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0. Introduction

Given an abelian category + one defines its bounded derived category D () [24] (of bounded complexes of objects of 4)
having a structure of a triangulated category, which is an important homological invariant of ». In particular, given a finite
dimensional algebra A one may study the bounded derived category £D”(mod A) of the category mod A of finite dimensional
A-modules, which one shortly calls the derived category of A and denotes D°(A). Since the observation of Happel [15]
(generalized by Cline et al. [11]), which states that derived category is invariant under tilting process, an importance of
derived categories in the representation theory of finite dimensional algebras became clear. This observation was supported
by results connecting derived categories of finite dimensional algebras with derived categories of coherent sheaves over
projective schemes [6,12]. Since that time a lot of results concerning derived categories of finite dimensional algebras were
obtained (see for example [1,8,9,13,20]). In particular, Rickard [21] developed the Morita theory for derived categories of
finite dimensional algebras. One of the consequences is that the derived categories of two finite dimensional algebras are
equivalent as triangulated categories if and only if the subcategories of perfect complexes are equivalent as triangulated
categories. Recall that if A is a finite dimensional algebra, then the subcategory of D?(A) formed by perfect complexes can
be identified with the bounded homotopy category X (proj A) of (bounded complexes of) projective A-modules.

A class of finite dimensional algebras whose derived categories attract a lot of interest is the class of gentle algebras
introduced by Assem and Skowroniski [4]. An important feature of this class of algebras is that it is closed under derived
equivalence, i.e. if A is a gentle algebra and D”(A) is equivalent as a triangulated category to D®(B) for a finite dimensional
algebra B, then B is also gentle [23]. Next, this class of algebras appears naturally in many classification problems. Namely,
the tree gentle algebras are precisely the piecewise hereditary algebras of type A [2] (i.e. the algebras derived equivalent to
hereditary algebras of type A). Further, if A is a derived discrete algebra, then either A is piecewise hereditary of Dynkin type
or A is a one-cycle gentle algebra which does not satisfy the clock condition [25]. Moreover, the one-cycle gentle algebras
coincide with the piecewise hereditary algebras of type A [4].

If A is a gentle algebra, then it is possible to investigate ©”(A) by means of the stable category mod A of the module
category mod A over the repetitive algebra A [22] (which is no longer finite dimensional) and the Happel functor [16]
DPA) — MA. This description is useful, since the description of the indecomposable objects in miodA is known.
Unfortunately, a precise formula for the Happel functor seems to be not known. In [7] Bekkert and Merklen described
the indecomposable objects in D”(A) without using A, however they did not describe how the above two descriptions are
connected.
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Let A be a gentle algebra. Since gentle algebras are Gorenstein [ 14], it follows [17] that the almost split triangles in D?(A)
exist precisely for perfect complexes. The aim of this paper is to describe the almost split triangles in £”(A) in terms of the
above mentioned description of the indecomposable objects in £D?(A) due to Bekkert and Merklen. According to the above
remark, this is equivalent to describing the almost split triangles in J?(proj A). The precise formulas are given in Section 6.
The idea of the proof is to use the Happel functor and the known description of the almost split triangles in mod A.As aside
effect we obtain a link between the two different ways of describing the indecomposable objects in D?(A).

The paper is organized as follows. In Section 1 we introduce the language of quivers and their representations, and in
Section 2 we present notions of strings and bands. Next, in Section 3 we present a description of the indecomposable perfect
complexes over gentle algebras due to Bekker and Merklen, while in Section 4 we collect necessary information about the
repetitive algebras of gentle algebras. Finally, in Section 5 we describe the correspondence between the indecomposable
perfect complexes over a gentle algebra and the indecomposable modules over its repetitive algebras, and in Section 6 we
use this correspondence to describe the almost split sequences in K (proj A).

For basic background on the representation theory of algebras (in particular, on the tilting theory) we refer to [3].

This article was written while the author was staying at the University of Bielefeld as an Alexander von Humboldt
Foundation fellow. The author also acknowledges the support from the Research Grant No. N N201 269135 of the Polish
Ministry of Science and Higher Education.

1. Preliminaries on quivers and their representations

By a quiver I" we mean a set I of vertices and a set I'; of arrows together with two maps s, t : I'1 — I which assign
to o € I7 the starting vertex s and the terminating vertex ta, respectively. We assume that all considered quivers I" are
locally finite, i.e. for each x € I there is only a finite number of « € I'y such that either s« = x or tae = x. A quiver I' is
called finite if I (and, consequently, also ') is a finite set. For technical reasons we assume that all considered quivers I”
have no isolated vertices, i.e. there is no x € I'y such that sa # x # to foreach o € I7.

Let I be a quiver. If | € N, then by a path in I" of length | we mean o0 = «; - - - ) such that o; € I'y for eachi € [1, 1]
and so; = tajyq foreachi € [1, [ — 1]. In the above situation we put so := so; and to := toy. Moreover, we put o;(0) = ¢;
fori € [1, I]. Observe that each o € I' is a path in I" of length 1. Moreover, for each x € Iy we introduce the path 1, in I" of
length 0 such that s1, := x =: t1,. We denote the length of a path o in I" by £(o).If 6’ and ¢” are two paths in I" such that
so’ = to”, then we define the composition 6’'c” of ¢’ and ¢”, which is a path in I" of length £(¢") + £(c”), in the obvious
way (in particular, 01, = o = 1,,0 for each path o). In order to increase clarity we sometimes write o’ - o” instead of
o’c” in the above situation. If o is a path such that so = to, then for n € N, we denote by o" the n-fold composition of o
with itself.

Let I" be a quiver. We define the double quiver I" of I" in the following way: Ty := Iy, I'; := Iy U I !, where
Iy':={a'|ae}andsa™" :=taand ta~! := sa fora € I". By &~ we denote the equivalence relation in "y whose
residue classes are Iy and I';'. We put («~")™' := o for @ € I' and extend the operation (—)~! to the paths in T" of
positive length in such a way that (w'w”)~! = "1/~ for all paths &’ and »” in T of positive length such that so’ = t”.
Ifwisapathin I of positive length and i € [1, £(w)], then ;' (w) := (ai(w)) 1. For aset ¥ of pathsin I of positive length
weput ¥ ':={o"" |0 € X}

Let I" be a quiver. We define the path category kI” of I" as follows. The objects of kI are the vertices of I'. If X', x” € I,
then the homomorphism space kI" (x', x”) consists of the formal k-linear combinations of paths starting at " and terminating
at x”. The composition of maps in kI” is induced by the composition of paths in I". For a set R of morphisms in kI” we denote
by (R) the ideal in kI" generated by R. A morphism g in I" is called a relation if o € (I';)2. A set R of relations in kI” is called
admissible if there exists n € N, such that (I7)" C (R).

By an (admissible) bound quiver we mean a pair (I", R) consisting of a quiver I" and an (admissible, respectively) set of
relations in kI". For a bound quiver T = (I, R) we denote by kI the corresponding factor category kI" /(R). If T = (I", R)
is a bound quiver and o € kI'(x', x”) for x', X" € I}, then we put sp := x" and tpo := x”. A bound quiver (I", R) is called
monomial if R consists of paths.

Let ' = (I, R) be a monomial bound quiver. By a path in I we mean a path in I" which does not belong to (R).
If x',x" € I}, then we identify kI'(x', x”) with the subspace of kI'(x', x”) spanned by the paths in I starting at " and
terminating at x”. A path o in T is said to be maximal in I if there are no paths ¢" and ¢” in T such that so’ = to, tc” = so’,
o’'oo”isapathinT,and £(c’) + £(c”) > 0.The lack of isolated vertices in I" implies that £(o) > O for each maximal path
oinT.

For the rest of the section we assume that I' = (I, R) is an admissible bound quiver.

By a representation of I' we mean a functor M : kI' — mod k, where mod k denotes the category of finite dimensional
vector spaces over k, such that M (x) # 0 only for a finite number of x € . Observe that a representation M of T is uniquely
determined by the collection (M (x))xer, of vector spaces and the collection (M(@))qer, of linear maps. On the other hand,
a pair of such collections determines a representation of I if and only if the induced map M(p) vanishes for all o € R. If M
and N are two representations of I', then the morphism space Homp (M, N) consists of the natural transformations of the
corresponding functors. We denote the category of representations of I by rep I'. It is well known that rep T is an abelian
category which possesses almost split sequences. We denote by 7y the Auslander-Reiten translation in rep I'. We remark
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that Gabriel proved (see for example [3, Corollaries 1.6.10 and I1.3.7]) that for each finite dimensional algebra A the category
of A-modules is equivalent to the category of representations for an appropriate admissible bound quiver. This implies in
particular, that we may work with bound quivers instead of algebras.

Now we describe the indecomposable projective representations of I'. For each x € I'; we define P, € rep T as follows:
Py(x') := kI'(x, ") for x' € I'; and Py(0)(0’) := 0o’ for morphisms g and ¢’ in kI such that so’ = x and s¢p = to’. Moreover,
if o isamorphismin kT, then we define p,, : P;, — Ps, by p,(x)(0’) := ¢’0 forx € I'y and a morphism ¢ in kI’ withso” = to
and to’ = x. It is an easy exercise to check that the map Homp(Py, M) — M(x),f + f(x)(1,), is an isomorphism of vector
spaces for eachx € Iy and M € rep I'. This implies that the above formulas describe the fully faithful contravariant functor
I' — rep I' whose essential image coincides with the full subcategory of the indecomposable projective representations of T'.

Similarly, we describe the indecomposable injective representations of I'. For x € I we define Q € repT by
Q) := (kT (¥, x))* for X' € Iy, where (—)* : mod k — mod k denotes the k-linear dual, and Q,(0)(¢) (") := ¢(0’0) for
morphisms g and ¢’ in kT such that so’ = tp and to’ = x,and ¢ € (kI'(sg, x))*. Moreover, if ¢ is a morphism in kI, then we
define q, : Q;p = Qsp by 4, (X) (9) (@) := @ (00’) for x € Iy, morphisms o and o’ in kI such that s’ = xand to’ = sp, and
¢ € (kI'(x, to))*. Again, the map (M(x))* — Homr(M, Qy), ¢ > (m — (¢ — ¢(M(p)(m)))), is an isomorphism for each
x € I'yand M € repT, and, consequently, we obtain the fully faithful contravariant functor I' — rep I’ whose essential
image coincides with the full subcategory of the indecomposable injective representations of .

2. Almost gentle quivers

An admissible monomial bound quiver I' = (I", R) is called almost gentle if the following conditions are satisfied:

(1) for each x € Iy there are at most two o € I'y such that s« = x and at most two « € I'y such that ta = x,

(2) foreach« € I'y thereis at most one o’ € I'; such thatsa’ = toand o’a & R, and at most one &’ € I'y such that ta’ = s
and o’ € R,

(3) for each o € I there is at most one &’ € I'y such that s’ = ta and &’a € R, and at most one o’ € Iy such ta’ = sa
and xa’ € R.

Equivalently, I is an almost gentle quiver if and only if there exist functions S, T : I'y — {%1}, which we call string functions
for T, such that the following conditions are satisfied:

(1) ifso’ = sa” and @’ # «” fora’, a” € I't, then Sa’ = —Sa”,
(2) ifta’ =ta” and o’ # «” for o/, &” € I, then Ta' = —Ta”,
(3) ifso’ =ta” ando’a” & Rfora’, o” € I'7, then S’ = —Ta”.

(4) ifsa’ = ta” and o’a” € Rforo’, a” € I}, then Sa’ = Ta”.

Note that the string functions for I are not uniquely determined by T. For the rest of the section we fix an almost gentle
bound quiver T = (I", R) together with string functions S and T.

LetR :=RUR'"U{aa™",a 'a | @ € Il}. Then (I, R') is a monomial bound quiver. If | € N, then by a string in T of
length | we mean a path in (I, R') of length I. Moreover, for each x € Iy we introduce two strings 1,1 and 1, _; such that
£(1y,) :=0and sl := x =: t1,, for ¢ € {£1}. We put (1,(,5)*1 = 1, . forx € I'yand ¢ € {£1}. Observe that every
path in T of positive length is a string in I'. A string w in T is called simple if either £(w) = 0 or w is a path in T (of positive
length). Moreover, a string w in T is called directed if either w or w~! is a simple string. A string o in T is called a band if
£(w) > 0, either oy (w) € I't and oy, () € Iy ora; () € I and gy (@) € I, 50 = tw, " is a string in T for each
n € Ny, and there is no string @’ in T such that £(o') < £(w), so’ = tw', and ® = ™ for some n € N,.

We extend the functions S and T to the strings in T as follows. First, we putSo.~! := Toand To: ™! := S fora € I'j. Next,

we put Sw := Soty(w)(w) and Tw := Ta;(w) for a string w in T of positive length. Finally, we put S1, . :=cand T1,, := —¢
forx € Iy and ¢ € {£1}. Observe that if ' and w” are strings in I of positive length such that s’ = tw” and »'®@” is a
string in T, then S’ = —Tw". Consequently, if w is a stringin T, x € Iy, and ¢ € {#1}, then we say that the composition
wly . (14 cw) is defined (and equals w) if and only if x = sw and ¢ = Sw (x = tw and ¢ = —Tw, respectively).

Let w be astringin I of length L. Ifi € [0, ], then we denote by wy;; and ;e the strings in I' of length i and I —i, respectively,
such that w = wyj) - jjo. In particular, wjo) = 1t —10 aNd (@)@ = 15w, 50-

Fixx € I'yand ¢ € {£1}. By X, . we denote the set of simple strings o in I such that so = x and So = ¢. Similarly, 2;,5
denotes the set of simple strings o in I' such that to = xand To = ¢. Next,
les':{a a € Xy NI, and ;o {a aeX, NI,

. o, , = :
@ otherwise, x& @ otherwise.

Finally, we denote by o, and a,fyg the strings of maximal length in ¥ . and X , respectively.

, &
3. The homotopy category of a gentle quiver

An almost gentle bound quiver I' = (I", R) is called gentle if I" is finite and R consists of paths of length 2. For the rest of
the section we assume that T = (7, R) is a fixed gentle bound quiver together with string functions S and T.
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Let X?(T) denote the bounded homotopy category of complexes of projective representations of I'. Recall that X’ (') has
a structure of a triangulated category [19, Theorem 2.3.1] with the suspension functor given by the degree shift X — X[1].
Moreover, since I' is Gorenstein, i.e. pdimp Q < oo for each injective representation Q of I' and idimp P < oo for each
projective representation P of I' [14], KX?(I') possesses almost split triangles [18, Section 5], thus also the Auslander-Reiten
translation, which we denote by T r.

LetR := {ea™',a 'a | @ € I'}. Then (I, R') is a monomial bound quiver. If | € N, then by a homotopy string in T of
length I we mean a path in (I, R') of length L. Moreover, 1, ; and 1,__; are homotopy strings in T of length 0 for each x € I.
Observe that every string in I' is a homotopy string in I'. We extend S and T to the homotopy strings in I' in the usual way.
If ' and @” are homotopy strings in I of positive length, then we say that the composition o’w” is defined (in the obvious

way) if s’ = tw"” and one of the following conditions is satisfied, where o’ := oy() (@) and &” := a1 (@"):

(1) Sw’ = Tew" and either o/, &” € Mora/’~!, "' € Iy,

(2) S’ = —Tw” and eithero’, "' € MNora’™ ', " € I.

Similarly, if @ is a homotopy string in I' of positive length, x € Iy, and ¢ € {£1}, then the composition w1, (1 ) is
defined (and equals ) if and only if X = sw and either ¢ = Sw and o, (w) € I or ¢ = —Sw and oz[(clu) (w)eINx=tw
and either ¢ = Tw and @1 (w) € I or ¢ = —Tw and a]’](w) € I, respectively). Finally, if x', X" € I'yand &/, &” € {£1},

then the composition 1, .1, .~ is defined (and equals 1, ) if and only if X = x” and ¢’ = &”. Observe that the above
definitions for homotopy strings differ from the ones we have for strings. If w is a homotopy string in I, then by o, we
denote the string of maximal length among the simple strings o in I such that the composition o w (as homotopy strings in
I') is defined.

A simple homotopy string 6 in T is called an antipath in I provided «;(8);1(6) € R (equivalently, S¢;(0) = Tai11(0))
foreachi € [1,4(0) — 1]. Forx € Iy and ¢ € {£1}, let ©,, denote the set of all antipaths 6 in I such that t6 = x and
TO = e.If there is an antipath in ©, . of maximal length, then we denote it by 6, .. Otherwise, we put 6, . := @.

Let w be a homotopy string in I. If £(w) > 0, then w has a unique presentation in the form w = o4 - - - 01, L € N4, such
that o; is a directed string in T of positive length for eachi € [1, L], and the composition of o;0;,1 (as homotopy strings in I')
is defined for each i € [1, L — 1]. In the above situation we put L(w) := L, 0;(w) := o; and of1(a)) = of] fori € [1,L],and

degw :=|{i € [1,L] | yisapathinT}| — [{i € [1, L] | o,-’1 isapathin T}|.

Moreover, we put L(w) := 0 and degw := 0if £(w) = 0.1f i € [0, L(w)], then we denote by w!! and e the homotopy
strings in T of length ., ; £(0j(@)) and Y. (i1 1 1w £(0j(@)), respectively, such that w = o - e, In particular,

W0 — liw1o £(w) > 0andaq(w) € I,
1;».-1» Otherwise,

and
L, _ [To.-s0 @) >0 and o}, (@) € I,
1wse»  Otherwise.
Moreover, Ul := U@l for i, j € [0, L(w)],i <.

Let w be a homotopy string in I' and m € Z. We define X = X, ,, € JP(T) in the following way. First, for m’ € Z we put
Iy = I (M, @) = {i € [0, L(w)] | m + degw!! = m'}. Then X" := ._, , P, form’ € Z and

ielm/
Pojii@ 1=Jj+ landoji(w)isapathinT,
@y = {P,~1, i=j—lando; '(®)isapathinT,
; j
0 otherwise,

form' € Z,j € 4y, and i € 4,y41. The objects of X (I') of the above form are called the string complexes.
For a homotopy string @ in I and m € Z we denote by Yy ,, the map 1 : Xin o — Xy degw. -1 defined by
m . pSwU] l = L((,l)) _ja
= ;
J 0 otherwise,

form' € Z,j € (M, w),and i € L,y (M + degw, ™). Observe that 7, is an isomorphism for each homotopy string w
inT and m € Z — the inverse map is given by 1y,  geg oy oo 1-

Let w be a homotopy string in T'. Let o be a path in I of positive length such that the composition o (as homotopy
strings in I') is defined. For m € Z we denote by F,, themap F' : X 1,, _;, = Xm, defined by

F»/m — Do i= Oa
0710 otherwise,

.0,
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i € 4,,(m, w). Similarly, let o be a path in T of positive length such that the composition o ~'w is defined. We denote by
F/ themapF” : Xp., — Xn defined by

m,o,w
Fm._ Po ] =0,
% "7 10 otherwise,

Aso S0

forj € 4,,(m, w). Next, if m € Z and o is a path in T of positive length such that the composition wo ~! is defined, then we

put Gm o0 = Vmidegw,w—1 © Fm+degw vl © Yintdegw. 1o 1o © Xmtdego lig. 16 —> Xm.o- Finally,if m € Zand o isa pathin T
of positive length such that the composition wo is defined, then we put G, , := Vinidegw. 14555 © F;;Megwﬂyw,] 0 Tmo :

Xm,w - Xm+degw,lsg.,5,,-

A homotopy string w in I is called a homotopy band if degw = 0, L(w) > 0, either o1 (w) and GL?:)) (w) are pathsin I or
01’1 (w) and 0y, (w) are paths in T, sw = tw, Sw = —Tw, and there is no homotopy string o' in T such that £(o') < £(w),

= tw',and w = " for some n € N,. If @ is a homotopy band in T and i € [0, L(w) — 1], then we put w® := e - !,
Observe that it may happen that »® is not a homotopy band in the above situation.

Let w be a homotopy band in ', 4 an indecomposable automorphism of a finite dimensional vector space K, and m € Z.
We define Y = Y, € X(T) in the following way. First, for m’ € Z we put g,y := {i € [1, L(w)] | m + deg!! = m'}.
Then Y™ := Dicy,, Prott ®1 K form’ € Z and

Poi(wy @ 1d i=j+1,3,j) # (L{w), 1), and oj;1(w) isapathinT,

paj—l(w) ®Id i=j—1,0(37j) # (1, L(w)), and c7j’1(w) isapathinT,

Por(e) @ 1 j=Lw),i=1Lw) > 2, and oy(w) isapathinT,
dry = Potiw) ® M j=1i=L), L) > 2, ando; '(w)isapathinT,

Poi(w) @ 1 +p 1) ® Id j=L(w),i=1Lw) =2, andoy(w) isapathinT,
al—l(m) R u —|—p(,2(w) ®ld j=1i=Lw),L(w) =2, ando, l(w)isapathinT,
0 otherwise,

form' € Z,j € $py,and i € Joy11. The objects of K2(T) of the above form are called the band complexes.
The following description of the indecomposable objects in J?(I') was obtained in [7].

Proposition 3.1. Let T be a gentle bound quiver. If X is an indecomposable object in X (T), then either X ~ Xn ., for some
m € Z and a homotopy stringwin T or X >~ Y, , , for some m € Z, a homotopy band w in T, and an automorphism p. of a finite
dimensional vector space.

4. The repetitive quiver of a gentle quiver

Throughout this section we fix a gentle bound quiver I' = (I, R) together with string functions S and T. We also denote
by X the set of maximal paths in T.

Our first aim in this section is to define the repetitive quiver I' = (I",R) of . We put I := Iy X Z and I :=
(I'n X Z) U (X* x Z),where X* := {0* | 0 € X'}. Moreover, s(a[m]) := (sa)[m] and t(«[m]) := (ta)[m] fora € I} and
m € Z,and s(o*[m]) := (to)[m + 1] and t(o*[m]) := (so)[m] foroc € ¥ and m € Z.Forapatho in I" and m € Z we
define the path o[m] in I" in the obvious way. Let

ZR :={c[m] | o0 € R, m € Z}U
{o"*[m —1]c"*[m] | 0/, 0" € ¥, to' =so”, m € Z}U
{a[mloc*[m] |a € I, 0 € X, sa =so, Sa = —So, m € Z}U
{o*[mlalm+ 1] |a €T}, 0 € X, ta =to, Ta = —To, m € Z}.
Every path in I of the form o [m]o*[m]o’[m + 1], where o € X, 0 = o’c” for pathso’ and o” in I", and m € Z, is called
a full path. Let A be the set of full paths in I". Then
R:=ZRU — A" | M, ) € A, sh =sA", X # \"JU
(BrIBely, heA, sB=tAyU{AB|B e, Le A, sh=tB).
We have the Nakayama automorphism v offgiven by v(x[m]) := x[m+1]and v(a[m]) := a[m+1]forx € Ip,a € HTUX™,

andm € Z.
Let rep I' denote the stable category of I'. Since rep I is a Frobenius category, rep I' is a triangulated category with the

suspensmn functor glven by the inverse £2~! of the Heller syzygy functor £2. Every exact sequence in rep I induces a triangle
inrep I'. Moreover, rep r possesses almost split triangles, which come from the almost split sequences in rep I.In particular,

the Auslander-Reiten translation in rep Iis given by the Auslander-Reiten translation t; in rep I.
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We define the functions S, T : [ — {1} by

5B = Sa B =a[m]fora € I''and m € Z,
" |-To B =o*mlforoc € ¥andm € Z,

and

Tf = Ta B =a[m]fora € I'and m € Z,
" |-So B=oc*[m]forc € ¥ andm € Z,

for 8 € [.0ne easily checks that (r, E), where E ;= ZRU {A | A € A}, is an almost gentle quiver with string functions S
and T. By a path in ' we mean a path in (f IAQ) Similarly, by a string (band) in ' we mean a string (band, respectively) in
(F ) For a string w in T and m € Z we define the string w[m] in I in the obvious way.

With a string ¢ in I' we associate the representation V; of I in the following way. First, we put I, := {i € [0, £(¢)] |
s¢ii) = x} for x € Ip. Then we define V, by V, (x) := k™ for x € I'; and

Id i:j—landa_a](g“) or
(Ve ())ij := i=j+1landa = a;}(0),
0 otherwise,

fora € IN,j € Iy, and i € I;,. Ifi € I for x € I, then we denote by e;(¢) the corresponding basis element of V; (x).
Similarly, if i € I, for x € I, then e} (¢) denotes the corresponding element of the basis of (V, (x))* dual to (e;());jer,. The

representations of I of the above form are called the string representations of I.

For a string ¢ in T of length [ we denote by v, the map v : X; — X1 given by v(e;i(¢)) := e_i(¢™ Y fori e [0,1].
Observe that v, is an isomorphism for each string ¢ in I' (and the inverse map is given by U,-1). Moreover, if ¢ and ¢ are
strings in I such that Vi > V,r, theneither ¢’ = ¢"or ¢! = ¢”.

Let ¢’ and ¢” be strings in I such that t¢’ = t¢” and T¢' = T¢”. Putl' .= £(¢'), " := €(¢”), and

I:= max{i € [0, min(!', I")] | &(¢") = a;j(¢") foreachj € [1, i]}.

If¢’ # ¢”, then we write " <, ¢” ifeither” > land ¢;1(¢"”) € It or!’ > land ozl+1(§ ) € I'1. Moreover, we write ¢" <, ¢”
if either ¢’ = ¢" or ¢’ <¢ ¢”.1f ¢’ < ¢”, then by f,/ ,» we denote the map f : V,» — V,» given by f(e;(¢")) := e ({”) for
ie[0,landf(e;j(¢")) :=0forie[l+1,1].

Dually, let ¢’ and ¢” be strings in T such that s¢’ = s¢” and S¢’ = S¢”. We write ¢’ <, ¢”if ¢/~ <, ¢~ LIf ¢/ < ¢/,
then we put g,/ ,» := vg,/ 10 fr1 g1 0 Upr.

Let w be a band in T and i an indecomposable automorphism of a finite dimensional vector space K. We define the
representation W,, , of T as follows. First, for x € I'y we put Jy := {i € [1,€(w)] | saj(w) = x}. Then W,, ,, (%) := Kx for
x € Qp and

Id jel2,¢)],i=j—1anda = aj(w), or
jell b —1li=j+1ande = o} (@),
Wy u(@)iji=1pn j=1i=4£(w),and @ = o;(w), or
j=t(),i=1anda = o; (),
0 otherwise,

fora € I, j € Jsu, and i € J;,. The representations of I of the above form are called the band representations of I.

Let = be the set consisting of all paths in I and a chosen full path starting at y for eachy € fo. For & € & we denote
by £* unique &’ € Z such that t&’ = s& and £&’ is a full path. Observe that (o[m])* = o*[m] foralloc € ¥ andm € Z.
Moreover, (§*)* = v& foreach & € Z.

Fixy € Io.1fy € lpand 2(y,y) := {§ € & | s =y, t& =y}, then (the residue classes of) (§)zcz(y.,) form a basis
of kE'(y', y). For each y’ € [ we identify (£* )ees(y,y) With the basis of (kT'(y', y))* dual to (&)eez(y.y)- This identification

induces isomorphisms (Icf(y/, y)* >~ kf‘(vy, ¥),y € T, which extend to an isomorphism Q , >~ P,,, which we also treat
as identification. N
Let ¢ be a string in T of positive length. Then we have a presentation ¢ = &;&, - -- &, L € N, where §; is a directed string

inT of positive length for eachi € [1, L], and &;&;,4 is not a directed string in I foreachi € [1, L — 1]. In the above situation
we put L(¢) := L and &(¢) := & and &' (¢) := &' fori € [1, L]. Moreover, if ¢ is a band in I, then we put ¢© := ¢ and
O =¢, - EE - -gforie[1,L—1].Wealso put L(1,,) := 0 forx € [yand e € {£1}.

Now we define the operation (—)* on the strings in I. First, we put (1,,)* :==1,, ,fory e Ipande € {£1}. Next, if
£ is a directed string of positive length, then we put £* := (£*)"'if £ isa pathin [, and £* := (6~ ")* if £~ ! is a path in
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I. Finally, if ¢ is an arbitrary string in I of positive length, then ¢* := &(£)* - - - 1) (). The operation (—)* is clearly
invertible. We denote the inverse operation by (—)*.

We also need some additional operations on the strings in I.Let ¢ be a string in I1:= £(¢),and L := L(¢).IfL > 0,
then we denote by 9¢ the unique string ¢’ in I such that ¢ = &(¢) - ¢. We put

= d¢ L>0and§(¢)isapathinT,
" |¢ otherwise,
and
§'¢ = |0¢ L>0and £71(¢)isapathinT,
" |¢ otherwise.
Next, we put
§C = m¢ > 0anda;(¢) € I,
e or;,—1¢¢  otherwise.
5 = Ci-1) I>0and oz[_(;)(;) eI,
v EUS?_St otherwise,
8'c = mé I>0anda;'(¢) € I,
v Ut/;],ng“ otherwise,
and

8//

S

¢ o= Si-11 I > 0and ay)(¢) € I,
" oy s otherwise.

Moreover, we put §'¢ = 8,6(¢ = 8;8;¢ and §"¢ = 878/¢ = 6.8/ ¢. Finally, we put A¢ := §'(¢*). Observe that A is
invertible and A~1¢ = §"(¢ ).

Let ¢ be a string in T'. We describe a projective cover m; : P, — V, of V,. Write { = 5152_1 . -sﬂ_lgil, where
L € N, and &y, ..., & are simple strings in T such that £(§) > O foreachi € [2,2L — 1]. Let [; := Zje[l’%” L&)
fori € [1,L]. Then 7y : P — V., where P; := ;1 Ps,_; and (7r;); corresponds to ey (¢) under the canonical
isomorphism Homp(Pg,, ,, V) = V (s&_) for each i € [1,L], is the minimal projective cover of V,. Observe that
RV, = Kerm; x> V,-1,. We identify 2V, with V,-1,. Further, P; is an injective envelope of V,-1,. More precisely, if
A~'¢ = &7 &' &, for L € N, and simple strings &/, ..., &, in T such that £(&/) > 0 for eachi € [2, 2L — 1], then
P; = Dicpr,1y Qe ,- Moreover, if [[ := 3 i1y 5 q) €(&)) fori € [1,L]1and ¢ : V-1, — P; is such that (1); corresponds
to (—1)ie;§(A‘1§) under the canonical isomorphism (V -1, (t§2i-1))* =~ Homp(V4-1,, Qrs,_,) for each i € [1, L], then the

L
sequence 0 — V-1, LN P, AN V, — 0is exact. We will use sequences of the above form to calculate the action of £2 on

morphisms in @f. In particular, it follows that $£2f .~ ande—lc/’A—lg-// (§28;.¢» and g -1, -1,+) coincide up to sign for

strings ¢’ and ¢” in T such that t¢’ = t£”, T¢ = T¢",and ¢’ <, ¢" (s¢’ =s¢”,S¢’ =S¢, and ¢ < ¢").
Similarly as above we show that QW; , &~ W+ (_jywyz,-1.

5. The Happel functor

Throughout this section we fix a gentle bound quiver I = (I, R) together with string functions S and T. We also denote
by X the set of maximal paths in T.

Let D°(T) denote the derived category of rep I. It is known that D®(T) is a triangulated category and X’ (T) can be
viewed as a full triangulated subcategory of D”(T). We identify M € rep I' with the complex in D”(I') concentrated in
degree 0. In [16] Happel constructed a fully faithful triangle functor D°(I') — rep I' which extends the inclusion functor
repl’ — rep I. By ¥ we denote the restriction of this functor to X (T').

Let w be a homotopy string I'. We define the string Y@ in r by induction on L(w) as follows. First, Y w := 0,[0] -
(0,-1)"1[0] if L(w) = 0. Next, if L(w) > 0, then

0u[0]- (e[0DT - 8/(¢T) oisapathinT,
Yo = {0,[0]-c[0]-8,(*) o~ lisapathinand £(¢) > 0,
0,[0] - 01¢(0)—11[0] o~ lisapathinand £(¢) = 0,

where o := o1(w) and ¢ := ' (Y (Mw)).
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The meaning of the above assignment is explained in the following.

Proposition 5.1. Let  be a homotopy string in T and m € Z. Then WXy, ,, > V -m(y,4). Moreover, under the isomorphisms of
the above form, we have the following:

(1) If o is a path in T of positive length such that the composition o w is defined, then lI/Fr/n,g’w = SfA*mm//u(,,_Tf,).A*m(x/fw) for
some ¢ € {+1}.
(2) If o is a path in T of positive length such that o ~'w is defined, then WF/ = SfA*m(ww),A*lew,sg) forsome e € {£1}.

m,o,w
(3) If o is a path in T of positive length such that wo =" is defined, then lI/G{mw = £8p-dego-m(y 1,y 7o), A~ (Y0) for some
e € {£1}.
(4) Ifo isapathinT of positive length such that wo is defined, then W G/ = EZp-m(yw), a-dego-m(y1,, ) forsomee € {+1}.

m,o,w

Proof. We prove the above claims by induction on L(w). If L(w) = 0, then the proofs are immediate (observe that

X, 2 Xo,o[—m] for each m € Z). It also follows easily that ¥ 1, , and vy, coincide in this case.
Now assume that L(w) > 0 and let ¢’ := o;(w) and &’ := M. We also assume that ¢’ is a path in T, the case when
o’ Visapathin I is similar.

By induction hypothesis ¥Xo1,, ., = Vy1
sign fy1,,, ;.ive-Let g =AYl —107) and

and ¥Xp,o > Vy.r. Moreover, if f := WF; , ., then f equals up to

to!,~To’

l( JT;-
to!,—To! P{ Vf

bkl

f
Vyor 1% Ve

Vv, 1

be the push-out diagram (recall that P, ¢, and m, are defined at the end of the previous section). Then

Vor,, . bV S vy,

o/ ,—To'!

is a triangle in rep I Direct calculations show that V =~ Vaww inrep r (note that V may be a decomposable module, so this

isomorphism may not hold in rep T'). Moreover, by choosing g in an appropriate way we get that f” and f” equal up to sign
8y A(yw) and V-1 OfA(ww)_;—l, respectively. Since we have an isomorphism X, ,, >~ X_; ,[—m — 1] foreachm € Z and a
triangle

F/ 7 7
0,0/, F F
Xo.1 > Xo,w = X-1,0 = X-111

to!,—To' to! ,—To’

in X (), we get the first claim. Moreover, under the appropriate isomorphisms, ¥F' = f’ and WF” = f".
Let o be a path in I of positive length such that s = tw and So = Tw. Then we have the commutative diagram

Id
XO,ltc,—Ta 0 X_L]ta,—Tc > X_1’1I0‘,—T0'
/ , ’
\LFO‘”‘]MQTU’ l iFl.a.w l’:l'”‘]mfhﬂ
F!
0,0/ 0 F' F”
Xo’lta’,fTJ/ XO,a)/ Xfl,a) Xﬁlvlra/,fTo/

in P (T), which gives rise to the commutative diagram

Id
Vit 1o 0 Vawis —1o) —= Va1 1)
lWF67J’1tJ/.To/ i ilpﬂ—l.(r,w J/lpF/l‘a’lto'/.TU/
f f/ f//
Vit _py Vo Vao) ———>V;

in @f. By induction hypothesis lIIF(/LU~1m/,40/ and lI/F,_]*U*lm’,—Ta/ equal up to sign fy1,, 1, .p1, ;o A faqie, ro).c0

respectively. Moreover, W'F,, L g = Qm“lI/FL] oAy g and this follows from the above diagram that WF’ | _ equals
o to!,~To 2 %to’, —To i

up to sing fa(y 1,y _14).A(ww)» Nence (1) follows. The remaining claims are proved similarly. O
Observe that o’ = " if Y@’ = Y " for homotopy strings »’ and »” in T. In fact we have more.

Lemma 5.2. Let ' and " be homotopy stringsinT and m € Z.If o' = A™(Y @), thenm = 0and o’ = "
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Proof. In light of the preceding remark it is sufficient to prove that m = 0. Without loss of generality we may assume that
m < 0. Observe that t(¥ @) € I,[0]. Moreover, easy induction shows that t(A™ (Y w)) € I'y[—m”] for some m” € N
provided m < 0, hence the claim follows. O

Corollary 5.3. Let w be a homotopy string in T. Then (Y w) ™' = A~ %8 (yw1).

Proof. Recall that Xo,, =~ Xgegq, -1, thus Proposition 5.1 implies that Vy, = V,-degw(y,-1). Hence, either yo =
ATy or (Yw) ! = AT (). In the former case the previous lemma implies that ™! = «, which is
impossible. O

Now we calculate the images of the band complexes. For this we need an additional function ¥’ between the homotopy
strings in I’ of positive length and the strings in I'. Let @ be a homotopy string in T of positive length. Put L := L(w) and
0 :=01(w).IfL = 1, then ¥'w := (¢[0])* provided o isa pathin T, and ¥'w := ¢[0] provided o "!isa pathin . IfL > 1,
then

Vo= Vo - (W' (Mw))* oisapathinT,
T |vo - @ w)* o lisapathinT.

One can easily deduce the formula for ¥'w as follows:
Yo = (o1(@)" - (o)™,
where

e deg wl! oi(w) isapathinT,
"7 |-dego!? =1 o '(w)isapathinT,

fori € [1,L], and (—)*" denotes the n-th power of (—)* for n € Z. The above formula implies immediately that
‘o' = (Y'w) 'ifdegw = 0. Moreover, if degw = 0 and o’ is a homotopy string in T of positive length such that
the composition we’ is defined, then ¥/ (ww') = ¥'w - ¥'«'. Finally, it follows that ¥/w is a band in T if @ is a homotopy
bandinT.
We also need the following property of v/’

Lemma 5.4. Let @ be a homotopy string in T such that L(w) > 0 and degw = 0. If ' is a homotopy string in T such that the
composition we' is defined, then ¥ (ww') = 0,[0] - ¥ - 3'(Y"). In particular, yw = ,[0] - ¥'w - (5,-1)"'[0].

Proof. If L(w) = 2, then the claim follows by direct calculations. Observe that in this case either w = 6’6" ' orw = o'~ '¢”

for paths o’ and o” in T of positive length.

Now assume that L := L(w) > 2. There are some cases to consider. A

First assume that there exists i € [2, L — 2] such that deg !l = 0. Observe that deg [!&» = 0. Then we have the following
sequence of equalities

¥ (o) = 0, (0] Yol 8y (Tww))
= 0,101 Yo -y e - 3 (Yo') = 0,[0]- Yo ' (Y'a)

hence the claim follows in this case.

If the above condition is not satisfied, then deg Nw!' =11 = 0. Put ¢’ := 01 (w) and 6” := o, (w). Assume in addition that
o’ is a pathinT, the other case is similar. Then o~ is a path in T. Moreover, if £(8’ (¥ @')) > 0, then we have the following
sequence of equalities

ind

def

Y (00) = 0,[0] - (0'[0)T - 87((0' (¥ Mo - ) ™)
= 5,101 - (0'[OD* - 8/ (' (M=) * - (@' (y (0" w))))
E o101 '’ - (@ M=) * - ([0 - (8((0' (Ya) N
=0,[0]- ¥'o" - (¥ (M) - (¥'o" -3 (Yo
= 0,l0]- Yo" - (W' M)t - 3/ (Yo) € 0,[0]- w3 ('),
On the other hand, if £(3’(y/'@")) = 0, then by repeating some of the calculations above we get
Y (ww) = 0,[0]-¥'c" - 8/ (' (N M) (67} _1,[0DT)

=0,[0]- ¥'o" - (' (M) T - (o"[0D*

=0,[0]- Yo 3’ (Y'e),
what finishes the proof. O
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The above lemma will be used in the proof of the following.

Proposition 5.5. Let w be a homotopy band in T and w an indecomposable automorphism of a finite dimensional vector space.
Let

e 1 o1(w)isapathinT,
" |-1 o' (w)isapathinT.

Then ¥Yo o, = Wy ore for some &' € {£1} depending only on w.

Proof. Put L := L(w). Let ¢/ = oq(w), 0" = oL?al)) (w), and o' = Nel=1 Observe that degw’ = 0. Consequently,
Yo' = oy[0]- Yo - (0,-1)71[0] if L > 2 (by the previous lemma) and '« = 0,/[0] - (0,,-1)~'[0] otherwise (by
definition). Let K be the domain of u.

We assume that ¢’ is a path in I’ — the other case is similar. Then ¢” is also a path in T and we have a triangle

F
Xo1 kK = Xooo QK — Y_10 — X_11

Ao/ —To!

QK

to!,—To'

in X"(I), where F := ol O M Go,s”,«r ® 1d. Observe that Proposition 5.1 implies that ¥ X 1, o el = Vo, o and

UXow = Vyo Iff = lI/F then under the above isomorphisms f = e1fy1,, .y @ 4+ 52g1/f1w/__w.xﬁw ® Id for some
€1, & € {£1} (depending only on w) according to Proposition 5.1(1) and (3). Since we have the triangle

f -1
Vd,]w, 1o’ (024 K —> wa ® K — W 01y o' o= 1[0]!5()“71 — 2 (V'plru’,—Ta/ ®K)

inrep I', where g := —g165, WY_1 1 = Wororpw /110 eon ! (in the calculation of this triangle we use the form of '’
calculated at the beginning of the proof). Since Yo, , >~ ¥Y_1, ,[—1]and

SZW{,/[O]AV/,L‘)/WIH[01,80”;1 ~ Ww/w,(_l)L((u)/Zgoﬂ,
the claim follows. O

Corollary 5.6. Let m € Z, w be a homotopy band in T, and p an automorphism of a finite dimensional vector space. Then
Ymou = Wiy xm e forsome ', e” € {£1} depending only on w and m.

Proof. Since Yn o, 2 Yo,0,.[—m], the claim follows from the previous proposition. O

6. Almost split triangles

Throughout this section we fix a gentle bound quiver I' = (I", R) together with string functions S and T. Moreover, v is
the map which associates with a homotopy string in T a string in ' as defined in Proposition 5.1.

Our aim in this section is to determine the shape of the almost split triangles in X?(I'). In order to restrict the number
of technical definitions we will not describe the maps appearing in the almost split triangles, however the interested reader
can easily check that “natural” candidates are the correct ones.

We first recall that a triangle X — Y — Z — X[1]is JC”(F) is an almost split triangle in JC”(F) if and only if the
corresponding triangle ¥X — ¥Y — ¥Z — Q7 '¥Xin rep I is an almost split triangle in rep r [18, Proposition 5.2],
where similarly as in the previous section ¥ denotes the restriction of the Happel functor to X ”(1‘).

As a consequence we immediately obtain the following.

Main Theorem (Part I: Band complexes). Let m € Z and w be a homotopy band in T. If0 — u' — @idm] i —> ' — 0is
an almost split sequence in the category of the automorphisms of finite dimensional vector spaces, where i/, (1, ..., ptn and p”
are indecomposable automorphisms of finite dimensional vector spaces, then

ym,w,u’ - @ Ym,w,ui - Ym,w,ﬂ” e Ym,w,u’[l]
ie[1,n]

is an almost split triangle in X°(T).

Proof. It follows from the above remark and Corollary 5.6, since for each band ¢ in I'and ¢, &' € {£1} we have an almost
split triangle

-1
W{V(L:,I‘L/g g @ W{'S/uis d Wlsé‘/lim —> .Q W;’g/u/s:

ie[1,n]
in rep r (compare [10,26, Theorem 4.1(2)]). O

It remains to describe the almost split triangles in (') involving the string complexes. We first describe the almost
split triangles rep I involving the string representations.
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For a string ¢ in ' we put

O'sa’,—Sa’a/71; o ?é g,
+& = “J(a//{) o' =wand £(0"¢) > 0,
%) o =@and £(3"¢) =0,

where
o o |1 o o # 2 and ;' Cisastringin T,
N ¥} otherwise.

Next, we put £, := ((¢~1))~! for a string ¢ in I. Finally, if ¢ is a string in T, then

+0)+ +¢ # 2,
+&) £ o

We leave it to the reader to verify that the above definition is correct and ¢, # @ for each string ¢ in . Moreover,
[10,26, Theorem 4.1(1)] imply that for each string ¢ in T’ we have an almost split triangle in rep I of the form

+y = :

Ve >V @V, » V- 27V,

+

where V, := 0.

We translate the above construction to X?(T).

Let w be a homotopy band in I'. We denote by r(w) the maximal i € [0, £(w)] such that oj(w) € I'y for eachj € [1, i] and
aj(w)ajpi(w) € Rforeachj e [1,i— 1]. We put

o e | (@) - r@lg  r(w) > 0,
e r(@) =0,
and o := o,,. Then we define
Oy 1,0 ® (o) > 0,

to,—To
Ort 1y @ €(0) =0, £(broy.—1e) > 0,and £() > 0,
(Mr0r, 1) £(0) = 0,€(Bpuy —10r) > 0,and £(0) = 0,
w =
: Mo 00) = 0, (b, —107) = 0, L) > 0, and o7 (@) € I,
o £(0) = 0,6, —1or) =0,£(e') > 0, and a1 (') € 17,
2 £(0) =0, £(by,—1r) = 0,and £(w) = 0.
and

/ . g(em,fﬂr) -1 K(O') > 0,
mw) = {E(Gta)/,—Tw/) +r(w) —1 £(0)=0.

We first prove that the above definitions are correct.
Lemma 6.1. Letx € Ipand ¢ € {£1}. Ifay . = &, then 6x . # @.

Proof. We show that £(0) < |I'7| for each 6 € ©y .. Assume this is not the case and fix 6 € &, suchthatl:= £(0) > |I7].
Then there existi,j € [1,1],i < j, such that «;(6) = «;(6). An easy induction shows that «j1-;(0) = «1(0) = a;’g.
Consequently, oj_;(f) € Xy, which is impossible. O

Let w, 0, and o’ be as in the definition of  w. Obviously, &, _1» = @, hence the above lemma implies that 6;, _1, # @.
Now assume that (o) = 0. This assumption means that o, , = @, where

_|JTw r(w) >0,
T |-Tw r)=0.
Consequently, if r(w) = 0, i.e. ' = o, then ¢,y _1,y # @. On the other hand, if r(w) > 0, then 6,1, # @. Moreover, in
this case o1 (w) - - - Ar() (@) € Oy 1, fOr €ach 6 € O,y 1.y, hence we also get that 6y, 1,y # 2.
The following lemma is crucial.

Lemma 6.2. Let w be a homotopy band in T. Then @ = @ if and only if . (Y w) = @. Moreover, if L@ # @, then  (Yw) =
AT Y (Gw)).
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Proof. We make some remarks about the proof and leave the details to the reader. Let & and «’ be as in the definition
Of +.

First, if £(o) > 0, then we prove A~ (L (Y @)) = A~C0.~10) (3 (L w)). In the proof we use the following fact, which can
be easily proved by induction.

Fact. Let wg be a homotopy string in T such that oty (ywy),—19'(ywy) = Ow,[0]. Let I € [0, £(wo)]. If oi(wo) € IT1 for each
ie[1,l1], then

-l
AT (Y wo) = vy (yaly), T (Yool ' (Y ).
where ), := Nw.

Next, we assume that £(c) = 0 and either £(6;.._1.’) > 00r £(«’) > 0.1In this case we show either ; (A"~ (Y w)) =
A 1) (Y (Lw)) if 0 £ T w, or L (AT@ (Yw)) = A7 ~10)F1 (L w)), otherwise. In addition to the above fact,
we use here also the following.

Fact. Let wg be a homotopy string in T such that £(o,,,) = 0. Letr € [0, £(wo)]. If 0i(wo) € I'y foreachi € [1, 1], then
A" (Yawo) = ' (Ywp),
where wyy := May.

Finally, we prove that . (A" (Yw)) = @ if £(0) = 0, £(6],, _;,,) = 0,and £(«') = 0. In this proof we also use the
latter fact. O

Dually, we put w,. := (4 (w~1))~! for a homotopy band w in T'. Lemma 6.2 and Corollary 5.3 imply that (Y ), = ¥ (w,)
for each homotopy band w in I. Finally, we put

_JGoy o #g, v M) o # e,
e L(w+) wy # 9, and m(w) = {m/(a)+) 0, # 2.

We obtain the following description of the almost split triangles in & (I') involving the string complexes, where X, ., is
the zero complex for m € Z.

Main Theorem (Part II: String Complexes). Let w be a homotopy string in T and m € Z. Then we have an almost split triangle
in XP(T) of the form

Xnw — Xm+m/(w),+a) b Xm,aur - Xm+m”(a)),+a)+ —> Xn—1,0-

As a consequence we obtain the following description of the almost split sequences with indecomposable middle terms
containing the string complexes (we encourage the reader to compare this result with [5]).

Corollary 6.3. Let @ be a homotopy string in . Then @ € {,w, wy}ifand only if v = Q,f; forx € Iyand ¢, &' € {&1} such

_ . .. _ & —
that o, = @. Moreover, if this is the case, then L = 67, _¢,, whereo := o0 ¢ .
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