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Abstract

We prove that if f is a quasiregular harmonic function, then there exists a number q ∈ (0,1) such that |f |q is subharmonic,
and use this fact to generalize a result of Rubel, Shields, and Taylor, and Tamrazov, on the moduli of continuity of holomorphic
functions.
© 2007 Elsevier Inc. All rights reserved.
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It is well known that if f is a complex-valued harmonic function defined in a region G of the complex plane C,

then |f |p is subharmonic for p � 1, and that in the general case is not subharmonic for p < 1. However, if f is
holomorphic, then |f |p is subharmonic for every p > 0. In this paper we consider k-quasiregular harmonic functions
(0 < k < 1). We recall that a harmonic function is k-quasiregular if∣∣∂̄f (z)

∣∣ � k
∣∣∂f (z)

∣∣, z ∈ G,

where

∂̄f (z) = 1

2

(
∂f

∂x
+ i

∂f

∂y

)
and ∂f (z) = 1

2

(
∂f

∂x
− i

∂f

∂y

)
, z = x + iy.

We prove that |f |p is subharmonic for p � 4k/(1 + k)2 =: q as well as that the exponent q (< 1) is the best possible
(see Theorem 1). The fact that q < 1 enables us to prove that if f is quasiregular in the unit disk D and continuous
on D, then ω̃(f, δ) � const.ω(f, δ), where ω̃(f, δ) (respectively ω(f, δ)) denotes the modulus of continuity of f

on D (respectively ∂D); see Theorem 2. In the case k = 0 (when f is holomorphic) this fact is known and was proved
by Rubel, Shields, and Taylor [2], and Tamrazov [3].
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1. Subharmonicity of |f |p

Theorem 1. If f is a complex-valued k-quasiregular harmonic function defined on a region G ⊂ C, and q =
4k/(k + 1)2, then |f |q is subharmonic. The exponent q is optimal.

Recall that a continuous function u defined on a region G ⊂ C is subharmonic if for all z0 ∈ G there exists ε > 0
such that

u(z0) � 1

2π

2π∫
0

u
(
z0 + reit

)
dt, 0 < r < ε. (1)

If u(z0) = |f (z0)|2 = 0, then (1) holds. If u(z0) > 0, then there exists a neighborhood U of z0 such that u is of class
C2(U) (because the zeroes of u are isolated), and then we may prove that �u � 0 ∈ U. Thus the proof reduces to
proving that �u(z) � 0 whenever u(z) > 0. In order to do this we will calculate �u. Before that, we state some
lemmas. The next two lemmas are well known and easy to prove.

Lemma 1. If u > 0 is a C2 function defined on a region in C, and α ∈ R, then

�
(
uα

) = αuα−1�u + α(α − 1)uα−2|∇u|2. (2)

Lemma 2. If u > 0 is a C2 function defined on a region in C, then

|∇u|2 = 4|∂u|2 and �u = 4∂∂̄u. (3)

Lemma 3. If f = g + h̄, where g and h are holomorphic functions, then

�
(|f |2) = 4

(|g′|2 + |h′|2). (4)

Proof. Since |f |2 = (g + h̄)(ḡ + h), we have

�
(|f |2) = 4∂

(
h′(ḡ + h) + (g + h̄)g′)

= 4(h′h + gg′)
= 4

(|g′|2 + |h′|2). �
Lemma 4. If f = g + h̄, where g and h are holomorphic functions, then∣∣∇(|f |2)∣∣2 = 4

(|g′|2 + |h′|2)|f |2 + 8 Re
(
g′h′f 2). (5)

Proof. We have∣∣∇(|f |2)∣∣2 = 4
∣∣∂(|f |2)∣∣2

= 4
∣∣∂(

(g + h̄)(ḡ + h)
)∣∣2

= 4|g′f̄ + f h′|2
= 4

(|g′|2 + |h′|2)|f |2 + 8 Re
(
g′h′f 2). �

Lemma 5. If f = g + h̄, where g and h are holomorphic functions, then

�
(|f |p) = p2(|g′|2 + |h′|2)|f |p−2 + 2p(p − 2)|f |p−4 Re

(
g′h′f 2) (6)

whenever f �= 0.

Proof. We take α = p/2, u = |f |2, and then use (2), (4) and (5) to get the result. �
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Proof of Theorem 1. We have to prove that �(|f |p) � 0, where p = 4k/(1 + k)2. Since p − 2 < 0, we get from (6)
that

�
(|f |p)

� p2(|g′|2 + |h′|2)|f |p−2 + 2p(p − 2)|f |p−4|g′| · |h′| · |f |2
= p2|g′|2(m2 + 1

)|f |p−2 + 2p(p − 2)|g′|2|f |p−2m

= p|g′|2|f |p−2[p(
1 + m2) + 2(p − 2)m

]
,

where m = |h′|/|g′| � k. The function m �→ p(1 + m2) + 2(p − 2)m has a negative derivative (because p < 1 and
m < 1), which implies that(

1 + m2)p + 2(p − 2)m �
(
1 + k2)p + 2(p − 2)k.

On the other hand, (1 + k2)p + 2(p − 2)k � 0 if and only if p � 4k/(1 + k)2, which proves that |f |q is subharmonic.
To prove that the exponent q is optimal we take f (z) = z + kz̄. By (6),

�
(|f |p)

(1) = p2(1 + k2)(1 + k)p−2 + 2p(p − 2)(1 + k)p−2k.

Hence �(|f |p)(1) � 0 if and only if

p
(
1 + k2) + 2(p − 2)k � 0,

which, as noted above, is equivalent to p � q. This completes the proof of Theorem 1. �
2. Moduli of continuity

For a continuous function f : D �→ C harmonic in D we define two moduli of continuity

ω(f, δ) = sup
{∣∣f (

eiθ
) − f

(
eit

)∣∣: ∣∣eiθ − eit
∣∣ � δ, t, θ ∈ R

}
, δ � 0,

and

ω̃(f, δ) = sup
{∣∣f (z) − f (w)

∣∣: |z − w| � δ, z,w ∈ D
}
, δ � 0.

Clearly ω(f, δ) � ω̃(f, δ), but the reverse inequality need not hold. To see this consider the function

f
(
reiθ

) =
∞∑

n=1

(−1)nrn cosnθ

n2
, reiθ ∈ D.

This function is harmonic in D and continuous on D. The function v(θ) = f (eiθ ), |θ | < π, is differentiable and

dv

dθ
=

∞∑
n=1

(−1)n−1 sinnθ

n
= θ

2
, |θ | < π.

This formula is well known, and can be verified by calculating the Fourier coefficients of the function θ �→ θ/2,
|θ | < π. It follows that∣∣f (

eiθ
) − f

(
eit

)∣∣ � (π/2)|θ − t |, −π < θ, t < π,

and hence ω(f, δ) � Mδ, δ > 0, where M is an absolute constant. On the other hand, the inequality ω̃(f, δ) � CMδ,
C = const., does not hold because it implies that |∂f/∂r| � CM, which is not true because

∂

∂r
f

(
reiθ

) =
∞∑

n=1

rn−1

n
, for θ = π, 0 < r < 1.

However, as was proved by Rubel, Shields, and Taylor [2], and Tamrazov [3], if f is a holomorphic function, then
ω̃(f, δ) � Cω(f, δ), where C is independent of f and δ. In this note we extend that result to quasiregular harmonic
functions.

Theorem 2. Let f be a k-quasiregular harmonic complex-valued function which has a continuous extension on D,
then there is a constant C depending only on k such that ω̃(f, δ) � Cω(f, δ).
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In order to deduce this fact from Theorem 1, we need some simple properties of the modulus ω(f, δ). Let

ω0(f, δ) = sup
{∣∣f (

eiθ
) − f

(
eit

)∣∣: |θ − t | � δ, t, θ ∈ R
}
.

It is easy to check that

C−1ω0(f, δ) � ω(f, δ) � Cω0(f, δ), (7)

where C is an absolute constant, and that

ω0(f, δ1 + δ2) � ω0(f, δ1) + ω0(f, δ2), δ1, δ2 � 0.

Hence ω0(f,2nδ) � 2nω0(f, δ), and hence ω0(λδ) � 2λω0(δ), for λ � 1, δ � 0. From these inequalities and (7) it
follows that

ω(f,λδ) � 2Cλω(f, δ), λ � 1, δ � 0, (8)

and

ω(f, δ1 + δ2) � Cω(f, δ1) + Cω(f, δ2), δ1, δ2 � 0, (9)

where C is an absolute constant. As a consequence of (8) we have, for 0 < p < 1,

∞∫
x

ω(f, t)p

t2
dt � C

ω(f,x)p

x
, x > 0, (10)

where C depends only on p. Finally we need the following consequence of the harmonic Schwarz lemma (see [1]).

Lemma 6. If h is a function harmonic and bounded in the unit disk, with h(0) = 0, the |h(ξ)| � (4/π)‖h‖∞|ξ |, for
ξ ∈ D.

Proof of Theorem 2. It is enough to prove that |f (z) − f (w)| � Cω(f, |z − w|) for all z,w ∈ D, where C depends
only on k. Assume first that z = r ∈ (0,1) and |w| = 1. Then, by Theorem 1, the function ϕ(ξ) = |f (w) − f (ξ)|q,

where q = 4k/(1 + k)2 < 1, is subharmonic in D and continuous on D, whence

ϕ(r) � 1

2π

∫
∂D

(1 − r2)ϕ(ζ )

|ζ − r|2 |dζ |.

Since, by (9),

ϕ(ζ ) �
(
ω

(
f, |w − r| + |r − ζ |))q

� Cqω
(
f, |w − r|)q + Cqω

(
f, |r − ζ |)q

,

we have

ϕ(z) � Cqω
(
f, |w − r|)q + Cq

2π

∫
∂D

(1 − r2)ω(f, |r − ζ |)q
|ζ − r|2 |dζ |

= Cqω
(
f, |w − r|)q + Cq

2π

π∫
−π

(1 − r2)ω(|r − eit |)q
|eit − r|2 dt.

But simple calculation shows that

∣∣r − eit
∣∣ =

√
(1 − r)2 + 4r sin2(t/2) � 1 − r + |t | (

0 < r < 1, |t | � π
)
.
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From this, (1), and (10) it follows that

π∫
−π

(1 − r2)ω(f, |r − eit |)q
|eit − r|2 dt � C1

π∫
0

(1 − r)ω(f,1 − r + t)q

(1 − r + t)2
dt

= C1

( 1−r∫
0

+
π∫

1−r

)
(1 − r)ω(f,1 − r + t)q

(1 − r + t)2
dt

� C2
(
ω(1 − r)

)q + C2(1 − r)

∞∫
1−r

ω(f, t)q

t2
dt

� C3
(
ω(f,1 − r)

)q

� C4
(
ω

(
f, |w − z|))q

.

Thus |f (w) − f (z)| � C5ω(f, |w − z|) provided w ∈ ∂D and z ∈ (0,1). By rotation and the continuity of f , we can
extend this inequality to the case where w ∈ ∂D and z ∈ D.

If 0 < |w| < 1, we consider the function h(ξ) = f (ξw/|w|)− f (ξz/|w|), |ξ | � 1. This function is harmonic in D,

continuous on D, and h(0) = 0. Hence, by the harmonic Schwarz lemma, inequality (1), and the preceding case,∣∣f (w) − f (z)
∣∣ = ∣∣h(|w|)∣∣
� (4/π)|w|‖h‖∞
� C6|w|ω(

f,
∣∣w/|w| − z/|w|∣∣)

� C7ω
(
f, |w|∣∣w/|w| − z/|w|∣∣)

= C7ω
(
f, |w − z|),

which completes the proof. �
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