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a b s t r a c t

Throughout the paper k denotes a fixed field. All vector spaces and linearmaps are k-vector
spaces and k-linear maps, respectively. By Z, N, and N+, we denote the sets of integers,
nonnegative integers, and positive integers, respectively. For i, j ∈ Z, [i, j] := {l ∈ Z | i ≤

l ≤ j} (in particular, [i, j] = ∅ if i > j).
© 2010 Elsevier B.V. All rights reserved.

0. Introduction

Given an abelian categoryA one defines its bounded derived categoryDb(A) [24] (of bounded complexes of objects ofA)
having a structure of a triangulated category, which is an important homological invariant of A. In particular, given a finite
dimensional algebra A onemay study the bounded derived category Db(mod A) of the category mod A of finite dimensional
A-modules, which one shortly calls the derived category of A and denotes Db(A). Since the observation of Happel [15]
(generalized by Cline et al. [11]), which states that derived category is invariant under tilting process, an importance of
derived categories in the representation theory of finite dimensional algebras became clear. This observationwas supported
by results connecting derived categories of finite dimensional algebras with derived categories of coherent sheaves over
projective schemes [6,12]. Since that time a lot of results concerning derived categories of finite dimensional algebras were
obtained (see for example [1,8,9,13,20]). In particular, Rickard [21] developed the Morita theory for derived categories of
finite dimensional algebras. One of the consequences is that the derived categories of two finite dimensional algebras are
equivalent as triangulated categories if and only if the subcategories of perfect complexes are equivalent as triangulated
categories. Recall that if A is a finite dimensional algebra, then the subcategory of Db(A) formed by perfect complexes can
be identified with the bounded homotopy category Kb(proj A) of (bounded complexes of) projective A-modules.

A class of finite dimensional algebras whose derived categories attract a lot of interest is the class of gentle algebras
introduced by Assem and Skowroński [4]. An important feature of this class of algebras is that it is closed under derived
equivalence, i.e. if A is a gentle algebra and Db(A) is equivalent as a triangulated category to Db(B) for a finite dimensional
algebra B, then B is also gentle [23]. Next, this class of algebras appears naturally in many classification problems. Namely,
the tree gentle algebras are precisely the piecewise hereditary algebras of type A [2] (i.e. the algebras derived equivalent to
hereditary algebras of type A). Further, if A is a derived discrete algebra, then either A is piecewise hereditary of Dynkin type
or A is a one-cycle gentle algebra which does not satisfy the clock condition [25]. Moreover, the one-cycle gentle algebras
coincide with the piecewise hereditary algebras of type Ã [4].

If A is a gentle algebra, then it is possible to investigate Db(A) by means of the stable category mod Â of the module
category mod Â over the repetitive algebra Â [22] (which is no longer finite dimensional) and the Happel functor [16]
Db(A) → mod Â. This description is useful, since the description of the indecomposable objects in mod Â is known.
Unfortunately, a precise formula for the Happel functor seems to be not known. In [7] Bekkert and Merklen described
the indecomposable objects in Db(A) without using Â, however they did not describe how the above two descriptions are
connected.
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Let A be a gentle algebra. Since gentle algebras are Gorenstein [14], it follows [17] that the almost split triangles in Db(A)
exist precisely for perfect complexes. The aim of this paper is to describe the almost split triangles in Db(A) in terms of the
above mentioned description of the indecomposable objects in Db(A) due to Bekkert and Merklen. According to the above
remark, this is equivalent to describing the almost split triangles in Kb(proj A). The precise formulas are given in Section 6.
The idea of the proof is to use the Happel functor and the known description of the almost split triangles in mod Â. As a side
effect we obtain a link between the two different ways of describing the indecomposable objects in Db(A).

The paper is organized as follows. In Section 1 we introduce the language of quivers and their representations, and in
Section 2we present notions of strings and bands. Next, in Section 3we present a description of the indecomposable perfect
complexes over gentle algebras due to Bekker and Merklen, while in Section 4 we collect necessary information about the
repetitive algebras of gentle algebras. Finally, in Section 5 we describe the correspondence between the indecomposable
perfect complexes over a gentle algebra and the indecomposable modules over its repetitive algebras, and in Section 6 we
use this correspondence to describe the almost split sequences in Kb(proj A).

For basic background on the representation theory of algebras (in particular, on the tilting theory) we refer to [3].
This article was written while the author was staying at the University of Bielefeld as an Alexander von Humboldt

Foundation fellow. The author also acknowledges the support from the Research Grant No. N N201 269135 of the Polish
Ministry of Science and Higher Education.

1. Preliminaries on quivers and their representations

By a quiver Γ we mean a set Γ0 of vertices and a set Γ1 of arrows together with two maps s, t : Γ1 → Γ0 which assign
to α ∈ Γ1 the starting vertex sα and the terminating vertex tα, respectively. We assume that all considered quivers Γ are
locally finite, i.e. for each x ∈ Γ0 there is only a finite number of α ∈ Γ1 such that either sα = x or tα = x. A quiver Γ is
called finite if Γ0 (and, consequently, also Γ1) is a finite set. For technical reasons we assume that all considered quivers Γ
have no isolated vertices, i.e. there is no x ∈ Γ0 such that sα ≠ x ≠ tα for each α ∈ Γ1.

Let Γ be a quiver. If l ∈ N+, then by a path in Γ of length l we mean σ = α1 · · ·αl such that αi ∈ Γ1 for each i ∈ [1, l]
and sαi = tαi+1 for each i ∈ [1, l− 1]. In the above situation we put sσ := sαl and tσ := tα1. Moreover, we put αi(σ ) := αi
for i ∈ [1, l]. Observe that each α ∈ Γ is a path in Γ of length 1. Moreover, for each x ∈ Γ0 we introduce the path 1x in Γ of
length 0 such that s1x := x =: t1x. We denote the length of a path σ in Γ by ℓ(σ ). If σ ′ and σ ′′ are two paths in Γ such that
sσ ′

= tσ ′′, then we define the composition σ ′σ ′′ of σ ′ and σ ′′, which is a path in Γ of length ℓ(σ ′)+ ℓ(σ ′′), in the obvious
way (in particular, σ1sσ = σ = 1tσσ for each path σ ). In order to increase clarity we sometimes write σ ′

· σ ′′ instead of
σ ′σ ′′ in the above situation. If σ is a path such that sσ = tσ , then for n ∈ N+ we denote by σ n the n-fold composition of σ
with itself.

Let Γ be a quiver. We define the double quiver Γ of Γ in the following way: Γ 0 := Γ0, Γ 1 := Γ1 ∪ Γ −1
1 , where

Γ −1
1 := {α−1

| α ∈ Γ1}, and sα−1
:= tα and tα−1

:= sα for α ∈ Γ1. By ≈ we denote the equivalence relation in Γ 1 whose
residue classes are Γ1 and Γ −1

1 . We put (α−1)−1
:= α for α ∈ Γ1 and extend the operation (−)−1 to the paths in Γ of

positive length in such a way that (ω′ω′′)−1
= ω′′−1ω′−1 for all pathsω′ and ω′′ in Γ of positive length such that sω′

= tω′′.
Ifω is a path in Γ of positive length and i ∈ [1, ℓ(ω)], then α−1

i (ω) := (αi(ω))
−1. For a setΣ of paths in Γ of positive length

we putΣ−1
:= {σ−1

| σ ∈ Σ}.
Let Γ be a quiver. We define the path category kΓ of Γ as follows. The objects of kΓ are the vertices of Γ . If x′, x′′

∈ Γ0,
then the homomorphism space kΓ (x′, x′′) consists of the formal k-linear combinations of paths starting at x′ and terminating
at x′′. The composition of maps in kΓ is induced by the composition of paths in Γ . For a set R of morphisms in kΓ we denote
by ⟨R⟩ the ideal in kΓ generated by R. A morphism ϱ in Γ is called a relation if ϱ ∈ ⟨Γ1⟩

2. A set R of relations in kΓ is called
admissible if there exists n ∈ N+ such that ⟨Γ1⟩

n
⊂ ⟨R⟩.

By an (admissible) bound quiver we mean a pair (Γ , R) consisting of a quiver Γ and an (admissible, respectively) set of
relations in kΓ . For a bound quiver 0 = (Γ , R) we denote by k0 the corresponding factor category kΓ /⟨R⟩. If 0 = (Γ , R)
is a bound quiver and ϱ ∈ k0(x′, x′′) for x′, x′′

∈ Γ0, then we put sϱ := x′ and tϱ := x′′. A bound quiver (Γ , R) is called
monomial if R consists of paths.

Let 0 = (Γ , R) be a monomial bound quiver. By a path in 0 we mean a path in Γ which does not belong to ⟨R⟩.
If x′, x′′

∈ Γ0, then we identify k0(x′, x′′) with the subspace of kΓ (x′, x′′) spanned by the paths in 0 starting at x′ and
terminating at x′′. A path σ in0 is said to bemaximal in0 if there are no paths σ ′ and σ ′′ in0 such that sσ ′

= tσ , tσ ′′
= sσ ′,

σ ′σσ ′′ is a path in 0, and ℓ(σ ′)+ ℓ(σ ′′) > 0. The lack of isolated vertices in Γ implies that ℓ(σ ) > 0 for each maximal path
σ in 0.

For the rest of the section we assume that 0 = (Γ , R) is an admissible bound quiver.
By a representation of 0 we mean a functor M : k0 → mod k, where mod k denotes the category of finite dimensional

vector spaces over k, such thatM(x) ≠ 0 only for a finite number of x ∈ Γ0. Observe that a representationM of0 is uniquely
determined by the collection (M(x))x∈Γ0 of vector spaces and the collection (M(α))α∈Γ1 of linear maps. On the other hand,
a pair of such collections determines a representation of 0 if and only if the induced map M(ϱ) vanishes for all ϱ ∈ R. If M
and N are two representations of 0, then the morphism space Hom0(M,N) consists of the natural transformations of the
corresponding functors. We denote the category of representations of 0 by rep0. It is well known that rep0 is an abelian
category which possesses almost split sequences. We denote by τ0 the Auslander–Reiten translation in rep0. We remark
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that Gabriel proved (see for example [3, Corollaries I.6.10 and II.3.7]) that for each finite dimensional algebra A the category
of A-modules is equivalent to the category of representations for an appropriate admissible bound quiver. This implies in
particular, that we may work with bound quivers instead of algebras.

Now we describe the indecomposable projective representations of 0. For each x ∈ Γ0 we define Px ∈ rep0 as follows:
Px(x′) := k0(x, x′) for x′

∈ Γ0 and Px(ϱ)(ϱ′) := ϱϱ′ for morphisms ϱ and ϱ′ in k0 such that sϱ′
= x and sϱ = tϱ′. Moreover,

ifϱ is amorphism in k0, thenwe define pϱ : Ptϱ → Psϱ by pϱ(x)(ϱ′) := ϱ′ϱ for x ∈ Γ0 and amorphism ϱ′ in k0with sϱ′
= tϱ

and tϱ′
= x. It is an easy exercise to check that the map Hom0(Px,M) → M(x), f → f (x)(1x), is an isomorphism of vector

spaces for each x ∈ Γ0 andM ∈ rep0. This implies that the above formulas describe the fully faithful contravariant functor
0 → rep0whose essential image coincideswith the full subcategory of the indecomposable projective representations of0.

Similarly, we describe the indecomposable injective representations of 0. For x ∈ Γ0 we define Qx ∈ rep0 by
Qx(x′) := (k0(x′, x))∗ for x′

∈ Γ0, where (−)∗ : mod k → mod k denotes the k-linear dual, and Qx(ϱ)(ϕ)(ϱ
′) := ϕ(ϱ′ϱ) for

morphisms ϱ and ϱ′ in k0 such that sϱ′
= tϱ and tϱ′

= x, and ϕ ∈ (k0(sϱ, x))∗. Moreover, if ϱ is a morphism in k0, then we
define qϱ : Qtϱ → Qsϱ by qϱ(x)(ϕ)(ϱ′) := ϕ(ϱϱ′) for x ∈ Γ0, morphisms ϱ and ϱ′ in k0 such that sϱ′

= x and tϱ′
= sϱ, and

ϕ ∈ (k0(x, tϱ))∗. Again, the map (M(x))∗ → Hom0(M,Qx), ϕ → (m → (ϱ → ϕ(M(ϱ)(m)))), is an isomorphism for each
x ∈ Γ0 and M ∈ rep0, and, consequently, we obtain the fully faithful contravariant functor 0 → rep0 whose essential
image coincides with the full subcategory of the indecomposable injective representations of 0.

2. Almost gentle quivers

An admissible monomial bound quiver 0 = (Γ , R) is called almost gentle if the following conditions are satisfied:

(1) for each x ∈ Γ0 there are at most two α ∈ Γ1 such that sα = x and at most two α ∈ Γ1 such that tα = x,
(2) for each α ∈ Γ1 there is at most one α′

∈ Γ1 such that sα′
= tα and α′α ∉ R, and atmost one α′

∈ Γ1 such that tα′
= sα

and αα′
∉ R,

(3) for each α ∈ Γ1 there is at most one α′
∈ Γ1 such that sα′

= tα and α′α ∈ R, and at most one α′
∈ Γ1 such tα′

= sα
and αα′

∈ R.

Equivalently,0 is an almost gentle quiver if and only if there exist functions S, T : Γ1 → {±1}, whichwe call string functions
for 0, such that the following conditions are satisfied:

(1) if sα′
= sα′′ and α′

≠ α′′ for α′, α′′
∈ Γ1, then Sα′

= −Sα′′,
(2) if tα′

= tα′′ and α′
≠ α′′ for α′, α′′

∈ Γ1, then Tα′
= −Tα′′,

(3) if sα′
= tα′′ and α′α′′

∉ R for α′, α′′
∈ Γ1, then Sα′

= −Tα′′.
(4) if sα′

= tα′′ and α′α′′
∈ R for α′, α′′

∈ Γ1, then Sα′
= Tα′′.

Note that the string functions for 0 are not uniquely determined by 0. For the rest of the section we fix an almost gentle
bound quiver 0 = (Γ , R) together with string functions S and T .

Let R′
:= R ∪ R−1

∪ {αα−1, α−1α | α ∈ Γ1}. Then (Γ , R′) is a monomial bound quiver. If l ∈ N+, then by a string in 0 of
length l we mean a path in (Γ , R′) of length l. Moreover, for each x ∈ Γ0 we introduce two strings 1x,1 and 1x,−1 such that
ℓ(1x,ε) := 0 and s1x,ε := x =: t1x,ε for ε ∈ {±1}. We put (1x,ε)

−1
:= 1x,−ε for x ∈ Γ0 and ε ∈ {±1}. Observe that every

path in 0 of positive length is a string in 0. A string ω in 0 is called simple if either ℓ(ω) = 0 or ω is a path in 0 (of positive
length). Moreover, a string ω in 0 is called directed if either ω or ω−1 is a simple string. A string ω in 0 is called a band if
ℓ(ω) > 0, either α1(ω) ∈ Γ1 and α−1

ℓ(ω)(ω) ∈ Γ1 or α−1
1 (ω) ∈ Γ1 and αℓ(ω)(ω) ∈ Γ1, sω = tω, ωn is a string in 0 for each

n ∈ N+, and there is no string ω′ in 0 such that ℓ(ω′) < ℓ(ω), sω′
= tω′, and ω = ω′n for some n ∈ N+.

We extend the functions S and T to the strings in0 as follows. First, we put Sα−1
:= Tα and Tα−1

:= Sα forα ∈ Γ1. Next,
we put Sω := Sαℓ(ω)(ω) and Tω := Tα1(ω) for a string ω in 0 of positive length. Finally, we put S1x,ε := ε and T1x,ε := −ε
for x ∈ Γ0 and ε ∈ {±1}. Observe that if ω′ and ω′′ are strings in 0 of positive length such that sω′

= tω′′ and ω′ω′′ is a
string in 0, then Sω′

= −Tω′′. Consequently, if ω is a string in 0, x ∈ Γ0, and ε ∈ {±1}, then we say that the composition
ω1x,ε (1x,εω) is defined (and equals ω) if and only if x = sω and ε = Sω (x = tω and ε = −Tω, respectively).

Letω be a string in0 of length l. If i ∈ [0, l], thenwe denote byω[i] and [i]ω the strings in0 of length i and l−i, respectively,
such that ω = ω[i] · [i]ω. In particular, ω[0] = 1tω,−Tω and [ℓ(ω)]ω = 1sω,Sω .

Fix x ∈ Γ0 and ε ∈ {±1}. ByΣx,ε we denote the set of simple strings σ in 0 such that sσ = x and Sσ = ε. Similarly,Σ ′
x,ε

denotes the set of simple strings σ in 0 such that tσ = x and Tσ = ε. Next,

αx,ε :=


α α ∈ Σx,ε ∩ Γ1,

∅ otherwise,
and α′

x,ε :=


α α ∈ Σ ′

x,ε ∩ Γ1,

∅ otherwise.

Finally, we denote by σx,ε and σ ′
x,ε the strings of maximal length inΣx,ε andΣ ′

x,ε , respectively.

3. The homotopy category of a gentle quiver

An almost gentle bound quiver 0 = (Γ , R) is called gentle if Γ is finite and R consists of paths of length 2. For the rest of
the section we assume that 0 = (Γ , R) is a fixed gentle bound quiver together with string functions S and T .



G. Bobiński / Journal of Pure and Applied Algebra 215 (2011) 642–654 645

LetKb(0) denote the bounded homotopy category of complexes of projective representations of0. Recall thatKb(0) has
a structure of a triangulated category [19, Theorem 2.3.1] with the suspension functor given by the degree shift X → X[1].
Moreover, since 0 is Gorenstein, i.e. pdim0 Q < ∞ for each injective representation Q of 0 and idim0 P < ∞ for each
projective representation P of 0 [14], Kb(0) possesses almost split triangles [18, Section 5], thus also the Auslander–Reiten
translation, which we denote by τKb(0).

Let R′
:= {αα−1, α−1α | α ∈ Γ1}. Then (Γ , R′) is a monomial bound quiver. If l ∈ N+, then by a homotopy string in 0 of

length lwemean a path in (Γ , R′) of length l. Moreover, 1x,1 and 1x,−1 are homotopy strings in 0 of length 0 for each x ∈ Γ0.
Observe that every string in 0 is a homotopy string in 0. We extend S and T to the homotopy strings in 0 in the usual way.
If ω′ and ω′′ are homotopy strings in 0 of positive length, then we say that the composition ω′ω′′ is defined (in the obvious
way) if sω′

= tω′′ and one of the following conditions is satisfied, where α′
:= αℓ(ω′)(ω

′) and α′′
:= α1(ω

′′):

(1) Sω′
= Tω′′ and either α′, α′′

∈ Γ1 or α′−1, α′′−1
∈ Γ1,

(2) Sω′
= −Tω′′ and either α′, α′′−1

∈ Γ1 or α′−1, α′′
∈ Γ1.

Similarly, if ω is a homotopy string in 0 of positive length, x ∈ Γ0, and ε ∈ {±1}, then the composition ω1x,ε (1x,εω) is
defined (and equals ω) if and only if x = sω and either ε = Sω and αℓ(ω)(ω) ∈ Γ1 or ε = −Sω and α−1

ℓ(ω)(ω) ∈ Γ1 (x = tω
and either ε = Tω and α1(ω) ∈ Γ1 or ε = −Tω and α−1

1 (ω) ∈ Γ1, respectively). Finally, if x′, x′′
∈ Γ0 and ε′, ε′′

∈ {±1},
then the composition 1x′,ε′1x′′,ε′′ is defined (and equals 1x′,ε′ ) if and only if x′

= x′′ and ε′
= ε′′. Observe that the above

definitions for homotopy strings differ from the ones we have for strings. If ω is a homotopy string in 0, then by σω we
denote the string of maximal length among the simple strings σ in 0 such that the composition σω (as homotopy strings in
0) is defined.

A simple homotopy string θ in 0 is called an antipath in 0 provided αi(θ)αi+1(θ) ∈ R (equivalently, Sαi(θ) = Tαi+1(θ))
for each i ∈ [1, ℓ(θ) − 1]. For x ∈ Γ0 and ε ∈ {±1}, let Θx,ε denote the set of all antipaths θ in 0 such that tθ = x and
Tθ = ε. If there is an antipath inΘx,ε of maximal length, then we denote it by θx,ε . Otherwise, we put θx,ε := ∅.

Let ω be a homotopy string in 0. If ℓ(ω) > 0, then ω has a unique presentation in the form ω = σ1 · · · σL, L ∈ N+, such
that σi is a directed string in 0 of positive length for each i ∈ [1, L], and the composition of σiσi+1 (as homotopy strings in 0)
is defined for each i ∈ [1, L− 1]. In the above situation we put L(ω) := L, σi(ω) := σi and σ−1

i (ω) := σ−1
i for i ∈ [1, L], and

degω := |{i ∈ [1, L] | σi is a path in 0}| − |{i ∈ [1, L] | σ−1
i is a path in 0}|.

Moreover, we put L(ω) := 0 and degω := 0 if ℓ(ω) = 0. If i ∈ [0, L(ω)], then we denote by ω[i] and [i]ω the homotopy
strings in 0 of length

∑
j∈[1,i] ℓ(σj(ω)) and

∑
j∈[i+1,L(ω)] ℓ(σj(ω)), respectively, such that ω = ω[i]

·
[i]ω. In particular,

ω[0]
=


1tω,Tω ℓ(ω) > 0 and α1(ω) ∈ Γ1,

1tω,−Tω otherwise,

and

[L(ω)]ω =


1sω,−Sω ℓ(ω) > 0 and α−1

ℓ(ω)(ω) ∈ Γ1,

1tω,Sω otherwise.

Moreover, [i]ω[j]
:=

[i](ω[j]) for i, j ∈ [0, L(ω)], i ≤ j.
Let ω be a homotopy string in 0 andm ∈ Z. We define X = Xm,ω ∈ Kb(0) in the following way. First, form′

∈ Z we put
Im′ = Im′(m, ω) := {i ∈ [0, L(ω)] | m + degω[i]

= m′
}. Then Xm′

:=


i∈Im′
Psω[i] for m′

∈ Z and

(dm
′

X )i,j :=


pσj+1(ω) i = j + 1 and σj+1(ω) is a path in 0,

p
σ−1
j (ω)

i = j − 1 and σ−1
j (ω) is a path in 0,

0 otherwise,

form′
∈ Z, j ∈ Im′ , and i ∈ Im′+1. The objects of Kb(0) of the above form are called the string complexes.

For a homotopy string ω in 0 and m ∈ Z we denote by Υm,ω the map Υ : Xm,ω → Xm+degω,ω−1 defined by

Υ m′

i,j :=


psω[j] i = L(ω)− j,
0 otherwise,

for m′
∈ Z, j ∈ Im′(m, ω), and i ∈ Im′(m + degω,ω−1). Observe that Υm,ω is an isomorphism for each homotopy string ω

in 0 and m ∈ Z — the inverse map is given by Υm+degω,ω−1 .
Let ω be a homotopy string in 0. Let σ be a path in 0 of positive length such that the composition σω (as homotopy

strings in 0) is defined. Form ∈ Z we denote by F ′
m,σ ,ω the map F ′

: Xm,1tσ ,−Tσ → Xm,ω defined by

F ′m
i,0 :=


pσ i = 0,
0 otherwise,



646 G. Bobiński / Journal of Pure and Applied Algebra 215 (2011) 642–654

i ∈ Im(m, ω). Similarly, let σ be a path in 0 of positive length such that the composition σ−1ω is defined. We denote by
F ′′
m,σ ,ω the map F ′′

: Xm,ω → Xm,1sσ ,Sσ defined by

F ′m
0,j :=


pσ j = 0,
0 otherwise,

for j ∈ Im(m, ω). Next, if m ∈ Z and σ is a path in 0 of positive length such that the composition ωσ−1 is defined, then we
put G′

m,σ ,ω := Υm+degω,ω−1 ◦ F ′

m+degω,σ ,ω−1 ◦ Υm+degω,1tσ ,Tσ : Xm+degω,1tσ ,Tσ → Xm,ω . Finally, if m ∈ Z and σ is a path in 0

of positive length such that the composition ωσ is defined, then we put G′′
m,σ ,ω := Υm+degω,1sσ ,Sσ ◦ F ′′

m+degω,σ ,ω−1 ◦ Υm,ω :

Xm,ω → Xm+degω,1sσ ,−Sσ .
A homotopy string ω in 0 is called a homotopy band if degω = 0, L(ω) > 0, either σ1(ω) and σ−1

L(ω)(ω) are paths in 0 or
σ−1
1 (ω) and σL(ω)(ω) are paths in 0, sω = tω, Sω = −Tω, and there is no homotopy string ω′ in 0 such that ℓ(ω′) < ℓ(ω),

sω′
= tω′, and ω = ω′n for some n ∈ N+. If ω is a homotopy band in 0 and i ∈ [0, L(ω)− 1], then we put ω(i) :=

[i]ω · ω[i].
Observe that it may happen that ω(i) is not a homotopy band in the above situation.

Let ω be a homotopy band in 0, µ an indecomposable automorphism of a finite dimensional vector space K , andm ∈ Z.
We define Y = Ym,ω,µ ∈ Kb(0) in the following way. First, for m′

∈ Z we put Jm′ := {i ∈ [1, L(ω)] | m + degω[i]
= m′

}.
Then Ym′

:=


i∈Jm′
Psω[i] ⊗k K form′

∈ Z and

(dm
′

Y )i,j :=



pσi(ω) ⊗ Id i = j + 1, (i, j) ≠ (L(ω), 1), and σj+1(ω) is a path in 0,

p
σ−1
j (ω)

⊗ Id i = j − 1, (i, j) ≠ (1, L(ω)), and σ−1
j (ω) is a path in 0,

pσ1(ω) ⊗ µ j = L(ω), i = 1, L(ω) > 2, and σ1(ω) is a path in 0,

p
σ−1
1 (ω)

⊗ µ j = 1, i = L(ω), L(ω) > 2, and σ−1
1 (ω) is a path in 0,

pσ1(ω) ⊗ µ+ p
σ−1
2 (ω)

⊗ Id j = L(ω), i = 1, L(ω) = 2, and σ1(ω) is a path in 0,

p
σ−1
1 (ω)

⊗ µ+ pσ2(ω) ⊗ Id j = 1, i = L(ω), L(ω) = 2, and σ−1
1 (ω) is a path in 0,

0 otherwise,

form′
∈ Z, j ∈ Jm′ , and i ∈ Jm′+1. The objects of Kb(0) of the above form are called the band complexes.

The following description of the indecomposable objects in Kb(0)was obtained in [7].
Proposition 3.1. Let 0 be a gentle bound quiver. If X is an indecomposable object in Kb(0), then either X ≃ Xm,ω for some
m ∈ Z and a homotopy stringω in 0 or X ≃ Ym,ω,µ for some m ∈ Z, a homotopy bandω in 0, and an automorphismµ of a finite
dimensional vector space.

4. The repetitive quiver of a gentle quiver

Throughout this section we fix a gentle bound quiver 0 = (Γ , R) together with string functions S and T . We also denote
byΣ the set of maximal paths in 0.

Our first aim in this section is to define the repetitive quiver 0̂ = (Γ̂ , R̂) of 0. We put Γ̂0 := Γ0 × Z and Γ̂1 :=

(Γ1 × Z) ∪ (Σ∗
× Z), whereΣ∗

:= {σ ∗
| σ ∈ Σ}. Moreover, s(α[m]) := (sα)[m] and t(α[m]) := (tα)[m] for α ∈ Γ1 and

m ∈ Z, and s(σ ∗
[m]) := (tσ)[m + 1] and t(σ ∗

[m]) := (sσ)[m] for σ ∈ Σ and m ∈ Z. For a path σ in Γ and m ∈ Z we
define the path σ [m] in Γ̂ in the obvious way. Let

ZR :={σ [m] | σ ∈ R, m ∈ Z}∪

{σ ′∗
[m − 1]σ ′′∗

[m] | σ ′, σ ′′
∈ Σ, tσ ′

= sσ ′′, m ∈ Z}∪

{α[m]σ ∗
[m] | α ∈ Γ1, σ ∈ Σ, sα = sσ , Sα = −Sσ , m ∈ Z}∪

{σ ∗
[m]α[m + 1] | α ∈ Γ1, σ ∈ Σ, tα = tσ , Tα = −Tσ , m ∈ Z}.

Every path in Γ̂ of the form σ ′′
[m]σ ∗

[m]σ ′
[m + 1], where σ ∈ Σ , σ = σ ′σ ′′ for paths σ ′ and σ ′′ in Γ , and m ∈ Z, is called

a full path. LetΛ be the set of full paths in Γ̂ . Then

R̂ :=ZR ∪ {λ′
− λ′′

| λ′, λ′′
∈ Λ, sλ′

= sλ′′, λ′
≠ λ′′

}∪

{βλ | β ∈ Γ̂1, λ ∈ Λ, sβ = tλ} ∪ {λβ | β ∈ Γ̂1, λ ∈ Λ, sλ = tβ}.

Wehave theNakayama automorphism ν of 0̂ given by ν(x[m]) := x[m+1] and ν(α[m]) := α[m+1] for x ∈ Γ0,α ∈ Γ1∪Σ
∗,

andm ∈ Z.
Let rep 0̂ denote the stable category of 0. Since rep 0̂ is a Frobenius category, rep 0̂ is a triangulated category with the

suspension functor given by the inverseΩ−1 of the Heller syzygy functorΩ . Every exact sequence in rep 0̂ induces a triangle
in rep 0̂. Moreover, rep 0̂ possesses almost split triangles, which come from the almost split sequences in rep 0̂. In particular,
the Auslander–Reiten translation in rep 0̂ is given by the Auslander–Reiten translation τ0̂ in rep 0̂.
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We define the functions S, T : Γ̂1 → {±1} by

Sβ :=


Sα β = α[m] for α ∈ Γ1 and m ∈ Z,
−Tσ β = σ ∗

[m] for σ ∈ Σ and m ∈ Z,

and

Tβ :=


Tα β = α[m] for α ∈ Γ1 and m ∈ Z,
−Sσ β = σ ∗

[m] for σ ∈ Σ and m ∈ Z,

for β ∈ Γ̂1. One easily checks that (Γ̂ , R̂), where R̂ := ZR ∪ {λ | λ ∈ Λ}, is an almost gentle quiver with string functions S
and T . By a path in 0̂ we mean a path in (Γ̂ , R̂). Similarly, by a string (band) in 0̂ we mean a string (band, respectively) in
(Γ̂ , R̂). For a string ω in 0 andm ∈ Z we define the string ω[m] in 0̂ in the obvious way.

With a string ζ in 0̂ we associate the representation Vζ of 0̂ in the following way. First, we put Ix := {i ∈ [0, ℓ(ζ )] |

sζ[i] = x} for x ∈ Γ0. Then we define Vζ by Vζ (x) := kIx for x ∈ Γ0 and

(Vζ (α))i,j :=


Id i = j − 1 and α = αj(ζ ), or

i = j + 1 and α = α−1
j+1(ζ ),

0 otherwise,

for α ∈ Γ1, j ∈ Isα , and i ∈ Itα . If i ∈ Ix for x ∈ Γ0, then we denote by ei(ζ ) the corresponding basis element of Vζ (x).
Similarly, if i ∈ Ix for x ∈ Γ0, then e∗

i (ζ ) denotes the corresponding element of the basis of (Vζ (x))∗ dual to (ej(ζ ))j∈Ix . The
representations of 0̂ of the above form are called the string representations of 0̂.

For a string ζ in 0̂ of length l we denote by υζ the map υ : Xζ → Xζ−1 given by υ(ei(ζ )) := el−i(ζ
−1) for i ∈ [0, l].

Observe that υζ is an isomorphism for each string ζ in 0̂ (and the inverse map is given by υζ−1 ). Moreover, if ζ ′ and ζ ′′ are
strings in 0̂ such that Vζ ′ ≃ Vζ ′′ , then either ζ ′

= ζ ′′ or ζ ′−1
= ζ ′′.

Let ζ ′ and ζ ′′ be strings in 0̂ such that tζ ′
= tζ ′′ and Tζ ′

= Tζ ′′. Put l′ := ℓ(ζ ′), l′′ := ℓ(ζ ′′), and

l := max{i ∈ [0,min(l′, l′′)] | αj(ζ
′) = αj(ζ

′′) for each j ∈ [1, i]}.

If ζ ′
≠ ζ ′′, thenwewrite ζ ′ <t ζ

′′ if either l′′ > l and αl+1(ζ
′′) ∈ Γ1 or l′ > l and α−1

l+1(ζ
′) ∈ Γ1. Moreover, wewrite ζ ′

≤t ζ
′′

if either ζ ′
= ζ ′′ or ζ ′ <t ζ

′′. If ζ ′
≤t ζ

′′, then by fζ ′,ζ ′′ we denote the map f : Vζ ′ → Vζ ′′ given by f (ei(ζ ′)) := ei(ζ ′′) for
i ∈ [0, l] and f (ei(ζ ′)) := 0 for i ∈ [l + 1, l′].

Dually, let ζ ′ and ζ ′′ be strings in 0̂ such that sζ ′
= sζ ′′ and Sζ ′

= Sζ ′′. We write ζ ′
≤s ζ

′′ if ζ ′−1
≤t ζ

′′−1. If ζ ′
≤s ζ

′′,
then we put gζ ′,ζ ′′ := υζ ′′−1 ◦ fζ ′−1,ζ ′′−1 ◦ υζ ′ .

Let ω be a band in 0̂ and µ an indecomposable automorphism of a finite dimensional vector space K . We define the
representation Wω,µ of 0̂ as follows. First, for x ∈ Γ0 we put Jx := {i ∈ [1, ℓ(ω)] | sαi(ω) = x}. Then Wω,µ(x) := K Jx for
x ∈ Q0 and

(Wω,µ(α))i,j :=


Id j ∈ [2, ℓ(ω)], i = j − 1, and α = αj(ω), or

j ∈ [1, ℓ(ω)− 1], i = j + 1, and α = α−1
j+1(ω),

µ j = 1, i = ℓ(ω), and α = α1(ω), or
j = ℓ(ω), i = 1, and α = α−1

1 (ω),

0 otherwise,

for α ∈ Γ1, j ∈ Jsα , and i ∈ Jtα . The representations of 0̂ of the above form are called the band representations of 0̂.
Let Ξ be the set consisting of all paths in 0̂ and a chosen full path starting at y for each y ∈ Γ̂0. For ξ ∈ Ξ we denote

by ξ ∗ unique ξ ′
∈ Ξ such that tξ ′

= sξ and ξξ ′ is a full path. Observe that (σ [m])∗ = σ ∗
[m] for all σ ∈ Σ and m ∈ Z.

Moreover, (ξ ∗)∗ = νξ for each ξ ∈ Ξ .
Fix y ∈ Γ̂0. If y′

∈ Γ̂0 and Ξ(y′, y) := {ξ ∈ Ξ | sξ = y′, tξ = y}, then (the residue classes of) (ξ)ξ∈Ξ(y′,y) form a basis
of k0̂(y′, y). For each y′

∈ Γ̂0 we identify (ξ ∗)ξ∈Ξ(y′,y) with the basis of (k0̂(y′, y))∗ dual to (ξ)ξ∈Ξ(y′,y). This identification
induces isomorphisms (k0̂(y′, y))∗ ≃ k0̂(νy, y′), y′

∈ Γ̂0, which extend to an isomorphism Q y ≃ Pνy, which we also treat
as identification.

Let ζ be a string in 0̂ of positive length. Then we have a presentation ζ = ξ1ξ2 · · · ξL, L ∈ N+, where ξi is a directed string
in 0̂ of positive length for each i ∈ [1, L], and ξiξi+1 is not a directed string in 0̂ for each i ∈ [1, L− 1]. In the above situation
we put L(ζ ) := L, and ξi(ζ ) := ξi and ξ−1

i (ζ ) := ξ−1
i for i ∈ [1, L]. Moreover, if ζ is a band in 0̂, then we put ζ (0) := ζ and

ζ (i) := ξi+1 · · · ξLξ1 · · · ξi for i ∈ [1, L − 1]. We also put L(1x,ε) := 0 for x ∈ Γ̂0 and ε ∈ {±1}.
Now we define the operation (−)× on the strings in 0̂. First, we put (1y,ε)

×
:= 1νy,−ε for y ∈ Γ̂0 and ε ∈ {±1}. Next, if

ξ is a directed string of positive length, then we put ξ×
:= (ξ ∗)−1 if ξ is a path in 0̂, and ξ×

:= (ξ−1)∗ if ξ−1 is a path in
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0̂. Finally, if ζ is an arbitrary string in 0̂ of positive length, then ζ×
:= ξ1(ζ )

×
· · · ξL(ζ )(ζ )

×. The operation (−)× is clearly
invertible. We denote the inverse operation by (−)+.

We also need some additional operations on the strings in 0̂. Let ζ be a string in 0̂, l := ℓ(ζ ), and L := L(ζ ). If L > 0,
then we denote by ∂ζ the unique string ζ ′ in 0̂ such that ζ = ξ1(ζ ) · ζ ′. We put

∂ ′ζ :=


∂ζ L > 0 and ξ1(ζ ) is a path in 0,

ζ otherwise,

and

∂ ′′ζ :=


∂ζ L > 0 and ξ−1

1 (ζ ) is a path in 0,

ζ otherwise.

Next, we put

δ′

tζ :=


[1]ζ l > 0 and α1(ζ ) ∈ Γ̂1,

σtζ ,−Tζ ζ otherwise.

δ′

sζ :=


ζ[l−1] l > 0 and α−1

ℓ(ζ )(ζ ) ∈ Γ̂1,

ζσ−1
sζ ,−Sζ otherwise,

δ′′

t ζ :=


[1]ζ l > 0 and α−1

1 (ζ ) ∈ Γ̂1,

σ ′−1
tζ ,−Tζ ζ otherwise,

and

δ′′

s ζ :=


ζ[l−1] l > 0 and αℓ(ζ )(ζ ) ∈ Γ̂1,

ζσ ′

sζ ,−Sζ otherwise.

Moreover, we put δ′ζ := δ′
sδ

′
tζ = δ′

tδ
′
sζ and δ′′ζ := δ′′

s δ
′′
t ζ = δ′′

t δ
′′
s ζ . Finally, we put ∆ζ := δ′(ζ×). Observe that ∆ is

invertible and∆−1ζ = δ′′(ζ+).
Let ζ be a string in 0̂. We describe a projective cover πζ : Pζ → Vζ of Vζ . Write ζ = ξ1ξ

−1
2 · · · ξ2L−1ξ

−1
2L , where

L ∈ N+ and ξ1, . . . , ξ2L are simple strings in 0 such that ℓ(ξi) > 0 for each i ∈ [2, 2L − 1]. Let li :=
∑

j∈[1,2i−1] ℓ(ξj)

for i ∈ [1, L]. Then πζ : Pζ → Vζ , where Pζ :=


i∈[1,L] Psξ2i−1 and (πζ )i corresponds to eli(ζ ) under the canonical
isomorphism Hom0(Psξ2i−1 , Vζ ) ≃ Vζ (sξ2i−1) for each i ∈ [1, L], is the minimal projective cover of Vζ . Observe that
ΩVζ := Kerπζ ≃ V∆−1ζ . We identify ΩVζ with V∆−1ζ . Further, Pζ is an injective envelope of V∆−1ζ . More precisely, if
∆−1ζ = ξ ′−1

1 ξ ′

2 · · · ξ ′−1
2L−1ξ

′

2L for L ∈ N+ and simple strings ξ ′

1, . . . , ξ
′

2L in 0̂ such that ℓ(ξ ′

i ) > 0 for each i ∈ [2, 2L − 1], then
Pζ =


i∈[1,L] Qtξ ′

2i−1
. Moreover, if l′i :=

∑
j∈[1,2i−1] ℓ(ξ

′

j ) for i ∈ [1, L] and ιζ : V∆−1ζ → Pζ is such that (ιζ )i corresponds
to (−1)ie∗

l′i
(∆−1ζ ) under the canonical isomorphism (V∆−1ζ (tξ2i−1))

∗
≃ Hom0̂(V∆−1ζ ,Qtξ2i−1) for each i ∈ [1, L], then the

sequence 0 → V∆−1ζ

ιζ
−→ Pζ

ζ
−→ Vζ → 0 is exact. We will use sequences of the above form to calculate the action ofΩ on

morphisms in rep 0̂. In particular, it follows thatΩfζ ′,ζ ′′ and f∆−1ζ ′,∆−1ζ ′′ (Ωgζ ′,ζ ′′ and g∆−1ζ ′,∆−1ζ ′′ ) coincide up to sign for
strings ζ ′ and ζ ′′ in 0̂ such that tζ ′

= tζ ′′, Tζ ′
= Tζ ′′, and ζ ′

≤t ζ
′′ (sζ ′

= sζ ′′, Sζ ′
= Sζ ′′, and ζ ′

≤s ζ
′′).

Similarly as above we show thatΩWζ ,µ ≃ Wζ+,(−1)L(ζ )/2µ−1 .

5. The Happel functor

Throughout this section we fix a gentle bound quiver 0 = (Γ , R) together with string functions S and T . We also denote
byΣ the set of maximal paths in 0.

Let Db(0) denote the derived category of rep0. It is known that Db(0) is a triangulated category and Kb(0) can be
viewed as a full triangulated subcategory of Db(0). We identify M ∈ rep0 with the complex in Db(0) concentrated in
degree 0. In [16] Happel constructed a fully faithful triangle functor Db(0) → rep 0̂ which extends the inclusion functor
rep0 → rep 0̂. By Ψ we denote the restriction of this functor to Kb(0).

Let ω be a homotopy string 0. We define the string ψω in 0̂ by induction on L(ω) as follows. First, ψω := σω[0] ·

(σω−1)−1
[0] if L(ω) = 0. Next, if L(ω) > 0, then

ψω :=


σω[0] · (σ [0])+ · δ′′

s (ζ
+) σ is a path in 0,

σω[0] · σ [0] · δ′
s(ζ

×) σ−1 is a path in 0 and ℓ(ζ ) > 0,
σω[0] · σ[ℓ(σ )−1][0] σ−1 is a path in 0 and ℓ(ζ ) = 0,

where σ := σ1(ω) and ζ := ∂ ′(ψ([1]ω)).
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The meaning of the above assignment is explained in the following.

Proposition 5.1. Let ω be a homotopy string in 0 and m ∈ Z. Then Ψ Xm,ω ≃ V∆−m(ψω). Moreover, under the isomorphisms of
the above form, we have the following:

(1) If σ is a path in 0 of positive length such that the composition σω is defined, then Ψ F ′
m,σ ,ω = εf∆−m(ψ1tσ ,−Tσ ),∆−m(ψω) for

some ε ∈ {±1}.
(2) If σ is a path in 0 of positive length such that σ−1ω is defined, then Ψ F ′′

m,σ ,ω = εf∆−m(ψω),∆−m(ψ1sσ ,Sσ ) for some ε ∈ {±1}.
(3) If σ is a path in 0 of positive length such that ωσ−1 is defined, then ΨG′

m,σ ,ω = εg∆− degω−m(ψ1tσ ,Tσ ),∆−m(ψω) for some
ε ∈ {±1}.

(4) Ifσ is a path in0 of positive length such thatωσ is defined, thenΨG′′
m,σ ,ω = εg∆−m(ψω),∆− degω−m(ψ1sσ ,−Sσ )

for some ε ∈ {±1}.

Proof. We prove the above claims by induction on L(ω). If L(ω) = 0, then the proofs are immediate (observe that
Xm,ω ≃ X0,ω[−m] for each m ∈ Z). It also follows easily that ΨΥ0,ω and υψω coincide in this case.

Now assume that L(ω) > 0 and let σ ′
:= σ1(ω) and ω′

:=
[1]ω. We also assume that σ ′ is a path in 0, the case when

σ ′−1 is a path in 0 is similar.
By induction hypothesis Ψ X0,1tσ ′,−Tσ ′ ≃ Vψ1tσ ′,−Tσ ′ and Ψ X0,ω′ ≃ Vψω′ . Moreover, if f := Ψ F ′

0,σ ′,ω′ , then f equals up to
sign fψ1tσ ′,−Tσ ′ ,ψω′ . Let ζ := ∆(ψ1tσ ′,−Tσ ′) and

Vψ1tσ ′,−Tσ ′

ιζ
//

f

��

Pζ
πζ

//

g

��

Vζ

Id

��

Vψω′

f ′
// V

f ′′
// Vζ

be the push-out diagram (recall that Pζ , ιζ and πζ are defined at the end of the previous section). Then

Vψ1tσ ′,−Tσ ′

f
−→ Vψω′

f ′
−→ V

f ′′
−→ Vζ

is a triangle in rep 0̂. Direct calculations show that V ≃ V∆(ψω) in rep 0̂ (note that V may be a decomposable module, so this
isomorphism may not hold in rep 0̂). Moreover, by choosing g in an appropriate way we get that f ′ and f ′′ equal up to sign
gψω′,∆(ψω) and υζ−1 ◦ f∆(ψω),ζ−1 , respectively. Since we have an isomorphism Xm,ω ≃ X−1,ω[−m − 1] for each m ∈ Z and a
triangle

X0,1tσ ′,−Tσ ′

F ′

0,σ ′,ω′

−−−−→ X0,ω′

F ′

−→ X−1,ω
F ′′

−→ X−1,1tσ ′,−Tσ ′

in Kb(0), we get the first claim. Moreover, under the appropriate isomorphisms, Ψ F ′
= f ′ and Ψ F ′′

= f ′′.
Let σ be a path in 0 of positive length such that sσ = tω and Sσ = Tω. Then we have the commutative diagram

X0,1tσ ,−Tσ
//

F ′
0,σ ,1tσ ′,−Tσ ′

��

0 //

��

X−1,1tσ ,−Tσ
Id //

F ′
−1,σ ,ω

��

X−1,1tσ ,−Tσ

F ′
−1,σ ,1tσ ′,−Tσ ′

��
X0,1tσ ′,−Tσ ′

F ′

0,σ ′,ω′

// X0,ω′
F ′

// X−1,ω
F ′′

// X−1,1tσ ′,−Tσ ′

in Kb(0), which gives rise to the commutative diagram

Vψ1tσ ,−Tσ
//

Ψ F ′
0,σ ,1tσ ′,−Tσ ′

��

0 //

��

V∆(ψ1tσ ,−Tσ )
Id //

Ψ F ′
−1,σ ,ω

��

V∆(ψ1tσ ,−Tσ )

Ψ F ′
−1,σ ,1tσ ′,−Tσ ′

��
Vψ1tσ ′,−Tσ ′

f // Vψω′

f ′ // V∆(ψω)
f ′′ // Vζ

in rep 0̂. By induction hypothesis Ψ F ′

0,σ ,1tσ ′,−Tσ ′
and Ψ F ′

−1,σ ,1tσ ′,−Tσ ′
equal up to sign fψ1tσ ,−Tσ ,ψ1tσ ′,−Tσ ′ and f∆(ψ1tσ ,−Tσ ),ζ ,

respectively.Moreover,Ψ F ′

m,σ ,1tσ ′,−Tσ ′
= Ωm+1Ψ F ′

−1,σ ,1tσ ′,−Tσ ′
and this follows from the abovediagram thatΨ F ′

−1,σ ,ω equals
up to sing f∆(ψ1tσ ,−Tσ ),∆(ψω), hence (1) follows. The remaining claims are proved similarly. �

Observe that ω′
= ω′′ if ψω′

= ψω′′ for homotopy strings ω′ and ω′′ in 0. In fact we have more.

Lemma 5.2. Let ω′ and ω′′ be homotopy strings in 0 and m ∈ Z. If ψω′
= ∆m(ψω′′), then m = 0 and ω′

= ω′′.
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Proof. In light of the preceding remark it is sufficient to prove that m = 0. Without loss of generality we may assume that
m ≤ 0. Observe that t(ψω′) ∈ Γ0[0]. Moreover, easy induction shows that t(∆m(ψω′′)) ∈ Γ0[−m′′

] for some m′′
∈ N+

providedm < 0, hence the claim follows. �

Corollary 5.3. Let ω be a homotopy string in 0. Then (ψω)−1
= ∆− degω(ψω−1).

Proof. Recall that X0,ω ≃ Xdegω,ω−1 , thus Proposition 5.1 implies that Vψω ≃ V∆− degω(ψω−1). Hence, either ψω =

∆− degω(ψω−1) or (ψω)−1
= ∆− degω(ψω−1). In the former case the previous lemma implies that ω−1

= ω, which is
impossible. �

Nowwe calculate the images of the band complexes. For this we need an additional functionψ ′ between the homotopy
strings in 0 of positive length and the strings in 0̂. Let ω be a homotopy string in 0 of positive length. Put L := L(ω) and
σ := σ1(ω). If L = 1, thenψ ′ω := (σ [0])+ provided σ is a path in 0, andψ ′ω := σ [0] provided σ−1 is a path in 0. If L > 1,
then

ψ ′ω :=


ψ ′σ · (ψ ′([1]ω))+ σ is a path in 0,

ψ ′σ · (ψ ′([1]ω))× σ−1 is a path in 0.

One can easily deduce the formula for ψ ′ω as follows:

ψ ′ω = (σ1(ω))
×n1 · · · (σL(ω))

×nL ,

where

ni :=


− degω[i] σi(ω) is a path in 0,

− degω[i]
− 1 σ−1

i (ω) is a path in 0,

for i ∈ [1, L], and (−)×n denotes the n-th power of (−)× for n ∈ Z. The above formula implies immediately that
ψ ′ω−1

= (ψ ′ω)−1 if degω = 0. Moreover, if degω = 0 and ω′ is a homotopy string in 0 of positive length such that
the composition ωω′ is defined, then ψ ′(ωω′) = ψ ′ω · ψ ′ω′. Finally, it follows that ψ ′ω is a band in 0̂ if ω is a homotopy
band in 0.

We also need the following property of ψ ′.

Lemma 5.4. Let ω be a homotopy string in 0 such that L(ω) > 0 and degω = 0. If ω′ is a homotopy string in 0 such that the
composition ωω′ is defined, then ψ(ωω′) = σω[0] · ψ ′ω · ∂ ′(ψω′). In particular, ψω = σω[0] · ψ ′ω · (σω−1)−1

[0].

Proof. If L(ω) = 2, then the claim follows by direct calculations. Observe that in this case eitherω = σ ′σ ′′−1 orω = σ ′−1σ ′′

for paths σ ′ and σ ′′ in 0 of positive length.
Now assume that L := L(ω) > 2. There are some cases to consider.
First assume that there exists i ∈ [2, L−2] such that degω[i]

= 0. Observe that deg [i]ω = 0. Then we have the following
sequence of equalities

ψ(ωω′)
ind
= σω[0] · ψ ′ω[i]

· ∂ ′(ψ ′([i]ωω′))
ind
=

ind
= σω[0] · ψ ′ω[i]

· ψ ′[i]ω · ∂ ′(ψω′) = σω[0] · ψ ′ω · ∂ ′(ψ ′ω′)

hence the claim follows in this case.
If the above condition is not satisfied, then deg [1]ω[L−1]

= 0. Put σ ′
:= σ1(ω) and σ ′′

:= σL(ω). Assume in addition that
σ ′ is a path in 0, the other case is similar. Then σ ′′−1 is a path in 0. Moreover, if ℓ(∂ ′(ψω′)) > 0, then we have the following
sequence of equalities

ψ(ωω′)
def
= σω[0] · (σ ′

[0])+ · δ′′

s ((∂
′(ψ([1]ω · ω′)))+)

ind
= σω[0] · (σ ′

[0])+ · δ′′

s ((ψ
′([1]ω[L−1]))+ · (∂ ′(ψ(σ ′′ω′)))+)

def
= σω[0] · ψ ′σ ′

· δ′′

s ((ψ
′([1]ω[L−1]))+ · (σ ′′

[0])+ · (δ′

s((∂
′(ψω′))×))+)

= σω[0] · ψ ′σ ′
· (ψ ′([1]ω[L−1]))+ · (ψ ′σ ′′)+ · ∂ ′(ψω′)

= σω[0] · ψ ′σ ′
· (ψ ′([1]ω))+ · ∂ ′(ψω′)

def
= σω[0] · ψ ′ω · ∂ ′(ψ ′ω′).

On the other hand, if ℓ(∂ ′(ψ ′ω′)) = 0, then by repeating some of the calculations above we get

ψ(ωω′) = σω[0] · ψ ′σ ′
· δ′′

s ((ψ
′([1]ω[L−1]))+ · (σ ′′

[ℓ(σ ′′)−1][0])
+)

= σω[0] · ψ ′σ ′
· (ψ ′([1]ω[L−1]))+ · (σ ′′

[0])+

= σω[0] · ψ ′ω · ∂ ′(ψ ′ω′),

what finishes the proof. �
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The above lemma will be used in the proof of the following.

Proposition 5.5. Let ω be a homotopy band in 0 and µ an indecomposable automorphism of a finite dimensional vector space.
Let

ε :=


1 σ1(ω) is a path in 0,

−1 σ−1
1 (ω) is a path in 0.

Then Ψ Y0,ω,µ ≃ Wψ ′ω,ε′µε for some ε′
∈ {±1} depending only on ω.

Proof. Put L := L(ω). Let σ ′
:= σ1(ω), σ ′′

:= σ−1
L(ω)(ω), and ω

′
:=

[1]ω[L−1]. Observe that degω′
= 0. Consequently,

ψ ′ω′
= σω′ [0] · ψ ′ω′

· (σω′−1)−1
[0] if L > 2 (by the previous lemma) and ψ ′ω′

= σω′ [0] · (σω′−1)−1
[0] otherwise (by

definition). Let K be the domain of µ.
We assume that σ ′ is a path in 0 — the other case is similar. Then σ ′′ is also a path in 0 and we have a triangle

X0,1tσ ′,−Tσ ′ ⊗k K
F
−→ X0,ω′ ⊗k K → Y−1,ω,µ → X−1,1tσ ′,−Tσ ′ ⊗ K

in Kb(0), where F := F ′

0,σ ′,ω′ ⊗ µ+ G0,σ ′′,ω′ ⊗ Id. Observe that Proposition 5.1 implies that Ψ X0,1tσ ′,−Tσ ′ ≃ Vψ1tσ ′,−Tσ ′ and
Ψ X0,ω′ ≃ Vψω′ . If f := Ψ F , then under the above isomorphisms f = ε1fψ1tσ ′,−Tσ ′ ,ψω′ ⊗ µ+ ε2gψ1tσ ′,−Tσ ′ ,ψω′ ⊗ Id for some
ε1, ε2 ∈ {±1} (depending only on ω) according to Proposition 5.1(1) and (3). Since we have the triangle

Vψ1tσ ′,−Tσ ′ ⊗ K
f

−→ Vψω′ ⊗ K → Wσ ′[0]·ψ ′ω′·σ ′′−1[0],ε0µ−1 → Ω−1(Vψ1tσ ′,−Tσ ′ ⊗ K)

in rep 0̂, where ε0 := −ε1ε2, Ψ Y−1,ω,µ ≃ Wσ ′[0]·ψ ′ω′·ω′′−1[0],ε0µ−1 (in the calculation of this triangle we use the form ofψ ′ω′

calculated at the beginning of the proof). Since Y0,ω,µ ≃ Ψ Y−1,ω,µ[−1] and

ΩWσ ′[0]·ψ ′ω′·σ ′′−1[0],ε0µ−1 ≃ Wψ ′ω,(−1)L(ω)/2ε0µ,

the claim follows. �

Corollary 5.6. Let m ∈ Z, ω be a homotopy band in 0, and µ an automorphism of a finite dimensional vector space. Then
Ψ Ym,ω,µ ≃ W

(ψ ′ω)×(−m),ε′µε
′′ for some ε′, ε′′

∈ {±1} depending only on ω and m.

Proof. Since Ym,ω,µ ≃ Y0,ω,µ[−m], the claim follows from the previous proposition. �

6. Almost split triangles

Throughout this section we fix a gentle bound quiver 0 = (Γ , R) together with string functions S and T . Moreover, ψ is
the map which associates with a homotopy string in 0 a string in 0̂ as defined in Proposition 5.1.

Our aim in this section is to determine the shape of the almost split triangles in Kb(0). In order to restrict the number
of technical definitions we will not describe the maps appearing in the almost split triangles, however the interested reader
can easily check that ‘‘natural’’ candidates are the correct ones.

We first recall that a triangle X → Y → Z → X[1] is Kb(0) is an almost split triangle in Kb(0) if and only if the
corresponding triangle Ψ X → Ψ Y → Ψ Z → Ω−1Ψ X in rep 0̂ is an almost split triangle in rep 0̂ [18, Proposition 5.2],
where similarly as in the previous section Ψ denotes the restriction of the Happel functor to Kb(0).

As a consequence we immediately obtain the following.

Main Theorem (Part I: Band complexes). Let m ∈ Z and ω be a homotopy band in 0. If 0 → µ′
→


i∈[1,n] µi → µ′′

→ 0 is
an almost split sequence in the category of the automorphisms of finite dimensional vector spaces, where µ′, µ1, . . . , µn and µ′′

are indecomposable automorphisms of finite dimensional vector spaces, then

Ym,ω,µ′ →


i∈[1,n]

Ym,ω,µi → Ym,ω,µ′′ → Ym,ω,µ′ [1]

is an almost split triangle in Kb(0).

Proof. It follows from the above remark and Corollary 5.6, since for each band ζ in 0̂ and ε, ε′
∈ {±1} we have an almost

split triangle

Wζ ,ε′µ′ε →


i∈[1,n]

Wζ ,ε′µεi
→ Wζ ,ε′µ′′ε → Ω−1Wζ ,ε′µ′ε

in rep 0̂ (compare [10,26, Theorem 4.1(2)]). �

It remains to describe the almost split triangles in Kb(0) involving the string complexes. We first describe the almost
split triangles rep 0̂ involving the string representations.
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For a string ζ in 0̂ we put

+ζ :=


σsα′,−Sα′α′−1ζ α′

≠ ∅,
[1](∂

′′ζ ) α′
= ∅ and ℓ(∂ ′′ζ ) > 0,

∅ α′
= ∅ and ℓ(∂ ′′ζ ) = 0,

where

α′
:=


α′

tζ ,−Tζ α′

tζ ,−Tζ ≠ ∅ and α′−1
tζ ,−Tζ ζ is a string in 0̂,

∅ otherwise.

Next, we put ζ+ := (+(ζ
−1))−1 for a string ζ in 0̂. Finally, if ζ is a string in 0̂, then

+ζ+ :=


(+ζ )+ +ζ ≠ ∅,
+(ζ+) ζ+ ≠ ∅.

We leave it to the reader to verify that the above definition is correct and +ζ+ ≠ ∅ for each string ζ in 0̂. Moreover,
[10,26, Theorem 4.1(1)] imply that for each string ζ in 0̂ we have an almost split triangle in rep 0̂ of the form

Vζ → V
+ζ ⊕ Vζ+ → V

+ζ+ → Ω−1Vζ ,

where V∅ := 0.
We translate the above construction to Kb(0).
Letω be a homotopy band in 0. We denote by r(ω) the maximal i ∈ [0, ℓ(ω)] such that αj(ω) ∈ Γ1 for each j ∈ [1, i] and

αj(ω)αj+1(ω) ∈ R for each j ∈ [1, i − 1]. We put

ω′
:=


[1](σr(ω)(ω)) ·

[r(ω)]ω r(ω) > 0,
ω r(ω) = 0,

and σ := σω . Then we define

+ω :=



θ−1
tσ ,−Tσσω ℓ(σ ) > 0,

θ−1
tω′,−Tω′ω

′ ℓ(σ ) = 0, ℓ(θtω′,−Tω′) > 0, and ℓ(ω′) > 0,

([1]θtω′,−Tω′)−1 ℓ(σ ) = 0, ℓ(θtω′,−Tω′) > 0, and ℓ(ω′) = 0,
[1]ω′ ℓ(σ ) = 0, ℓ(θtω′,−Tω′) = 0, ℓ(ω′) > 0, and α−1

1 (ω′) ∈ Γ1,

ω′ ℓ(σ ) = 0, ℓ(θtω′,−Tω′) = 0, ℓ(ω′) > 0, and α1(ω
′) ∈ Γ1,

∅ ℓ(σ ) = 0, ℓ(θtω′,−Tω′) = 0, and ℓ(ω′) = 0.

and

m′(ω) :=


ℓ(θtσ ,−Tσ )− 1 ℓ(σ ) > 0,
ℓ(θtω′,−Tω′)+ r(ω)− 1 ℓ(σ ) = 0.

We first prove that the above definitions are correct.

Lemma 6.1. Let x ∈ Γ0 and ε ∈ {±1}. If αx,ε = ∅, then θx,ε ≠ ∅.

Proof. We show that ℓ(θ) ≤ |Γ1| for each θ ∈ Θx,ε . Assume this is not the case and fix θ ∈ Θx,ε such that l := ℓ(θ) > |Γ1|.
Then there exist i, j ∈ [1, l], i < j, such that αi(θ) = αj(θ). An easy induction shows that αj+1−i(θ) = α1(θ) = α′

x,ε .
Consequently, αj−i(θ) ∈ Σx,ε , which is impossible. �

Let ω, σ , and ω′ be as in the definition of +ω. Obviously, αtσ ,−Tσ = ∅, hence the above lemma implies that θtσ ,−Tσ ≠ ∅.
Now assume that ℓ(σ ) = 0. This assumption means that αtω,ε = ∅, where

ε =


Tω r(ω) > 0,
−Tω r(ω) = 0.

Consequently, if r(ω) = 0, i.e. ω′
= ω, then θtω′,−Tω′ ≠ ∅. On the other hand, if r(ω) > 0, then θtω,Tω ≠ ∅. Moreover, in

this case α1(ω) · · ·αr(ω)(ω)θ ∈ Θtω,Tω for each θ ∈ Θtω′,−Tω′ , hence we also get that θtω′,−Tω′ ≠ ∅.
The following lemma is crucial.

Lemma 6.2. Let ω be a homotopy band in 0. Then +ω = ∅ if and only if +(ψω) = ∅. Moreover, if +ω ≠ ∅, then +(ψω) =

∆−m′(ω)(ψ(+ω)).
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Proof. We make some remarks about the proof and leave the details to the reader. Let σ and ω′ be as in the definition
of +ω.

First, if ℓ(σ ) > 0, then we prove∆−1(+(ψω)) = ∆−ℓ(θtσ ,−Tσ )(ψ(+ω)). In the proof we use the following fact, which can
be easily proved by induction.

Fact. Let ω0 be a homotopy string in 0 such that σt∂ ′(ψω0),−T∂ ′(ψω0) = σω0 [0]. Let l ∈ [0, ℓ(ω0)]. If σi(ω0) ∈ Γ −1
1 for each

i ∈ [1, l], then

∆−l(ψω0) = σt∂ ′(ψω′
0),−T∂ ′(ψω′

0)
· ∂ ′(ψω′

0).

where ω′

0 :=
[l]ω.

Next, we assume that ℓ(σ ) = 0 and either ℓ(θtω′,−Tω′) > 0 or ℓ(ω′) > 0. In this case we show either +(∆
r(ω)−1(ψω)) =

∆
−ℓ(θtω′,−Tω′ )(ψ(+ω)) if ω′

≠
[r(ω)]ω, or +(∆

r(ω)(ψω)) = ∆
−ℓ(θtω′,−Tω′ )+1(ψ(+ω)), otherwise. In addition to the above fact,

we use here also the following.

Fact. Let ω0 be a homotopy string in 0 such that ℓ(σω0) = 0. Let r ∈ [0, ℓ(ω0)]. If σi(ω0) ∈ Γ1 for each i ∈ [1, r], then

∆r(ψω0) = ∂ ′(ψω′

0),

where ω′

0 :=
[r]ω0.

Finally, we prove that +(∆
r(ω)(ψω)) = ∅ if ℓ(σ ) = 0, ℓ(θ ′

tω′,−Tω′) = 0, and ℓ(ω′) = 0. In this proof we also use the
latter fact. �

Dually, we putω+ := (+(ω
−1))−1 for a homotopy bandω in0. Lemma 6.2 and Corollary 5.3 imply that (ψω)+ = ψ(ω+)

for each homotopy band ω in 0. Finally, we put

+ω+ :=


(+ω)+ +ω ≠ ∅,
+(ω+) ω+ ≠ ∅,

and m′′(ω) :=


m′(ω) +ω ≠ ∅,
m′(ω+) ω+ ≠ ∅.

We obtain the following description of the almost split triangles in Kb(0) involving the string complexes, where Xm,∅ is
the zero complex form ∈ Z.

Main Theorem (Part II: String Complexes). Let ω be a homotopy string in 0 and m ∈ Z. Then we have an almost split triangle
in Kb(0) of the form

Xm,ω → Xm+m′(ω),+ω ⊕ Xm,ω+
→ Xm+m′′(ω),+ω+

→ Xm−1,ω.

As a consequence we obtain the following description of the almost split sequences with indecomposable middle terms
containing the string complexes (we encourage the reader to compare this result with [5]).

Corollary 6.3. Let ω be a homotopy string in 0. Then ∅ ∈ {+ω,ω+} if and only if ω = θ ε
′

x,ε for x ∈ Γ0 and ε, ε′
∈ {±1} such

that αx,ε = ∅. Moreover, if this is the case, then +ω+ = θ ε
′

tσ ,−Tσ , where σ := σsωε′ ,−Sωε′ .
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