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A 12-Week, Double-Blind, Placebo-Controlled Trial of Ferric
Citrate for the Treatment of Iron Deficiency Anemia and

Reduction of Serum Phosphate in Patients With CKD Stages 3-5

Geoffrey A. Block, MD,1 Steven Fishbane, MD,2 Mariano Rodriguez, MD,3

Gerard Smits, PhD,1 Shay Shemesh, MS,4 Pablo E. Pergola, MD,5

Myles Wolf, MD, MMSc,6 and Glenn M. Chertow, MD, MPH7

Background: Iron deficiency anemia and serum phosphate levels . 4.0 mg/dL are relatively common in

chronic kidney disease stages 3 to 5 and are associated with higher risks of progressive loss of kidney

function, cardiovascular events, and mortality.

Study Design: Double-blind, placebo-controlled, randomized trial.

Setting & Participants: 149 patients with estimated glomerular filtration rates , 60 mL/min/1.73 m2, iron

deficiency anemia (hemoglobin, 9.0-12.0 g/dL; transferrin saturation [TSAT]# 30%, serum ferritin# 300 ng/mL),

and serum phosphate levels$ 4.0 to 6.0 mg/dL. Use of intravenous iron or erythropoiesis-stimulating agents was

prohibited.

Intervention: Randomization to treatment for 12 weeks with ferric citrate coordination complex (ferric cit-

rate) or placebo.

Outcomes & Measurements: Coprimary end points were change in TSAT and serum phosphate level from

baseline to end of study. Secondary outcomes included change from baseline to end of treatment in values for

ferritin, hemoglobin, intact fibroblast growth factor 23 (FGF-23), urinary phosphate excretion, and estimated

glomerular filtration rate.

Results: Ferric citrate treatment increased mean TSAT from 22% 6 7% (SD) to 32% 6 14% and reduced

serum phosphate levels from 4.5 6 0.6 to 3.96 0.6 mg/dL, while placebo exerted no effect on TSAT (21% 6
8% to 20% 6 8%) and less effect on serum phosphate level (4.76 0.6 to 4.46 0.8 mg/dL; between-group

P, 0.001 for each). Ferric citrate increased hemoglobin levels (from 10.5 6 0.8 to 11.0 6 1.0 g/dL;

P, 0.001 vs placebo), reduced urinary phosphate excretion 39% (P, 0.001 vs placebo), and reduced

serum intact FGF-23 levels from a median of 159 (IQR, 102-289) to 105 (IQR, 65-187) pg/mL (P 5 0.02 vs

placebo). The incidence and severity of adverse effects were similar between treatment arms.

Limitations: The study is limited by relatively small sample size and short duration and by having

biochemical rather than clinical outcomes.

Conclusions: Short-term use of ferric citrate repletes iron stores, increases hemoglobin levels, and reduces

levels of serum phosphate, urinary phosphate excretion, and FGF-23 in patients with chronic kidney disease

stages 3 to 5.
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Chronic kidney disease (CKD) affects up to 13% of
adults and markedly increases the risk of pre-

mature cardiovascular events.1 Anemia is among the
most common complications of CKD and is associated
with mortality and cardiovascular events, even after
accounting for CKD stage and other cardiovascular risk
factors, including albuminuria, diabetes mellitus,
smoking, and hypercholesterolemia.2 Although the
anemia of CKD is multifactorial in origin, 60% to 73%
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of persons with an estimated glomerular filtration
rate (eGFR), 60 mL/min/1.73 m2 are iron deficient.3

Clinical practice guidelines recommend that persons
with CKD and anemia (hemoglobin , 13.0 g/dL for
men;,12.0 g/dL for women) be treated with iron rather
than erythropoiesis-stimulating agents (ESAs) in order
to increase hemoglobin level if transferrin saturation
(TSAT) is#30% and serum ferritin level is#500 ng/mL.
Unfortunately, conventional oral iron formulations
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Ferric Citrate in Patients With CKD Stages 3-5
(sulfate, fumarate, and gluconate) tend to be ineffec-
tive,4,5 and the provision of intravenous iron and ESAs
to normalize hemoglobin levels in persons with CKD
stages 3 to 5 is associated with relatively high rates of
adverse effects.6 Fewer than 1 in 5 patients with CKD
currently receive ESAs prior to initiating dialysis
therapy, and mean hemoglobin level for patients initi-
ating dialysis therapy in the United States is 9.6 g/dL.1

Serum phosphate levels. 4.0 mg/dL are associated
independently with more rapid decline in kidney
function,7 resistance to the renoprotective effects of
angiotensin-converting enzyme inhibitor/angiotensin
receptor blocker therapy,8 development of end-stage
renal disease (ESRD),9 arterial calcification,10 cardio-
vascular events, and mortality.11-13 Beginning as early
as eGFR , 70 mL/min/1.73 m2, bone secretion of the
phosphaturic hormone fibroblast growth factor 23
(FGF-23) increases.14 Acting in concert with a-klotho,
FGF-23 inhibits renal tubular phosphate reabsorption
to maintain serum phosphate levels within normal
limits. It also directly reduces 25-hydroxyvitamin D3

conversion to active 1,25-dihydroxyvitamin D3, which
results in reduced intestinal calcium absorption and
stimulation of parathyroid hormone, which further
augments phosphate excretion.15 These compensatory
initially adaptive changes in FGF-23 and parathyroid
hormone levels ultimately fail, typically when eGFR
declines to less than w30 mL/min/1.73 m2. Persis-
tently elevated FGF-23 levels contribute to the devel-
opment of left ventricular hypertrophy and are
associated with congestive heart failure and mortal-
ity.16-18 Reductions in dietary phosphate intake and
prescription of intestinal phosphate binders are stan-
dard recommendations for patients with ESRD when
serum phosphate level is overtly elevated. It has been
proposed that this approach be advanced upstream to
patients with CKD stages 3 to 5 in an effort to lower
phosphate, FGF-23, and parathyroid hormone levels.
However, it recently has been demonstrated that neither
strategy consistently reduces serum phosphate levels in
randomized controlled trials when using currently
available phosphate binders.19,20

Ferric citrate coordination complex (ferric citrate)
is an intestinal phosphate binder that has been shown
previously to replete iron stores, increase hemoglobin
levels, and reduce serum phosphate levels in patients
with ESRD undergoing hemodialysis.21-25 We
designed the current trial to evaluate the safety and
efficacy of ferric citrate for the treatment of iron
deficiency anemia and reduction of serum phosphate
levels in patients with CKD stages 3 to 5.

METHODS
This was a 12-week, multicenter, double-blind, placebo-

controlled, randomized trial with eligible patients randomly
assigned 1:1 to ferric citrate or matching placebo. We randomly
Am J Kidney Dis. 2015;65(5):728-736
assigned patients by a centralized interactive voice-response sys-
tem with allocation generated by an independent biostatistician.
Keryx Biopharmaceuticals Inc provided active drug and matching
placebo. Ferric citrate was supplied as 1-g ferric citrate caplets
containing 210 mg of ferric iron. An independent data safety and
monitoring board periodically reviewed clinical data throughout
the trial period. The study was approved by the Liberty Institu-
tional Review Board (DeLand, FL) and conducted in accordance
with the Declaration of Helsinki. Written informed consent was
obtained from all patients.
Inclusion criteria included eGFR, 60 mL/min/1.73 m2, serum

phosphate level$ 4.0 to 6.0 mg/dL, serum ferritin level# 300 ng/mL,
TSAT # 30%, and hemoglobin level of 9.0 to 12.0 g/dL.
Exclusion criteria included use of an ESA within 4 weeks or
intravenous iron within 8 weeks of screening, any known cause
of anemia other than iron deficiency or CKD, symptomatic
gastrointestinal bleeding, or inflammatory bowel disease. Pa-
tients who were taking phosphate binders at the time of consent
were required to undergo a washout period of at least 2 weeks
prior to randomization. Neither iron nor ESA use was allowed
during the trial. Use of calcium for the purpose of phosphate
binding was prohibited; use of calcium supplements and active
or nutritional vitamin D was allowed, but no changes to dose
were permitted during the study (see Table S1, available as
online supplementary material). Prespecified safety end points
requiring discontinuation from the study medication were 2
consecutive hemoglobin values , 9.0 g/dL or 2 consecutive
serum phosphate concentrations . 6.0 mg/dL. Serious adverse
events were captured from the time of consent through 30 days
after the last study drug exposure.
We initiated study drug (ferric citrate or placebo) at a dose of 1

caplet per meal thrice daily. We adjusted the dose based on central
laboratory serum phosphate results, as shown in Fig 1A. Patients
were seen by study staff at weeks 1 and 2 and subsequently at
2-week intervals.
All clinical chemistry analyses were performed by a central

laboratory, PPD Central Laboratory Services, Highland Heights,
KY, using a standard chemistry autoanalyzer. We conducted in-
person study visits in the afternoon in a nonfasting state. FGF-23
was measured in plasma using the second-generation carboxy-
terminal enzyme-linked immunosorbent assay (ELISA; Immutopics)
and in serum using an ELISA against the intact protein (Kainos).
The coprimary outcomes were between-group changes in TSAT

and serum phosphate levels from baseline to end of treatment. We
analyzed data using a modified intention-to-treat principle, whereby
all patients who were randomly assigned, received at least one dose
of study medication, and had at least one postbaseline assessment
were included in assessments of efficacy. Any patient who received
at least one dose of study drug was included in the safety popula-
tion. We conducted our primary analysis using an analysis of
covariance model with treatment as a fixed effect and baseline value
of the outcome analyzed as a covariate. Secondary outcomes
included change from baseline to end of treatment values for
ferritin, hemoglobin, intact FGF-23, urinary phosphate excretion (in
milligrams per 24 hours), and eGFR. There were few missing data
elements; missing laboratory data were imputed using the last-
value-carried-forward method. All P values represent between-
group comparisons in change from baseline to week 12 unless
stated otherwise. To examine potential effects of the last-
observation-carried-forward method on the precision and interpre-
tation of results, we conducted prespecified companion analyses
using the mixed-effect repeated-measures model.26

We estimated that 110 evaluable patients would be needed to
detect a between-group mean 10% 6 5% change in TSAT and
mean 0.3 6 0.5–mg/dL change in serum phosphate levels, with a
2-sided a of 0.05 and 80% power. We aimed to enroll 140 patients
to allow for a dropout rate of w20%. We prespecified that
729



Patient Disposition

Analyzed for efficacy (n=69)
Excluded from analysis (n=4; did not have 
a baseline and/or post baseline value)

Analyzed for Safety (n=73)
Excluded from analysis (n=1; did not 
receive a single dose of study drug)

Analyzed for efficacy (n=72)
Excluded from analysis (n=3; did not have  
a baseline and/or post baseline value)

Analyzed for Safety (n=75)
Excluded from analysis (n=0)

Lost to follow-up (n=1)
Discontinued intervention (n=24; 
11 treatment failures; 5 withdrew consent; 
1 lost to follow up; 3 adverse events; 
4 other)

Lost to follow-up (n=0)
Discontinued intervention (n=14; 
1 treatment failure; 6 withdrew consent; 
6 adverse events; 1 other) 

Placebo (n=74)
Received allocated intervention (n=73)
Did not receive allocated intervention 
(n=1; withdrew consent)

Ferric Citrate (n=75)
Received allocated intervention (n=75)
Did not receive allocated intervention (n=0) 

Excluded (n=250)
Not meeting inclusion criteria (n=234)  
Declined to participate (n=7)
Other reasons (n=9)

Analysis

Follow-Up

Allocation

Enrollment

Randomized (n=149)

Assessed for eligibility (n=399)

Study Medication Titration

Starting Dose (3 Tablets/Day)

P<2.5 mg/dL

Hold study 
drug until 
serum P is 
≥ 3.0 mg/dL, 
then restart at 
a lower dose

P≥2.5 and 
<3.0 mg/dL

Reduce dose 
by 1 tablet 
per day 

P=3.0 to 
3.5 mg/dL

No action 
required

Phosphorus 
at GOAL

P>3.5 and 
<4.0 mg/dL

Increase dose 
by 1 tablet 
per day 

P≥4.0 mg/dL

Increase dose 
by 1 tablet/day 
if prior to Visit 
5 (Week 2), 
or 2 tablets/day 
if at Visit 5 
(Week 2) 
or later

A

B

Figure 1. Study design. (A) Sche-
matic shows study drug dose adjust-
ments made based on laboratory
serum phosphate (P) results. (B) Pa-
tient disposition.
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statistically significant findings on both coprimary outcomes
would be required to consider the trial as positive overall. We
considered 2-sided P , 0.05 statistically significant, and used
SAS, version 9.3 (SAS Institute Inc) to conduct all analyses. All
results were verified by an independent statistician with full access
to the data.

RESULTS

Patient disposition is shown in Fig 1B. Baseline char-
acteristics were similar between treatment groups
730
(Table 1). Mean daily doses of study medication were
5.1 g/d (5.1 pills per day) for ferric citrate and 5.2 g/d (5.2
pills per day) for placebo. Maximum average daily doses
were 9.0 and 9.3 g/d (9.0 and 9.3 pills per day) for ferric
citrate and placebo, respectively. Median follow-up was
76 days with ferric citrate and 70 days with placebo.
eGFRs were stable throughout the treatment period, with
no significant differences between ferric citrate2 and
placebo-treated patients (Table S2).
Am J Kidney Dis. 2015;65(5):728-736



Table 1. Baseline Characteristics of Study Participants

Ferric Citrate

(n 5 72)

Placebo

(n 5 69)

Demographics

Age (y) 66 6 12 64 6 14

Female sex 50 (69) 43 (62)

White 57 (79) 52 (75)

African American 15 (21) 16 (23)

Hispanic or Latino 15 (21) 21 (30)

CKD stage at baseline

Stage 3 13 (18) 16 (23)

Stage 4 38 (53) 36 (52)

Stage 5 20 (28) 16 (23)

Weight (lb) 1946 47 1986 55

Systolic BP (mm Hg) 1376 21 1336 18

Diastolic BP (mm Hg) 71 6 13 71 6 10

Comorbid conditions

Diabetes 48 (67) 49 (71)

Atherosclerotic coronary

disease

19 (26) 19 (28)

Congestive heart failure 14 (19) 15 (22)

Laboratory characteristics

Iron saturation (%) 21.66 7.4 21.26 8.3

Ferritin (ng/mL) 1166 83 1106 81

Hemoglobin (g/dL) 10.56 0.8 10.66 1.1

Phosphate (mg/dL) 4.5 6 0.6 4.7 6 0.6

24-h urine phosphate (mg/d) 730 6 286 727 6 281

Intact FGF-23 (pg/mL) 159 [102-289] 184 [111-352]

Carboxy-terminal

FGF-23 (RU/mL)

377 [193-570] 436 [254-653]

eGFR (mL/min/1.73 m2) 25.96 11.5 22.66 9.1

Bicarbonate (mEq/L) 21.06 2.9 21.26 3.3

Intact PTH (pg/mL) 97 [69-178] 135 [90-222]

Note: Values for categorical variables are given as number

(percentage); values for continuous variables are given asmean6
standard deviation or median [interquartile range].

Abbreviations: BP, blood pressure; CKD, chronic kidney dis-

ease; eGFR, estimated glomerular filtration rate; FGF, fibroblast

growth factor; PTH, parathyroid hormone.

Ferric Citrate in Patients With CKD Stages 3-5
Changes in mean TSAT (Fig 2A; Table S2) and
serum phosphate values (Fig 3A; Table S2) were
significantly different between ferric citrate2 and
placebo-treated groups (treatment-effect difference for
TSAT: 11.3% [95% confidence interval (CI), 8.0%-
14.7%]; for serum phosphate: 20.47 [95% CI, 20.67
to 20.26] mg/dL; P , 0.001 for each). TSAT
increased progressively in the ferric citrate group
from a baseline value of 22% 6 7% to 32% 6 14% at
end of study, whereas TSAT remained stable in the
placebo group, 21%6 8% to 20%6 8%. In the ferric
citrate group, serum phosphate levels declined from a
baseline of 4.5 6 0.6 to 3.96 0.5 mg/dL by week 4
and were maintained at this level throughout the
duration of the 12-week study period. In the placebo
group, serum phosphate levels declined from
4.76 0.6 to 4.46 0.8 mg/dL at week 12. Among
patients who completed the 12-week study period,
serum phosphate levels were reduced by 0.7 mg/dL
Am J Kidney Dis. 2015;65(5):728-736
with ferric citrate and 0.2 mg/dL with placebo. Cor-
responding analyses using the mixed-effect repeated-
measures model showed a change from baseline in
TSAT of 10.4% 6 13.0% with ferric citrate
and 20.7% 6 7.1% with placebo (between-group
difference, 11.9%; P , 0.001); change from baseline
in serum phosphate levels was 20.7 6 0.6 mg/dL
with ferric citrate and 20.26 0.7 mg/dL with
placebo (between-group difference, 20.5 mg/dL;
P , 0.001).
Secondary end points of hemoglobin and serum

ferritin levels are shown in Fig 2B and C and
Table S2. Changes in serum ferritin levels paralleled
those of TSAT, increasing steadily in the ferric citrate
arm from 1166 83 to 1896 122 ng/mL while
remaining unchanged (110 6 81 to 1066 94 ng/mL)
in patients receiving placebo (treatment-effect differ-
ence, 77.5 [95% CI, 56.2-98.7] ng/mL; P , 0.001). In
patients receiving ferric citrate, hemoglobin levels
increased from 10.5 6 0.8 g/dL at baseline to
11.0 6 1.0 g/dL at end of study, whereas in the pla-
cebo group, they decreased from 10.6 6 1.1 g/dL at
baseline to 10.4 6 1.1 g/dL at end of study (treat-
ment-effect difference, 0.6 [95% CI, 0.4-0.9] g/dL;
P , 0.001).
Urinary phosphate and FGF-23 levels were signifi-

cantly reduced in the ferric citrate group (Fig 3B and C;
Table S2). In the ferric citrate group, urinary phosphate
excretion was reduced by 39%, whereas levels were
unchanged in the placebo group (between-group
difference, 2286.8 [95% CI, 2379.2 to 2194.4] mg/d;
P, 0.001). Treatment with ferric citrate decreased
median serum FGF-23 levels from 159 (interquartile
range [IQR], 102-289) pg/mL at baseline to 105 (IQR,
65-187) pg/mL at end of study, while in placebo-treated
patients, median serum FGF-23 concentrations
decreased from 184 (IQR, 111-352) to 148 (IQR, 101-
330) pg/mL (between-group difference, 2125.3 [95%
CI, 2228.1 to 222.6] pg/mL; P5 0.02). Results with
carboxy-terminal FGF-23 were consistent with those
seen when intact FGF-23 was assayed (Fig 3D).
We prespecified an on-trial hemoglobin level ,

9.0 g/dL or phosphate level . 6.0 mg/dL as treatment
failures. Treatment failure occurred in one patient in
the ferric citrate arm (low hemoglobin) and 11 pa-
tients treated with placebo (9, low hemoglobin; 2,
high phosphate). No patient developed symptomatic
hypophosphatemia or elevations in liver enzyme
levels. There were 2 instances of isolated serum
phosphate level , 2.5 mg/dL, which were asymp-
tomatic and resolved prior to the next laboratory
assessment. Changes in all other biochemical pa-
rameters are shown in Table S2.
A full listing of all treatment-emergent adverse

events occurring at $2% incidence is shown in
Table S3. Serious adverse events occurred in 8% of
731
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ferric citrate2treated and 12% of placebo-treated pa-
tients, while adverse events resulting in study drug
withdrawal occurred in 13% and 11%, respectively.
There were no related serious adverse events. Two
patients died; both had been randomly assigned to
placebo. Forty-eight of 52 ferric citrate2treated pa-
tients with adverse events (92%) had events deemed to
be of mild (n5 28) or moderate (n5 20) severity.
Most were gastrointestinal in nature, with 24 events of
discolored feces (32%), 15 events of diarrhea (20%),
and 14 events of constipation (19%).

DISCUSSION

These results demonstrate that short-term use of ferric
citrate effectively repleted iron stores, increased hemo-
globin levels, and reduced serumphosphate and FGF-23
levelswhen given to patientswithCKDstages 3 to 5 and
iron deficiency anemia. Historically, oral iron therapy
has been at best modestly effective in repleting iron
732
stores or providing adequate iron to support hemato-
poiesis in iron-deficient patients with CKD. Although
the current trial was placebo controlled, the observed
increase in hemoglobin levels of 0.5 g/dL over 12weeks
is substantially higher than that seen with ferrous sulfate
(0.2 g/dL) or ferrous fumarate (0.1 g/dL) in prior studies
and is similar to that seenwhenpatientswithCKDstages
3 to 5 are administered large doses of intravenous iron
sucrose (0.5 g/dL), sodium ferric gluconate (0.4 g/dL),
or ferumoxytol (0.6 g/dL) without a concomitant
ESA.27-29

A sizeable fraction of patients with CKD stages 3 to 5
warrant treatment with iron, yet are untreated due to
perceived risks and logistical challenges associated with
administering intravenous iron in outpatient settings.4

Intravenous iron may exacerbate oxidative stress, in-
crease inflammation, decrease immune function, and
increase risk of microbial infection in patients with
CKD.30 A multivariable-adjusted analysis of 117,050
Am J Kidney Dis. 2015;65(5):728-736
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Ferric Citrate in Patients With CKD Stages 3-5
patients on hemodialysis therapy described a higher risk
of infection-related hospitalization and infection-related
mortality with bolus intravenous iron dosing,31 and a
recent comparison of 2 different intravenous iron com-
pounds in CKD stages 3 to 5 demonstrated that both
intravenous iron formulations were associated with hy-
potension and hypersensitivity reactions, risks that
appear to be common to all intravenous iron formula-
tions.6 As a result of these limitations, many patients
with CKD stages 3 to 5 develop progressive anemia and
some are started on treatment with ESAs despite
Am J Kidney Dis. 2015;65(5):728-736
insufficient iron stores, which limits ESA efficacy (and
efficiency). In a large, event-driven, randomized,
placebo-controlled trial in patients with type 2 diabetes
mellitus and eGFRs of 20 to ,60 mL/min/1.73 m2

targeting normal hemoglobin concentrations, darbe-
poetin showed no difference comparedwith placebo on
a composite cardiovascular end point and nominally
significant increases in risks of stroke and venous
thromboembolism.32 We acknowledge that unlike
ESAs, no long-term outcomes-driven trial has exam-
ined the safety and efficacy of oral or intravenous iron
733
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formulations inCKDstages 3 to 5.Wedemonstrate that
during a 12-week study period, ferric citrate safely
provided clinically effective iron repletion, presumably
without bypassing the normal physiologic regulation of
intestinal iron uptake. It is notable that the benefits of
iron repletion in patients with iron-deficiency anemia
with and without CKD have been reported to extend
beyond increasing hemoglobin levels, with demon-
strated improvements in quality of life and functional
ability.33

The effects of ferric citrate on phosphate metabolism
are particularly noteworthy when considered in the
context of previous clinical trials in this area.A post hoc
analysis of the MDRD (Modification of Diet in Renal
Disease) Study, in which dietary protein restriction
resulted in profound dietary phosphate reduction,
demonstrated no reduction in serum phosphate
levels.20 In the Phosphate Normalization Trial, a 9-
month, double-blind, randomized, placebo-controlled
trial in patients with CKD stages 3 to 5 and similar
inclusion and exclusion criteria as the current trial, the 3
commercially available phosphate binders, calcium
acetate, lanthanum carbonate, and sevelamer carbon-
ate, demonstrated a pooled decrease in serum phos-
phate levels of only 0.3 mg/dL, despite use of moderate
to high doses of each drug.19 Furthermore, in the
Phosphate Normalization Trial, calcium acetate ther-
apy increased both carboxy-terminal and intact
FGF-23, whereas lanthanum carbonate had no effect
and sevelamer carbonate reduced only intact FGF-23
(but not carboxy-terminal FGF-23) by w20%.
In contrast, we demonstrate that ferric citrate reduced
serum phosphate levels by 0.6 mg/dL and both
carboxy-terminal and intact FGF-23 levels by nearly
40%.
FGF-23 is one of the key regulators of phosphate

and vitamin D homeostasis.34 Patients with CKD
often have profound elevations in FGF-23 levels that
have been associated with progressive loss of kidney
function and ESRD, cardiovascular events, and mor-
tality.16,35-40 In a cohort of 3,860 patients with CKD
stages 2 to 4 followed up for 3.7 years, those in the
highest quartile of FGF-23 levels had a nearly 4-fold
increase in risk of incident congestive heart failure,
consistent with the described ability of FGF-23 to
directly stimulate left ventricular hypertrophy.18 The
particularly robust effects of ferric citrate to lower
serum FGF-23 concentrations may relate to greater
intestinal phosphate binding relative to other phos-
phate binders. Alternatively, because iron deficiency
is another important stimulus of FGF-23 transcription,
ferric citrate’s unique effect to simultaneously replete
iron stores may explain its ability to lower FGF-23
levels to a greater extent than other binders.41

Aside from its effects on FGF-23 levels, the urine and
serum phosphate-lowering effects of ferric citrate are
734
clinically meaningful. In the general population, higher
levels of dietary phosphate intake are associated with
mortality and are correlated directly with left ventricular
mass by cardiac magnetic resonance imaging.42,43 Di-
etary phosphate intake is difficult to assess given the
ubiquitous but mostly undocumented use of phosphate-
based food additives, an emerging public health issue.44

Therefore, urinary phosphate excretion is a useful sur-
rogatemeasure of net phosphate absorption. Our finding
that ferric citrate reduced urinary phosphate levels by
nearly 40% demonstrates its biological effect to reduce
phosphate absorption. Many, though not all, studies
describe increased risk of CKD progression, cardiovas-
cular events, and mortality in persons with serum
phosphate levels . 4.0 mg/dL.8,45,46 A recent re-
analysis of the Ramipril Efficacy in Nephropathy
(REIN) trial found that patients with serum phosphate
levels . 4.0 mg/dL were significantly more likely to
progress to require dialysis or experience a doubling of
serum creatinine level even after adjustment for iohexol-
measured GFR, age, and ramipril use.8 In the group of
patients who otherwise derived the strongest renopro-
tective benefit of ramipril, the effect was attenuated if
serum phosphate level was 3.5 to 4.0 mg/dL and abol-
ished if serum phosphate level was. 4.0 mg/dL.
This trial has several strengths. Patients were

diverse in age, sex, race, and primary cause of CKD.
Adherence was excellent, dropout rates were modest,
and missing data were minimal. The trial’s major
limitations include its relatively small sample size,
relatively short duration, and, most importantly,
biochemical rather than clinical outcomes. Several
other limitations warrant mention. We did not mea-
sure serum aluminum, but it should be emphasized
that use of concurrent aluminum-containing phos-
phate binders and other medications was prohibited.
Moreover, previously published clinical trials in pa-
tients on dialysis therapy receiving ferric citrate for 1
year have shown no change in serum aluminum
concentrations.22,24 We did not capture data for di-
etary intake so we are unable to determine whether
there were between-group differences in the intake of
inorganic or organic phosphorus or other dietary pa-
rameters, including meat and other sources of iron, or
in any derived estimates of dietary protein intake (eg,
protein nitrogen appearance). Due to modest sample
sizes, small differences in baseline characteristics
between the ferric citrate and placebo groups were
observed; however, we do not believe that these had a
material influence on the primary or secondary out-
comes of the study. Finally, this was a placebo-
controlled trial, rather than a trial using an active
phosphate binder and/or iron supplement control.
We believe that a placebo-controlled trial provides
unambiguous evidence of safety and efficacy, at least
with respect to the treatment duration of 12 weeks.
Am J Kidney Dis. 2015;65(5):728-736
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However, without active controls, we are unable to
determine whether ferric citrate is superior, inferior,
or approximately similar to other phosphate binders
or iron supplements in this patient population.
In summary, we demonstrate that short-term use

of ferric citrate refills iron stores, increases hemo-
globin levels, and decreases serum phosphate, uri-
nary phosphate excretion, and FGF-23 levels in
patients with CKD stages 3 to 5. Given the high
prevalence of iron deficiency anemia and disorders
of mineral metabolism in patients with CKD stages
3 to 5 and the demonstrated risks and limited effi-
cacy of existing alternative therapies, ferric citrate
may improve the treatment of iron deficiency ane-
mia and disorders of mineral metabolism in these
patients. Clinical trials evaluating longer-term ef-
fects of ferric citrate in patients with CKD stages 3
to 5 will be required in order to establish the role of
ferric citrate in clinical practice.
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