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a b s t r a c t

We present a well-posed model for the Stokes/Brinkman problem with a family of jump
embedded boundary conditions (J.E.B.C.) on an immersed interface with weak regularity
assumptions. It arises from a general framework recently proposed for fictitious domain
problems. Our model is based on algebraic transmission conditions combining the stress
and velocity jumps on the interface Σ separating the fluid and porous domains. These
conditions are well chosen to get the coercivity of the operator. Then, the general
framework allows us to prove new results on the global solvability of some models
with physically relevant stress or velocity jump boundary conditions for the momentum
transport at a fluid–porous interface. The Stokes/Brinkman problemwith Ochoa-Tapia and
Whitaker (1995) [9,10] interface conditions and the Stokes/Darcy problem with Beavers
and Joseph (1967) [13] conditions are both proved to be well-posed, by an asymptotic
analysis. Up to now, only the Stokes/Darcy problemwith Saffman (1971) [15] approximate
interface conditions with negligible tangential porous velocity was known to be well-
posed.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Notation. Let the domainΩ ⊂ Rd (d = 2 or 3 in practice) be an open bounded and Lipschitz continuous domain. Let an
interfaceΣ ⊂ Rd−1, Lipschitz continuous, separateΩ into two disjoint connected subdomains: the fluid domainΩf and the
porous oneΩp such thatΩ = Ωf ∪Σ ∪Ωp. The boundaries of the subdomains are respectively defined by ∂Ωf = Γf ∪Σ

forΩf ∂Ωp = Γp ∪Σ forΩp, and ∂Ω = Γf ∪Γp forΩ (see Fig. 1), assuming no cusp singularity atΣ ∩ ∂Ω . Let n be the unit
normal vector onΣ oriented fromΩp toΩf and τ any unit tangential vector of a local tangential basis (τ1, . . . , τd−1) onΣ .
For any quantityψ defined all overΩ , the restrictions onΩf andΩp are denoted byψ f andψp respectively. For a function
ψ in H1(Ωf ∪Ωp), let ψ− and ψ+ be the traces of ψ|Ωp and ψ|Ωf on each side ofΣ respectively, ψ |Σ = (ψ+

+ ψ−)/2 the
arithmetic mean of traces of ψ , and [[ψ ]]Σ = (ψ+

− ψ−) the jump of traces of ψ onΣ oriented by n.
There exist in the literature differentmodels with physically relevant stress or velocity jump boundary conditions for the

tangential momentum transport at the fluid–porous interface Σ; see e.g. [1,2]. For when the homogeneous porous flow is
to be governed by the Brinkman equation (cf. [3–8]), the interface condition below linking the jump of shear stress with a
continuous velocity was derived with volume averaging techniques by Ochoa-Tapia and Whitaker [9] instead of the usual
stress and velocity continuity boundary conditions at the interface [7]:

µ∇vf ·n −
µ

φ
∇vp·n


Σ

·τ =
µβotw
√
K

vΣ ·τ and vf = vp = vΣ onΣ, (1)

where the dimensionless parameterβotw is of the order of 1; see [10,2,11,12] for its characterization.Weprove in Section 3, as
a by-product of our general framework recalled in Section 2, that stress jump boundary conditions of this type yield a well-
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Fig. 1. Configuration for fluid–porous flows inside the domainΩ = Ωf ∪Σ ∪Ωp .

posed fluid–porous Stokes/Brinkman problem whatever the dimensionless parameter βotw ≥ 0. This was not previously
stated, to our knowledge.

When the porous flow is governed by the Darcy equation (see e.g. [6]), the well-known Beavers and Joseph interface
condition [13] must be used. It links the shear stress at the interface with the jump of tangential velocity:

(µ∇vf ·n)|Σ ·τ =
µαbj
√
K


vf − vp


Σ

·τ and vf ·n = vp·n = v·nΣ onΣ, (2)

where the dimensionless parameter αbj = O( 1
√
φ
) depends on the porosity φ and may vary between 0.1 and 4 [13,14].

The approximate Saffman interface condition [15], derived by homogenization techniques in [16], is also written when the
porous filtration tangential velocity can be neglectedwith respect to the fluid velocity at the interface: |vpΣ ·τ| ≪ |vfΣ ·τ|, i.e.
for a permeability value K or Darcy number Da = K/H2 sufficiently small. The global solvability of the Stokes/Darcy problem
with the Saffman condition for vpΣ ·τ ≈ 0 is proved with a mixed hybrid formulation in [17], whatever the dimensionless
parameter αbj ≥ 0, and then by many others with various formulations; see e.g. the recent review [18]. The only result of
well-posedness for the full form of Beavers and Joseph condition was recently established in [19] for α2

bj sufficiently small.
We prove in Section 4 by a singular perturbation in our general frameworkwith a vanishing viscosity that the above Beavers
and Joseph interface conditions yield a well-posed Stokes/Darcy problem whatever the parameter αbj ≥ 0. Here, the main
difficulty lies in how to give a sense to the tangential trace of the porous velocity on the interface with minimal regularity
assumptions. This is particularly relevant for thin fluid layers, such as for conducting fractures in porous media flows
[20,21,19].

We first begin in Section 2 by describing the general framework with jump embedded boundary conditions studied
in [22]. It is derived by a generalization to vector elliptic problems of a previous model stated for scalar problems [23,24].
A short version of the following results can be found in [25].

2. A well-posed Stokes/Brinkman problem with jump embedded boundary conditions

Let σ(v, p) ≡ −p I + 2µ̃ d(v) denote the Newtonian stress tensor defined with the effective viscosity µ̃ in the porous
domain Ωp, with µ̃ = µ in the fluid domain Ωf and d(v) ≡

1
2 (∇v + ∇vt) being the strain rate tensor. We consider the

following Stokes/Brinkman problem including jump embedded boundary conditions (J.E.B.C.) on the interface Σ which link
the trace jumps of both the stress vector σ(v, p)·n and the velocity vector v through the interfaceΣ:

−∇·σ(v, p) = f inΩf , (3)

−∇·σ(v, p)+ µK−1 v = f inΩp, (4)

∇·v = 0 inΩf ∪Ωp, (5)

v = 0 on Γf ∪ Γp, (6)

[[σ(v, p)·n ]]Σ = Mv|Σ onΣ, (7)

σ(v, p)·n|Σ = S [[v ]]Σ onΣ . (8)

Here, the viscosity coefficient µ and effective viscosity µ̃ in the porous medium are bounded positive functions such that
µ0 = min(µ, µ̃) > 0, the symmetric permeability tensor K ≡ (Kij)1≤i,j≤d is uniformly positive definite, and the transfer
matrices S, M onΣ are measurable, bounded and uniformly semi-positive matrices verifying ellipticity assumptions:
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K ∈

L∞(Ω)

d×d
; ∃K0 > 0, ∀ξ ∈ Rd, K(x)−1

·ξ·ξ ≥ K0 |ξ|2 a.e. inΩp. (A1)

M, S ∈

L∞(Σ)

d×d
; ∃M0, S0 ≥ 0, ∀ξ ∈ Rd, M(x)·ξ·ξ ≥ M0 |ξ|2, S(x)·ξ·ξ ≥ S0 |ξ|2 a.e. onΣ . (A2)

With usual notation for Sobolev spaces (see e.g. [26,27]), we now define the Hilbert spaces:

H1
0Γf (Ωf )

d
≡


w ∈ H1(Ωf )

d
;w|Γf = 0 on Γf


, H1

0Γp(Ωp)
d

≡

w ∈ H1(Ωp)

d
;w|Γp = 0 on Γp


,

W ≡


w ∈ L2(Ω)d, w|Ωf ∈ H1

0Γf (Ωf )
d andw|Ωp ∈ H1

0Γp(Ωp)
d
; ∇·w = 0 inΩf ∪Ωp


equipped with the natural inner product and associated norm in H1(Ωf ∪Ωp)

d.
Let us note that for v ∈ W satisfying (3) or (4) with f ∈ L2(Ω)d such that ∇·σ(v, p) ∈ L2(Ω)d, we can define σ(v, p)·n±

|Σ

in H−
1
2 (Σ)d; see [28,29]. The model with the J.E.B.C. (7)–(8) also allows a possible pressure jump [[p ]]Σ ≠ 0 in H−

1
2 (Σ)

with additional regularity assumptions.
Then, as a consequence of the general framework stated in [22], the problem (3)–(8) satisfies in Ω the nice weak

formulation below:
Find v ∈ W such that ∀w ∈ W, a(v,w) = l(w)with

a(v,w) = 2
∫
Ωf

µ d(v):d(w) dx + 2
∫
Ωp

µ̃ d(v):d(w) dx +

∫
Ωp

µK−1 v·w dx +

∫
Σ

Mv|Σ ·w|Σ ds

+

∫
Σ

S [[v ]]Σ · [[w ]]Σ ds

l(w) =

∫
Ω

f·w dx. (9)

Also, the following well-posedness result is ensured by [22, Theorem 1.1].

Theorem 2.1 (Global Solvability of the Stokes/Brinkman Model with J.E.B.C.). If the ellipticity assumptions (A1), (A2) hold, the
problem (3)–(8)with f ∈ L2(Ω)d has a unique solution (v, p) ∈ W× L2(Ω) satisfying the weak form (9) for allw ∈ W and such
that pf = pf0 + C0

+ C1/2 and pp = pp0 + C0
− C1/2where p0 ∈ L20(Ω) = {q ∈ L2(Ω),


Ω
q dx = 0} and C0, C1 are constants

defined by

C0
=

1
|Σ |


σ(v, p0)·n|Σ − S [[v ]]Σ ,n


−

1
2 ,Σ

and C1
=

1
|Σ |


[[σ(v, p0)·n ]]Σ −Mv|Σ ,n


−

1
2 ,Σ

.

Hence, to satisfy (7), (8) in the sense of H−
1
2 (Σ)d, the pressure field p ∈ L2(Ω)must be adjusted from the zero-average pressure

p0 ∈ L20(Ω) such that (p − p0)|Σ = C0 and [[p − p0 ]]Σ = C1.
Moreover, there exists a constant α0(Ωf ,Ωp, K0, µ0) > 0 such that

‖v‖W + ‖p0‖0,Ω ≤
c(Ωf ,Ωp, µ, µ̃, ‖K−1

‖∞)

α0
‖f‖0,Ω .

Remark 1 (Generalizations). For practical problems, the case of a nonhomogeneous Dirichlet boundary condition: v = vD
on Γf ∪ Γp with vD ∈ H

1
2 (Γf ∪ Γp)

d and the compatibility condition

Γf ∪Γp

vD·n ds = 0, can be treated also by defining an
ad hoc divergence-free extension of vD (see e.g. [30]), and adding its contribution in the source term f of the present problem
(9). The generalization to unsteady Stokes/Brinkman problems is also straightforward.

3. The Stokes/Brinkman problem with Ochoa-Tapia and Whitaker interface conditions

We now consider that µ̃ = µ/φ, where φ ∈]0, 1] is the porosity of the porous medium, and stress jump interface
conditions of Ochoa-Tapia and Whitaker type [9] like in (1), the original ones reading, with βτ = βotw and βn = 0,

[[σ(v, p)·n ]]Σ = Mv withMjj =
µβτ
√
Kτ
, j = 1, . . . , d − 1, Mdd =

µβn
√
Kn

and [[v ]]Σ = 0 onΣ, (10)

whereM is a positive diagonalmatrix with βτ , βn ≥ 0 a.e. onΣ and Kτ , Kn permeability coefficients. Then, as a consequence
of the general framework stated in [22], the problem (3)–(6) and (10) satisfies inΩ the weak formulation below:
Find v ∈ V = {u ∈ H1

0 (Ω)
d
; ∇·u = 0} such that

2
∫
Ωf

µ d(v):d(w) dx + 2
∫
Ωp

µ

φ
d(v):d(w) dx +

∫
Ωp

µK−1 v·w dx +

∫
Σ

Mv·w ds =

∫
Ω

f·w dx, ∀w ∈ V. (11)

Also, the following well-posedness result is ensured as a corollary of Theorem 2.1.



806 P. Angot / Applied Mathematics Letters 24 (2011) 803–810

Corollary 3.1 (Global Solvability of Stokes/Brinkman Problem with OT–W). If the ellipticity assumptions (A1), (A2) hold, the
problem (3)–(6) and (10)with f ∈ L2(Ω)d has a unique solution (v, p) ∈ V × L2(Ω) satisfying the weak form (11) for allw ∈ V
and such that pf = pf0 + C1/2 and pp = pp0 − C1/2 with p0 ∈ L20(Ω) and the constant C1 defined by

C1
=

1
|Σ |

⟨[[σ(v, p0)·n ]]Σ −Mv,n⟩
−

1
2 ,Σ

.

Sketch of proof. The existence and uniqueness of v ∈ V satisfying (11) are ensured by the Lax–Milgram theorem. The
pressure field p0 ∈ L20(Ω) can be also recovered by the De Rham theorem [30,29] which involves the inf-sup condition
between the velocity andpressure spaces [31]. Then, on constructing an adhocdivergence-free extension as for [22, Theorem
1.1] (see also [29]), this allows us to verify the stress jump condition (10) in H−

1
2 (Σ)d with the pressure field p ∈ L2(Ω)

fitted such that we have formally [[p − p0 ]]Σ = C1 and (p − p0)|Σ = 0. �

We can also interpret this solution as the limit solution of the problem (3)–(8) with penalized velocity jumps onΣ when
the penalty parameter ε > 0 tends to zero and we have the following convergence result.

Theorem 3.2 (Convergence to the Stokes/Brinkman Problem with OT–W). For any ε > 0, the solution (vε, pε) of the problem
(3)–(8) fromTheorem2.1withM defined in (10) and S =

1
ε
I strongly converges to the solution (v, p) of Corollary3.1 inW×L2(Ω)

when ε → 0. Moreover, there exists a constant C(Ωf ,Ωp, µ, φ, K0, ‖K−1
‖) > 0 such that the following error estimate holds,ψ

being the weak limit of 1
ε
[[vε ]]Σ in L2(Σ)d:

‖vε − v‖W + ‖p0ε − p0‖0,Ω ≤ C ‖ψ‖0,Σ
√
ε and ‖[[vε ]]Σ ‖0,Σ ≤ ‖ψ‖0,Σ ε.

With additional regularity assumptions such that ψ ∈ H
1
2 (Σ)d, then the previous estimate becomes optimal in O(ε).

Sketch of proof. The solution vε ∈ W satisfies with (9) the weak form below:

2
∫
Ωf

µ d(vε):d(w) dx + 2
∫
Ωp

µ

φ
d(vε):d(w) dx +

∫
Ωp

µK−1 vε·w dx +

∫
Σ

Mvε |Σ ·w|Σ ds

+
1
ε

∫
Σ

[[vε ]]Σ · [[w ]]Σ ds =

∫
Ω

f·w dx, ∀w ∈ W. (12)

On choosing w = vε , we get, using the Korn and Friedrichs–Poincaré inequalities in Ωf ,Ωp together with the inequality
a b ≤ (a2 + b2)/2, ∀a, b ∈ R,

µ0

∫
Ωf ∪Ωp

|∇vε|2 dx + µ0 K0

∫
Ωp

|vε|2 dx +

∫
Σ

Mvε |Σ ·vε |Σ ds +
1
ε

∫
Σ

|[[vε ]]Σ |
2 ds ≤

c(Ωf ,Ωp)

µ0
‖f‖2

0,Ω .

With this bound, there exists v ∈ W such that, up to a subsequence, vε tends to v in W or H1(Ωf ∪ Ωp)
d weakly when

ε → 0 and strongly in L2(Ω)d. Indeed, since the trace application is continuous, we have v|Γf ∪Γp = 0. Moreover we have
‖[[vε ]]Σ ‖0,Σ ≤ c(Ωf ,Ωp, µ0, f)

√
ε and thus [[v ]]Σ = 0, v|Σ = v|Σ and v belongs to the subspace V of W. Then p0ε defined

by Theorem 2.1 is bounded in L20(Ω) since we have, using the Nečas theorem [30,31],

‖p0ε‖0,Ω ≤ c(Ωf ,Ωp)

‖∇p0ε‖−1,Ωf + ‖∇p0ε‖−1,Ωp


≤ C ‖vε‖W + ‖f‖0,Ω . (13)

Thus, there exists p0 ∈ L20(Ω) such that, up to a subsequence, p0ε tends to p0 weakly in L2(Ω). Now taking the limit of (12)
when ε → 0, there exists ψ ∈ L2(Σ)d such that 1

ε
[[vε ]]Σ tends weakly to ψ in L2(Σ)d and we get that v is the unique

solution in V (the uniqueness being proved directly with f = 0 andw = v ∈ V ⊂ W) satisfying

2
∫
Ωf

µ d(v):d(w) dx + 2
∫
Ωp

µ

φ
d(v):d(w) dx +

∫
Ωp

µK−1 v·w dx +

∫
Σ

Mv|Σ ·w|Σ ds +

∫
Σ

ψ· [[w ]]Σ ds

=

∫
Ω

f·w dx, ∀w ∈ W. (14)

Hence, v ∈ V also satisfies (11) for all w ∈ V. Also, using test functions w = ϕ ∈ C∞
c compactly supported either inΩf or

inΩp and such that divϕ = 0 inΩf or inΩp respectively, and using the Stokes formula, we get with the De Rham theorem
[30,29] the existence and uniqueness (Ωf andΩp being connected) of the pressure restrictions p0|Ωf and p0|Ωp in L20(Ωf ) and
L20(Ωp) respectively. This defines the pressure field p0 = p0|Ωf + p0|Ωp in L20(Ω) over the whole domainΩ such that (v, p0)
verifies the Stokes/Brinkman equations (3)–(5) a.e. inΩf ∪Ωp.

Then, we can define the pressure field p ∈ L2(Ω) with p0 and the constant C1 as in Corollary 3.1 such that the stress
jump condition (10) is verified in H−

1
2 (Σ)d. Moreover, the constant C1

ε defined in Theorem 2.1 with (vε, p0ε) satisfies
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limε→0 C1
ε = C1 with the weak limits of (vε, p0ε) and the continuity of the trace applications. We can also give an

interpretation of ψ. On writing the difference between the weak form of problem (3)–(6) and (10) with test functions
w ∈ W using the Stokes formula and the limit weak form (14), this yields


σ(v, p0)·n|Σ −ψ, [[w ]]Σ


−

1
2 ,Σ

= 0,∀w ∈ W.

On constructing an ad hoc divergence-free extension in W of any function u in H
1
2 (Σ)d, as for [22, Theorem 1.1] (see also

[29, Chapter III] for the Stokes/Neumann problemwith a stress boundary condition), we define the constant C0
= limε→0 C0

ε

below, with C0
ε as defined in Theorem 2.1with (vε, p0ε), such that we haveψ = σ(v, p0 + C0)·n|Σ in the sense ofH−

1
2 (Σ)d:

C0
=

1
|Σ |


σ(v, p0)·n|Σ −ψ,n


−

1
2 ,Σ

, such that

σ(v, p0 + C0)·n|Σ −ψ,u


−

1
2 ,Σ

= 0, ∀u ∈ H
1
2 (Σ)d.

To prove the strong convergence and the error estimate, we first write the error equation as the difference between (9)
satisfied by vε for allw ∈ W and (14) using the fact that [[v ]]Σ = 0 and v|Σ = v|Σ . Then, choosingw = vε − v, we get, with
the Cauchy–Schwarz inequality,

2µ0

∫
Ωf ∪Ωp

|d(vε − v)|2 dx + µ0K0

∫
Ωp

|vε − v|2 dx + M0

∫
Σ

|vε |Σ − v|2 ds

+
1
ε

∫
Σ

|[[vε − v ]]Σ |
2 ds ≤ ‖ψ‖0,Σ‖[[vε − v ]]Σ ‖0,Σ

which simply gives, using the Korn and Poincaré inequalities inΩf andΩp,

‖[[vε ]]Σ ‖0,Σ = ‖[[vε − v ]]Σ ‖0,Σ ≤ ‖ψ‖0,Σ ε and ‖vε − v‖W ≤ C(Ωf ,Ωp, µ0)‖ψ‖0,Σ
√
ε. (15)

Ifψ belongs to H
1
2 (Σ)d, the last error estimate can be improved up to O(ε) by constructing some adequate extensions from

ψ in the subdomainsΩf andΩp. Finally, the pressure estimate is obtained using the Nečas theorem and we get
‖p0ε − p0‖0,Ω ≤ c(Ωf ,Ωp)


‖∇(p0ε − p0)‖−1,Ωf + ‖∇(p0ε − p0)‖−1,Ωp


≤ C ‖vε − v‖W,

which completes the proof. �

4. The Stokes/Darcy problem with Beavers and Joseph interface conditions

We consider the problem (3)–(8) with the Dirichlet boundary condition (6) on Γp replaced by the stress boundary
condition of Neumann where ν is the outward unit normal vector on Γp and q ∈ H−

1
2 (Γp)

d given (e.g. q = −pe ν):
v = 0 on Γf and σ(vp, pp)·ν = −pp ν+ µ̃∇vp·ν = q on Γp. (16)

Let us define the Hilbert spaceWN equipped with the natural inner product and norm in H1(Ωf ∪Ωp)
d:

WN ≡ {w ∈ L2(Ω)d,w|Ωf ∈ H1
0Γf (Ωf )

d and w|Ωp ∈ H1(Ωp)
d
; ∇·w = 0 inΩf ∪Ωp}.

Then, the following well-posedness result is ensured as a corollary of Theorem 2.1; see also [22, Theorem 2.1].

Corollary 4.1 (Global Solvability of the Stokes/Brinkman Model with J.E.B.C. and Stress B.C.). With the assumptions
of Theorem 2.1 and q ∈ H−

1
2 (Γp)

d, there exists a unique solution (v, p) ∈ WN × L2(Ω) satisfying the weak form a(v,w) =

l(w)+ ⟨q , w⟩
−

1
2 ,Γp

for allw ∈ WN with pf = pf0 + C0
+ C1/2 and pp = pp0 + C0

− C1/2where p0 ∈ L20(Ω) and the constants

C0, C1 are defined as in Theorem 2.1 such that the Eqs. (3)–(5) hold almost everywhere inΩf ∪ Ωp and (7)–(8) are satisfied in
H−

1
2 (Σ)d. Then, if the following compatibility condition holds:

C0
−

1
2
C1

= CN with CN
=

1
|Γp|

⟨σ(v, p0)·ν− q, ν⟩
−

1
2 ,Γp

,

the stress boundary condition (16) is also satisfied in H−
1
2 (Γp)

d and (v, p) ∈ WN × L2(Ω) is the unique solution of the problem
(3)–(5), (7), (8) and (16).

For any ε > 0, let us now consider the solution (vε, pε) ∈ WN × L2(Ω) of the problem (3)–(5), (7), (8) and (16) with a
vanishing viscosity µ̃ = ε for the Brinkman problem in Ωp. The condition (16) avoids the creation of a spurious boundary
layer along Γp for the Darcy problem when ε → 0. The J.E.B.C. (7)–(8) are also calibrated as follows to obtain interface
conditions of Beavers and Joseph type [13] with a jump of tangential velocity (2) allowing a possible pressure jump:

[[σ(v, p)·n ]]Σ = Mv|Σ withMjj = 0, j = 1, . . . , d − 1, Mdd =
µβn
√
Kn

onΣ, (17)

σ(v, p)·n|Σ = S [[v ]]Σ with Sjj =
µατ
√
Kτ
, j = 1, . . . , d − 1, Sdd =

1
ε

onΣ, (18)

where M, S are positive diagonal matrices with ατ = αbj, βn ≥ 0 a.e. onΣ and Kτ , Kn permeability coefficients.
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Let us define the Hilbert spaces

WS/D ≡


w ∈ L2(Ω)d,w|Ωf ∈ H1

0Γf (Ωf )
d,w|Ωp ∈ L2(Ωp)

d
; ∇·w = 0 inΩf ∪Ωp


equipped with the natural inner product and norm in H1(Ωf )

d
× L2(Ωp)

d and

WS–D ≡

w ∈ WS/D; ∇·w ∈ L2(Ω), [[w ]]Σ ∈ L2(Σ)d, [[w·n ]]Σ = 0


equipped with the norm defined by ‖w‖

2
WS–D

= ‖w‖
2
1,Ωf

+ ‖w‖
2
0,Ωp

+ ‖∇·w‖
2
0,Ω + ‖[[w ]]Σ ‖

2
0,Σ .

We now prove the following convergence result which also ensures the well-posedness of the Stokes/Darcy problem
with Beavers and Joseph type interface conditions (2) and (17) whatever the coefficients ατ , βn ≥ 0 are a.e. onΣ .

Theorem 4.2 (Convergence to the Stokes/Darcy Problem with B–J). With the data f ∈ L2(Ω)d and q = 0, the solution (vε, pε)
inWN × L2(Ω) for any ε > 0 from Corollary 4.1 of the problem (3)–(5) and (16)–(18) with a vanishing viscosity µ̃ = ε weakly
converges to the solution (v, p) in WS/D × L2(Ω) of the Stokes/Darcy problem with the interface conditions (2) and (17) on Σ
when ε → 0. Indeed, in the porous domain Ωp, vp and pp satisfy the Darcy equation, i.e. Eq. (4) with µ̃ = 0, and pp belongs to
H1(Ωp) such that pp = 0 on Γp.

With additional regularity assumptions such that vp ∈ H1(Ωp)
d, then v ∈ WS–D ∩ WN and we have the global error estimate

with C > 0 depending on the data, ‖∇v‖0,Ωp , ‖ψ‖0,Σ and ψ defined as the weak limit of 1
ε
[[vε·n ]]Σ in L2(Σ):

‖vε − v‖1,Ωf +
√
ε ‖vε − v‖1,Ωp + ‖vε − v‖0,Ωp + ‖p0ε − p0‖0,Ω ≤ C ‖ψ‖0,Σ

√
ε and

‖[[vε·n ]]Σ ‖0,Σ ≤


2‖∇v‖2

0,Ωp
+ ‖ψ‖

2
0,Σ

 1
2
ε.

Sketch of proof. The proof is here abridged without explaining most of the arguments already detailed in the proof of
Theorem 3.2. From (3)–(5) and (16)–(18) with the Stokes formula, the solution vε ∈ WN satisfies the weak form below:

2
∫
Ωf

µ d(vε):d(w) dx + 2ε
∫
Ωp

d(vε):d(w) dx +

∫
Ωp

µK−1 vε·w dx +

∫
Σ

Mvε |Σ ·w|Σ ds

+

d−1−
j=1

∫
Σ

Sjj [[vε·τj ]]Σ [[w·τj ]]Σ ds +
1
ε

∫
Σ

[[vε·n ]]Σ [[w·n ]]Σ ds =

∫
Ω

f·w dx, ∀w ∈ WN . (19)

On choosingw = vε , we get, using the Korn inequality inΩf ,Ωp and the Poincaré inequality inΩf ,

µ0

∫
Ωf

|∇vε|2 dx + 2ε
∫
Ωp

|∇vε|2 dx +
µ0 K0

2

∫
Ωp

|vε|2 dx + M0

∫
Σ

|vε·n|Σ |
2 ds + S0

d−1−
j=1

∫
Σ

[[vε·τj ]]2Σ ds

+
1
ε

∫
Σ

[[vε·n ]]
2
Σ ds ≤ c(Ωf ,Ωp, µ0, K0)‖f‖2

0,Ω . (20)

With this bound, there exist v ∈ WS/D and ṽ ∈ H1(Ωp)
d such that, up to a subsequence, vε tends to v in WS/D or

H1(Ωf )
d

× L2(Ωp)
d weakly when ε → 0 (strongly in L2(Ωf )

d) and
√
ε vpε tends to ṽ in H1(Ωp)

d weakly. Indeed, since
the trace application is continuous, we have v|Γf = 0. Moreover we have ‖[[vε·n ]]Σ ‖0,Σ ≤ c(Ωf , µ0, K0, f)

√
ε and thus

[[v·n ]]Σ = 0, v·n|Σ = v·n|Σ in L2(Σ). Since [[vε·τ ]]Σ is bounded in L2(Σ) (for ατ > 0 and thus S0 > 0) and because
vf ∈ H1(Ωf )

d has a trace in H
1
2 (Σ)d, there exists v⋆Σ ∈ L2(Σ)d defined as the weak limit of the trace vpε|Σ in L2(Σ)d. Hence

we define the tangential velocity jump: [[v·τ ]]Σ = (vf
|Σ − v⋆Σ )·τ ∈ L2(Σ) and we have v ∈ WS–D.

Then p0ε defined by Corollary 4.1 is bounded in L20(Ω) because, using the Nečas theorem as for (13), we have ‖p0ε‖0,Ω ≤

c(Ωf ,Ωp)

‖∇p0ε‖−1,Ωf + ‖∇p0ε‖−1,Ωp


≤ C , since ‖vε‖1,Ωf ,

√
ε ‖vε‖1,Ωp and ‖vε‖0,Ωp are all bounded. Thus, there exists

p0 ∈ L20(Ω) such that, up to a subsequence, p0ε weakly tends to p0 in L2(Ω).
Now taking the limit of (19) when ε → 0, there exists ψ ∈ L2(Σ) such that 1

ε
[[vε·n ]]Σ weakly tends to ψ in L2(Σ) and

we get that v is the unique solution inWS–D satisfying the weak form

2
∫
Ωf

µd(v):d(w) dx +

∫
Ωp

µK−1 v·w dx +

∫
Σ

Mv|Σ ·w|Σ ds +

d−1−
j=1

∫
Σ

Sjj [[v·τj ]]Σ [[w·τj ]]Σ ds

+

∫
Σ

ψ [[w·n ]]Σ ds =

∫
Ω

f·w dx, ∀w ∈ WN . (21)

The existence and uniqueness of the solution v ∈ WS–D to the above problem can also be ensured a priori by the generalized
Lax–Milgram theorem of Nečas [26] with an inf-sup stability inequality. Also, using test functions w = ϕ ∈ C∞

c compactly
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supported either inΩf or inΩp and such that divϕ = 0 inΩf or inΩp respectively, and using the Stokes formula, we get
with the De Rham theorem the existence and uniqueness (Ωf andΩp being connected) of the pressure restrictions p0|Ωf and
p0|Ωp in L20(Ωf ) and L20(Ωp) respectively. This defines the pressure field p0 = p0|Ωf + p0|Ωp in L20(Ω) over the whole domain
Ω such that (v, p0) verifies the Stokes/Darcy equations (3)–(5) a.e. in Ωf ∪ Ωp with µ̃ = 0 in (4), i.e. the Darcy equation.
Because of the uniqueness, the whole sequence (vε, p0ε)weakly converges to (v, p0) in WS/D × L20(Ω).

Then, to satisfy the interface conditions (17) and (18) onΣ , i.e. inH−
1
2 (Σ)d, the pressure field p ∈ L2(Ω)must be adjusted

from the zero-average pressure p0 ∈ L20(Ω) such that (p − p0)|Σ = C0 and [[p − p0 ]]Σ = C1, where the constants C0, C1

are calculated as in Theorem 2.1 with (v, p0) defined above. Since fp, vp ∈ L2(Ωp)
d, we have by the Darcy equation that

pp belongs to H1(Ωp). The limit boundary condition (16) which reduces to pp
|Γp

= 0 in H
1
2 (Γp) can be also satisfied if the

following compatibility condition holds:

C0
−

1
2
C1

= CN with CN
= −

1
|Γp|

∫
Γp

p0 ds, (22)

such that pf = pf0 + C0
+ C1/2 and pp = pp0 + CN define the pressure solution p ∈ L2(Ωf )×H1

0Γp(Ωp). We can also interpret
ψ in a similar way toψ in the proof of Theorem 3.2.

Now, if vp belongs to H1(Ωp)
d with sufficient regularity assumptions, then v ∈ WS–D ∩WN , v⋆Σ = vp

|Σ ∈ H
1
2 (Σ)d and we

prove the strong convergence and a global error estimate in Ω . The equation giving the difference between (19) and (21)
reads: for allw ∈ WN ,

2
∫
Ωf

µ d(vε − v):d(w) dx + 2ε
∫
Ωp

d(vε − v):d(w) dx +

∫
Ωp

µK−1 (vε − v)·w dx +

∫
Σ

M (vε − v)|Σ ·w|Σ ds

+

d−1−
j=1

∫
Σ

Sjj [[(vε − v)·τj ]]Σ [[w·τj ]]Σ ds +
1
ε

∫
Σ

[[vε·n ]]Σ [[w·n ]]Σ ds

= −2ε
∫
Ωp

d(v):d(w) dx −

∫
Σ

ψ [[w·n ]]Σ ds. (23)

Then, choosingw = (vε − v) ∈ WN with [[v·n ]]Σ = 0, we get the error estimate for the velocity:

2µ0 ‖d(vε − v)‖2
0,Ωf

+ ε ‖d(vε − v)‖2
0,Ωp

+ µ0K0 ‖vε − v‖2
0,Ωp

+ M0 ‖(vε − v)|Σ‖
2
0,Σ

+ S0
d−1−
j=1

‖[[(vε − v)·τj ]]Σ ‖
2
0,Σ +

1
2ε

‖[[vε·n ]]Σ ‖
2
0,Σ ≤

1
2


2‖∇v‖2

0,Ωp
+ ‖ψ‖

2
0,Σ


ε (24)

which yields the result with the Korn and Poincaré inequalities inΩf orΩp. Finally, the pressure estimate is obtained using
the Nečas theorem and we get, with the Stokes and Darcy equations,

‖p0ε − p0‖0,Ω ≤ C

‖vε − v‖1,Ωf + ‖vε − v‖0,Ωp + ε ‖∇vε‖0,Ωp


, (25)

which concludes the proof with (24) since
√
ε ‖∇vε‖0,Ωp is bounded with (20). We thus obtain the given error estimate,

typical of the existence of a spurious boundary layer in this singular perturbation problem (see e.g. [32]), as for the L2-
penalty method analysed in [7,33]. �

Acknowledgement

Special thanks to one of the reviewers for his or her valuable comments which improved the preprint version.

References

[1] L.E. Payne, B. Straughan, Analysis of the boundary condition at the interface between a viscous fluid and a porous medium and related modelling
questions, J. Math. Pures Appl. 77 (1998) 317–354.

[2] B. Goyeau, D. Lhuillier, D. Gobin, M.G. Velarde, Momentum transport at a fluid–porous interface, Int. J. Heat Mass Transfer 46 (2003) 4071–4081.
[3] H.C. Brinkman, A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles, Appl. Sci. Res. A 1 (1947) 27–34.
[4] H.C. Brinkman, On the permeability of media consisting of closely packed porous particles, Appl. Sci. Res. A 1 (1947) 81–86.
[5] G. Allaire, Homogenization of the Navier–Stokes equations in open sets perforated with tiny holes. I: Abstract framework, a volume distribution of

holes, Arch. Ration. Mech. Anal. 113 (3) (1991) 209–259.
[6] U. Hornung (Ed.), Homogenization and porous media, in: Interdisciplinary Applied Mathematics, vol. 6, Springer-Verlag, New York, 1997.
[7] Ph. Angot, Analysis of singular perturbations on the Brinkman problem for fictitious domainmodels of viscous flows, Math. Methods Appl. Sci. 22 (16)

(1999) 1395–1412.
[8] J.-L. Auriault, On the domain of validity of Brinkman’s equation, Transp. Porous Media 79 (2) (2009) 215–223.



810 P. Angot / Applied Mathematics Letters 24 (2011) 803–810

[9] J.A. Ochoa-Tapia, S. Whitaker, Momentum transfer at the boundary between a porousmedium and a homogeneous fluid—I. Theoretical Development,
Int. J. Heat Mass Transfer 38 (1995) 2635–2646.

[10] J.A. Ochoa-Tapia, S. Whitaker, Momentum transfer at the boundary between a porous medium and a homogeneous fluid—II. Comparison with
experiment, Int. J. Heat Mass Transfer 38 (1995) 2647–2655.

[11] M. Chandesris, D. Jamet, Boundary conditions at a planar fluid–porous interface for a Poiseuille flow, Int. J. Heat Mass Transfer 49 (13-14) (2006)
2137–2150.

[12] F.J. Valdés-Parada, J. Alvarez-Ramírez, B. Goyeau, J.A. Ochoa-Tapia, Computation of jump coefficients for momentum transfer between a porous
medium and a fluid using a closed generalized transfer equation, Transp. Porous Media 78 (2009) 439–457.

[13] G.S. Beavers, D.D. Joseph, Boundary conditions at a naturally permeable wall, J. Fluid Mech. 30 (1967) 197–207.
[14] Ph. Angot, Etude d’une cellule modélisant un bicouche fluide–poreux - Problèmes d’interface and anémométrie laser-Döppler, Mémoire de DEA de

Mécanique, Université Bordeaux I, juin 1985. www.trefle.u-bordeaux1.fr.
[15] P.G. Saffman, On the boundary condition at the surface of a porous medium, Stud. Appl. Math. L 2 (1971) 93–101.
[16] W. Jäger, A. Mikelić, On the interface boundary condition of Beavers and Joseph and Saffman, SIAM J. Appl. Math. 60 (4) (2000) 1111–1127.
[17] W.L. Layton, F. Schieweck, I. Yotov, Coupling fluid flow with porous media flow, SIAM J. Numer. Anal. 40 (2003) 2195–2218.
[18] M. Discacciati, A. Quarteroni, Navier–Stokes/Darcy coupling: modeling, analysis and numerical approximation, Rev. Mat. Complut. 22 (2) (2009)

315–426.
[19] Y. Cao, M. Gunzburger, F. Hua, X. Wang, Coupled Stokes–Darcy model with Beavers–Joseph interface boundary condition, Commun. Math. Sci. 8 (1)

(2010) 1–25.
[20] Ph. Angot, F. Boyer, F. Hubert, Numerical modelling of flow in fractured porous media, in: Marrakech, F. Benkhaldoun, D. Ouazar, S. Raghay (Eds.),

Finite Volumes for Complex Applications IV, Hermes Science, 2005, pp. 249–260.
[21] Ph. Angot, F. Boyer, F. Hubert, Asymptotic and numerical modelling of flows in fractured porous media, Math. Modelling Numer. Anal. 43 (2) (2009)

239–275.
[22] Ph. Angot, A fictitious domain model for the Stokes/Brinkman problem with jump embedded boundary conditions, C. R. Math. Acad. Sci. Paris, Ser. I

348 (11–12) (2010) 697–702.
[23] Ph. Angot, A model of fracture for elliptic problems with flux and solution jumps, C. R. Acad. Sci. Paris, Ser. I Math. 337 (6) (2003) 425–430.
[24] Ph. Angot, A unified fictitious domain model for general embedded boundary conditions, C. R. Acad. Sci. Paris, Ser. I Math. 341 (11) (2005) 683–688.
[25] Ph. Angot, Well-posed Stokes/Brinkman and Stokes/Darcy problems for coupled fluid–porous viscous flows, in: American Institute of Physics,

AIP Conference Proceedings, 8th ICNAAM 2010, Rhodes, Greece, 19–25 September 2010.
[26] J. Nečas, Les méthodes directes en théorie des équations elliptiques, Masson, Paris, 1967.
[27] P. Grisvard, Elliptic problems in nonsmooth domains, in: Monographs and Studies in Mathematics, in: Adv. Publish. Prog., vol. 24, Pitman, Boston,

1985.
[28] J.-L. Lions, Problèmes aux limites dans les équations aux dérivées partielles, Presses de l’Université de Montréal, 1965.
[29] F. Boyer, P. Fabrie, Éléments d’analyse pour l’étude de quelques modèles d’écoulements de fluides visqueux incompressibles, in: Mathématiques and

Applications, vol. 52, Springer-Verlag, 2006.
[30] R. Temam, Navier–Stokes Equations; Theory and Numerical Analysis, North-Holland, 1986 (1st ed. 1977).
[31] V. Girault, P.A. Raviart, Finite Element Methods for the Navier–Stokes Equations, in: Springer Series in Comput. Math., vol. 5, Springer-Verlag, 1986

(1st ed. 1979).
[32] J.-L. Lions, Perturbations singulières dans les problèmes aux limites et en contrôle optimal, in: Lect. Notes in Math., vol. 323, Springer, Berlin, 1973.
[33] G. Carbou, P. Fabrie, Boundary layer for a penalization method for viscous incompressible flow, Adv. Differential Equations 8 (12) (2003) 1453–1480.

http://www.trefle.u-bordeaux1.fr

	On the well-posed coupling between free fluid and porous viscous flows
	Introduction
	A well-posed Stokes/Brinkman problem with jump embedded boundary conditions
	The Stokes/Brinkman problem with Ochoa-Tapia and Whitaker interface conditions
	The Stokes/Darcy problem with Beavers and Joseph interface conditions
	Acknowledgement
	References


