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Abstract

We prove that if f is a quasiregular harmonic function, then there exists a number g € (0, 1) such that | f|? is subharmonic,
and use this fact to generalize a result of Rubel, Shields, and Taylor, and Tamrazov, on the moduli of continuity of holomorphic
functions.
© 2007 Elsevier Inc. All rights reserved.
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It is well known that if f is a complex-valued harmonic function defined in a region G of the complex plane C,
then | f|? is subharmonic for p > 1, and that in the general case is not subharmonic for p < 1. However, if f is
holomorphic, then | f|? is subharmonic for every p > 0. In this paper we consider k-quasiregular harmonic functions
(0 < k < 1). We recall that a harmonic function is k-quasiregular if

|0f@)| <kl]of2)|, ze€G,

where
i@ =2 (L i _Loaf oy
8f(Z)—§(£+l$> and 3f(Z)—2(ax 18y>’ z=x+iy.

We prove that | f|? is subharmonic for p > 4k/(1 + k) =: g as well as that the exponent g (< 1) is the best possible
(see Theorem 1). The fact that ¢ < 1 enables us to prove that if f is quasiregular in the unit disk D and continuous
on D, then &(f,8) < const.w(f,38), where &(f,3) (respectively w(f, §)) denotes the modulus of continuity of f
on D (respectively dDD); see Theorem 2. In the case k = 0 (when f is holomorphic) this fact is known and was proved
by Rubel, Shields, and Taylor [2], and Tamrazov [3].
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1. Subharmonicity of | f|?

Theorem 1. If f is a complex-valued k-quasiregular harmonic function defined on a region G C C, and q =
4k /(k + 1)2, then | f|9 is subharmonic. The exponent q is optimal.

Recall that a continuous function u defined on a region G C C is subharmonic if for all zg € G there exists ¢ > 0
such that

2

1 .
u(zo) < 2—/u(zg~|—re”)dt, O<r<e. (1)
T
0

If u(zg) = |f(z())|2 =0, then (1) holds. If u(zp) > 0, then there exists a neighborhood U of zg such that u is of class
C 2(U ) (because the zeroes of u are isolated), and then we may prove that Au > 0 € U. Thus the proof reduces to
proving that Au(z) > 0 whenever u(z) > 0. In order to do this we will calculate Au. Before that, we state some
lemmas. The next two lemmas are well known and easy to prove.

Lemma 1. Ifu > 0 is a C? function defined on a region in C, and o € R, then

A(u“) =au® " Au+ a(a — Du* 2| Vul?. ()

Lemma 2. If u > 0 is a C? function defined on a region in C, then

|Vul?> =4|9u|®> and Au=4030u. 3)

Lemma 3. If f = g + h, where g and h are holomorphic functions, then
A(If1P) =4(Ig"> + 1n). )
Proof. Since | f|?> = (g + h)(g + h), we have
A(If1P)=40(h' G +h) + (g +h)g)
=4(h'h + gg)
=4(1gP+IHP). O
Lemma 4. If f = g + h, where g and h are holomorphic functions, then
2 p—
IV(LF1P)|"=4(Ig'1> + W' 1?) | fI* + 8Re(g'h £?). (5)
Proof. We have
2
IV(IF12)[" =4[a(1f1)
s = 2
=4|o((g+ M@ +n)|
=4lg'f+ fh')?
=4(Ig' + W' *)If1* +8Re(g'h f?). O

| 2

Lemma 5. If f = g + h, where g and h are holomorphic functions, then
A(If17) = p*(Ig' P+ W P) 172 +2p(p = DI fI”*Re(g'h' ) (6)
whenever f # 0.

Proof. We take o = p/2, u = | f|?, and then use (2), (4) and (5) to get the result. O
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Proof of Theorem 1. We have to prove that A(| f|P) > 0, where p =4k/(1 + k). Since p—2 <0, we get from (6)
that

A(LFIPY = p2(18' P + 1) £1P72 +2p(p = DI FIP4E |- 1) - 1 f 1
=pg P (m* + V) 1P +2p(p — DI P1f17*m
=plg'P1£172[p(1 + m*) +2(p — 2)m],

where m = |h'|/|g'| < k. The function m — p(1 +m?) 4+ 2(p — 2)m has a negative derivative (because p < 1 and
m < 1), which implies that

(1+m?)p+2(p—2)m > (1+k*)p +2(p — k.

On the other hand, (1 +k%)p +2(p — 2)k > 0 if and only if p > 4k/(1+ k)2, which proves that | |7 is subharmonic.
To prove that the exponent ¢ is optimal we take f(z) =z + kz. By (6),

A(LF1P) () = p* (L + K2 (L + )P +2p(p — 2)(1 + k)P k.
Hence A(] f|7)(1) > 0 if and only if
p(1+k*) +2(p— 2k >0

which, as noted above, is equivalent to p > g. This completes the proof of Theorem 1. O
2. Moduli of continuity

For a continuous function f : D + C harmonic in I we define two moduli of continuity
w(f,8) =sup{|f (") — f(e")|: | —e"| <8, 1,0 €R}, >0,
and
&(f,8) =sup{|f(2) = f(w)|: z —w| <8, z,weD}, §>0.

Clearly w( f, §) < @(f, §), but the reverse inequality need not hold. To see this consider the function

. ré? eD.

Z (- l)”r" cosnb L =

This function is harmonic in D and continuous on D. The function v(8) = f(¢'?), |6| < 7, is differentiable and
dv X (=1)"sinno 0
_— _— =, 9 .
6= 2 n yr Mol=m

This formula is well known, and can be verified by calculating the Fourier coefficients of the function 6 — 6/2,
|6] < 7. It follows that

|£() = ()| < (/210 —t], —-m<6,t<m,
and hence w(f,§) < M§, § > 0, where M is an absolute constant. On the other hand, the inequality o(f, §) < CM3J,
C = const., does not hold because it implies that |df/dr| < CM, which is not true because

if(rem)zirn_l, for@0=m, O0<r<1.

ar n

n=1

However, as was proved by Rubel, Shields, and Taylor [2], and Tamrazov [3], if f is a holomorphic function, then
o(f,8) < Cw(f,$), where C is independent of f and §. In this note we extend that result to quasiregular harmonic
functions.

Theorem 2. Let f be a k-quasiregular harmonic complex-valued function which has a continuous extension on D,
then there is a constant C depending only on k such that &(f,5) < Cw(f,$).
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In order to deduce this fact from Theorem 1, we need some simple properties of the modulus w( f, §). Let
wo(f, 8) =sup{|f (") — f(e")]: 10 —11 <8, 1,0 e R}.
It is easy to check that
C™lwo(f,8) @ (f.8) < Can(f,9), (7
where C is an absolute constant, and that
wo(f, 81+ 82) Swo(f,81) +wo(f,82), 681,8220.

Hence wo(f,2"8) < 2"wo(f, ), and hence wo(Ad) < 2rwo(8), for A > 1,8 > 0. From these inequalities and (7) it
follows that

w(f,A8) <2Crw(f,8), r1>1,620, ®)
and
w(f,81+8) <Cw(f,d1)+Cw(f, d), 61,020, )

where C is an absolute constant. As a consequence of (8) we have, for 0 < p < 1,

x>0, (10)

//\

/w(f t)” Cét)(fﬂ)”,

12 X
X

where C depends only on p. Finally we need the following consequence of the harmonic Schwarz lemma (see [1]).

Lemma 6. If h is a function harmonic and bounded in the unit disk, with h(0) =0, the |h(§)| < (4/m) ||l €], for
£ eD.

Proof of Theorem 2. It is enough to prove that | f(z) — f(w)| < Co(f, |z — w|) for all z, w € D, where C depends
only on k. Assume first that z =r € (0, 1) and |w| = 1. Then, by Theorem 1, the function ¢(§) = | f(w) — f(&)|4,
where ¢ = 4k/(1 + k)% < 1, is subharmonic in ID and continuous on I, whence

1 2
o) < 5= / 7( LACONpy
T

Since, by (9),

9@) < (o(f, lw—r|+1r —¢1))?
<Clo(f.|w—r)" + Clo(f.1r - ¢1)",
we have
1—r2 — ¢
(@) < Clo(f. lw—rl)’ +—/( r)w(_f:g -

dt.

(f lw — r| / - 7'2)60(|r _elll)q

ezt _r|2

But simple calculation shows that

Ir—e"| :\/(l—r)z +4rsin?(t/2) < 1—r+1t] (0<r<l, |t|<7).
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From this, (1), and (10) it follows that

/ﬂ(l—rz)af(f, et /ﬂ(l—r)w(ﬁl—ﬂrt)q "
leit —r|? (1—r+1)?

N
)

-7

1—r m
. d-row(f,l—r+14
= /+/ (1—r+1)2 dat
1-r

0

<G00 =)+ (1= / %m
1—r

Ci(w(fi1=r))?
Ca(o(f. v —2I))".
Thus | f(w) — f(2)| < Csw(f, |[w — z|) provided w € 9D and z € (0, 1). By rotation and the continuity of f, we can
extend this inequality to the case where w € D and z € D.
If 0 < [w] < 1, we consider the function 2(§) = f(§w/|w|) — f(&§z/Iw]), |§| < 1. This function is harmonic in D,
continuous on DD, and 2(0) = 0. Hence, by the harmonic Schwarz lemma, inequality (1), and the preceding case,
|f(w) — f@)] = |[r(jwl)]
< @/ m)wllhlloo
< Clwlo(f, [w/lw| = z/|w]|)
< Cro(f. lwl|w/lw] —z/|wl])
= C7Cl)(.f, |w - Z|)a
which completes the proof. 0O

<
<
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