f|^{p-4}\left|g^{\prime}\right| \cdot\left|h^{\prime}\right| \cdot|f|^{2} \\
& =p^{2}\left|g^{\prime}\right|^{2}\left(m^{2}+1\right)|f|^{p-2}+2 p(p-2)\left|g^{\prime}\right|^{2}|f|^{p-2} m \\
& =p\left|g^{\prime}\right|^{2}|f|^{p-2}\left[p\left(1+m^{2}\right)+2(p-2) m\right],
\end{aligned}
$$

where $m=\left|h^{\prime}\right| /\left|g^{\prime}\right| \leqslant k$. The function $m \mapsto p\left(1+m^{2}\right)+2(p-2) m$ has a negative derivative (because $p<1$ and $m<1$), which implies that

$$
\left(1+m^{2}\right) p+2(p-2) m \geqslant\left(1+k^{2}\right) p+2(p-2) k
$$

On the other hand, $\left(1+k^{2}\right) p+2(p-2) k \geqslant 0$ if and only if $p \geqslant 4 k /(1+k)^{2}$, which proves that $|f|^{q}$ is subharmonic. To prove that the exponent q is optimal we take $f(z)=z+k \bar{z}$. By (6),

$$
\Delta\left(|f|^{p}\right)(1)=p^{2}\left(1+k^{2}\right)(1+k)^{p-2}+2 p(p-2)(1+k)^{p-2} k .
$$

Hence $\Delta\left(|f|^{p}\right)(1) \geqslant 0$ if and only if

$$
p\left(1+k^{2}\right)+2(p-2) k \geqslant 0
$$

which, as noted above, is equivalent to $p \geqslant q$. This completes the proof of Theorem 1.

2. Moduli of continuity

For a continuous function $f: \overline{\mathbb{D}} \mapsto \mathbb{C}$ harmonic in \mathbb{D} we define two moduli of continuity

$$
\omega(f, \delta)=\sup \left\{\left|f\left(e^{i \theta}\right)-f\left(e^{i t}\right)\right|:\left|e^{i \theta}-e^{i t}\right| \leqslant \delta, t, \theta \in \mathbb{R}\right\}, \quad \delta \geqslant 0,
$$

and

$$
\tilde{\omega}(f, \delta)=\sup \{|f(z)-f(w)|:|z-w| \leqslant \delta, z, w \in \overline{\mathbb{D}}\}, \quad \delta \geqslant 0 .
$$

Clearly $\omega(f, \delta) \leqslant \tilde{\omega}(f, \delta)$, but the reverse inequality need not hold. To see this consider the function

$$
f\left(r e^{i \theta}\right)=\sum_{n=1}^{\infty} \frac{(-1)^{n} r^{n} \cos n \theta}{n^{2}}, \quad r e^{i \theta} \in \overline{\mathbb{D}} .
$$

This function is harmonic in \mathbb{D} and continuous on $\overline{\mathbb{D}}$. The function $v(\theta)=f\left(e^{i \theta}\right),|\theta|<\pi$, is differentiable and

$$
\frac{d v}{d \theta}=\sum_{n=1}^{\infty} \frac{(-1)^{n-1} \sin n \theta}{n}=\frac{\theta}{2}, \quad|\theta|<\pi .
$$

This formula is well known, and can be verified by calculating the Fourier coefficients of the function $\theta \mapsto \theta / 2$, $|\theta|<\pi$. It follows that

$$
\left|f\left(e^{i \theta}\right)-f\left(e^{i t}\right)\right| \leqslant(\pi / 2)|\theta-t|, \quad-\pi<\theta, t<\pi,
$$

and hence $\omega(f, \delta) \leqslant M \delta, \delta>0$, where M is an absolute constant. On the other hand, the inequality $\tilde{\omega}(f, \delta) \leqslant C M \delta$, $C=$ const., does not hold because it implies that $|\partial f / \partial r| \leqslant C M$, which is not true because

$$
\frac{\partial}{\partial r} f\left(r e^{i \theta}\right)=\sum_{n=1}^{\infty} \frac{r^{n-1}}{n}, \quad \text { for } \theta=\pi, 0<r<1 .
$$

However, as was proved by Rubel, Shields, and Taylor [2], and Tamrazov [3], if f is a holomorphic function, then $\tilde{\omega}(f, \delta) \leqslant C \omega(f, \delta)$, where C is independent of f and δ. In this note we extend that result to quasiregular harmonic functions.

Theorem 2. Let f be a k-quasiregular harmonic complex-valued function which has a continuous extension on $\overline{\mathbb{D}}$, then there is a constant C depending only on k such that $\tilde{\omega}(f, \delta) \leqslant C \omega(f, \delta)$.

In order to deduce this fact from Theorem 1, we need some simple properties of the modulus $\omega(f, \delta)$. Let

$$
\omega_{0}(f, \delta)=\sup \left\{\left|f\left(e^{i \theta}\right)-f\left(e^{i t}\right)\right|:|\theta-t| \leqslant \delta, t, \theta \in \mathbb{R}\right\} .
$$

It is easy to check that

$$
\begin{equation*}
C^{-1} \omega_{0}(f, \delta) \leqslant \omega(f, \delta) \leqslant C \omega_{0}(f, \delta) \tag{7}
\end{equation*}
$$

where C is an absolute constant, and that

$$
\omega_{0}\left(f, \delta_{1}+\delta_{2}\right) \leqslant \omega_{0}\left(f, \delta_{1}\right)+\omega_{0}\left(f, \delta_{2}\right), \quad \delta_{1}, \delta_{2} \geqslant 0 .
$$

Hence $\omega_{0}\left(f, 2^{n} \delta\right) \leqslant 2^{n} \omega_{0}(f, \delta)$, and hence $\omega_{0}(\lambda \delta) \leqslant 2 \lambda \omega_{0}(\delta)$, for $\lambda \geqslant 1, \delta \geqslant 0$. From these inequalities and (7) it follows that

$$
\begin{equation*}
\omega(f, \lambda \delta) \leqslant 2 C \lambda \omega(f, \delta), \quad \lambda \geqslant 1, \delta \geqslant 0 \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega\left(f, \delta_{1}+\delta_{2}\right) \leqslant C \omega\left(f, \delta_{1}\right)+C \omega\left(f, \delta_{2}\right), \quad \delta_{1}, \delta_{2} \geqslant 0 \tag{9}
\end{equation*}
$$

where C is an absolute constant. As a consequence of (8) we have, for $0<p<1$,

$$
\begin{equation*}
\int_{x}^{\infty} \frac{\omega(f, t)^{p}}{t^{2}} d t \leqslant C \frac{\omega(f, x)^{p}}{x}, \quad x>0 \tag{10}
\end{equation*}
$$

where C depends only on p. Finally we need the following consequence of the harmonic Schwarz lemma (see [1]).
Lemma 6. If h is a function harmonic and bounded in the unit disk, with $h(0)=0$, the $|h(\xi)| \leqslant(4 / \pi)\|h\|_{\infty}|\xi|$, for $\xi \in \mathbb{D}$.

Proof of Theorem 2. It is enough to prove that $|f(z)-f(w)| \leqslant C \omega(f,|z-w|)$ for all $z, w \in \overline{\mathbb{D}}$, where C depends only on k. Assume first that $z=r \in(0,1)$ and $|w|=1$. Then, by Theorem 1 , the function $\varphi(\xi)=|f(w)-f(\xi)|^{q}$, where $q=4 k /(1+k)^{2}<1$, is subharmonic in \mathbb{D} and continuous on $\overline{\mathbb{D}}$, whence

$$
\varphi(r) \leqslant \frac{1}{2 \pi} \int_{\partial \mathbb{D}} \frac{\left(1-r^{2}\right) \varphi(\zeta)}{|\zeta-r|^{2}}|d \zeta| .
$$

Since, by (9),

$$
\begin{aligned}
\varphi(\zeta) & \leqslant(\omega(f,|w-r|+|r-\zeta|))^{q} \\
& \leqslant C^{q} \omega(f,|w-r|)^{q}+C^{q} \omega(f,|r-\zeta|)^{q},
\end{aligned}
$$

we have

$$
\begin{aligned}
\varphi(z) & \leqslant C^{q} \omega(f,|w-r|)^{q}+\frac{C^{q}}{2 \pi} \int_{\partial \mathbb{D}} \frac{\left(1-r^{2}\right) \omega(f,|r-\zeta|)^{q}}{|\zeta-r|^{2}}|d \zeta| \\
& =C^{q} \omega(f,|w-r|)^{q}+\frac{C^{q}}{2 \pi} \int_{-\pi}^{\pi} \frac{\left(1-r^{2}\right) \omega\left(\left|r-e^{i t}\right|\right)^{q}}{\left|e^{i t}-r\right|^{2}} d t
\end{aligned}
$$

But simple calculation shows that

$$
\left|r-e^{i t}\right|=\sqrt{(1-r)^{2}+4 r \sin ^{2}(t / 2)} \asymp 1-r+|t| \quad(0<r<1,|t| \leqslant \pi) .
$$

From this, (1), and (10) it follows that

$$
\begin{aligned}
\int_{-\pi}^{\pi} \frac{\left(1-r^{2}\right) \omega\left(f,\left|r-e^{i t}\right|\right)^{q}}{\left|e^{i t}-r\right|^{2}} d t & \leqslant C_{1} \int_{0}^{\pi} \frac{(1-r) \omega(f, 1-r+t)^{q}}{(1-r+t)^{2}} d t \\
& =C_{1}\left(\int_{0}^{1-r}+\int_{1-r}^{\pi}\right) \frac{(1-r) \omega(f, 1-r+t)^{q}}{(1-r+t)^{2}} d t \\
& \leqslant C_{2}(\omega(1-r))^{q}+C_{2}(1-r) \int_{1-r}^{\infty} \frac{\omega(f, t)^{q}}{t^{2}} d t \\
& \leqslant C_{3}(\omega(f, 1-r))^{q} \\
& \leqslant C_{4}(\omega(f,|w-z|))^{q}
\end{aligned}
$$

Thus $|f(w)-f(z)| \leqslant C_{5} \omega(f,|w-z|)$ provided $w \in \partial \mathbb{D}$ and $z \in(0,1)$. By rotation and the continuity of f, we can extend this inequality to the case where $w \in \partial \mathbb{D}$ and $z \in \overline{\mathbb{D}}$.

If $0<|w|<1$, we consider the function $h(\xi)=f(\xi w /|w|)-f(\xi z /|w|),|\xi| \leqslant 1$. This function is harmonic in \mathbb{D}, continuous on $\overline{\mathbb{D}}$, and $h(0)=0$. Hence, by the harmonic Schwarz lemma, inequality (1), and the preceding case,

$$
\begin{aligned}
|f(w)-f(z)| & =|h(|w|)| \\
& \leqslant(4 / \pi)|w|\|h\|_{\infty} \\
& \leqslant C_{6}|w| \omega(f,|w /|w|-z /|w||) \\
& \leqslant C_{7} \omega(f,|w||w /|w|-z /|w||) \\
& =C_{7} \omega(f,|w-z|),
\end{aligned}
$$

which completes the proof.

Acknowledgment

The authors are very grateful to the referee, who found many misprints and non-explained places in the previous version of the paper.

References

[1] Sheldon Axler, Paul Bourdon, Wade Ramey, Harmonic Function Theory, Graduate Texts in Math., vol. 137, Springer-Verlag, New York, 1992.
[2] L.A. Rubel, A.L. Shields, B.A. Taylor, Mergelyan sets and the modulus of continuity of analytic functions, J. Approx. Theory 15 (1) (1975) 23-40.
[3] P.M. Tamrazov, Contour and solid structural properties of holomorphic functions of a complex variable, Uspekhi Mat. Nauk 28 (1973) 131-161 (in Russian); English translation in: Russian Math. Surveys 28 (1973) 141-173.

[^0]: * Corresponding author.

 E-mail addresses: vesnak @fon.bg.ac.yu (V. Kojić), pavlovic@matf.bg.ac.yu (M. Pavlović).
 1 The author is supported by MN Project 144010, Serbia.

