

JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS

Journal of Computational and Applied Mathematics 155 (2003) 383-387

www.elsevier.com/locate/cam

Geometric properties of subclasses of starlike functions

Adam Lecko*, Agnieszka Wiśniowska

Department of Mathematics, Rzeszów University of Technology, ul. W. Pola 2, 39-959 Rzeszów, Poland

Received 22 July 2002; received in revised form 10 October 2002

Abstract

We present some geometric characterization of the class k- \mathscr{GT} consisting of the so-called k-starlike functions.

© 2003 Elsevier Science B.V. All rights reserved.

1. Introduction

Let $U(\zeta, r)$ denote the open disk with center at ζ and radius r, and U = U(0, 1) be the unit disk. By \mathscr{S} , as usual, we denote the class of functions f that are analytic and univalent in U, normalized by f(0) = f'(0) - 1 = 0. The class of all starlike univalent functions will be denoted here by \mathscr{ST} . By $k \cdot \mathscr{UCV}$, $0 \leq k < \infty$, we denote the class of all k-uniformly convex functions introduced in [3]. Recall that a function $f \in \mathscr{S}$ is said to be k-uniformly convex in U, if the image of every circular arc contained in U with center at ζ , where $|\zeta| \leq k$, is convex. Note that the class $1 \cdot \mathscr{UCV}$ coincides with the class \mathscr{UCV} of uniformly convex functions, introduced in [1]. Moreover, for k = 0 we get the class of all convex univalent functions. It is known that $f \in k \cdot \mathscr{UCV}$ if and only if it satisfies the following condition:

$$\operatorname{Re}\left\{1+\frac{zf''(z)}{f'(z)}\right\} > k \left|\frac{zf''(z)}{f'(z)}\right|, \quad z \in U, \ 0 \le k < \infty.$$

$$\tag{1}$$

For k = 1 we get one-variable characterization of \mathscr{UCV} obtained in [5], and independently in [6].

We consider the class k- \mathscr{GT} , $0 \le k < \infty$, of k-starlike functions (see [4]) which are associated with k-uniformly convex functions by the relation

$$f \in k - \mathscr{UCV} \Leftrightarrow z f'(z) \in k - \mathscr{GT}.$$
(2)

* Corresponding author.

E-mail addresses: alecko@prz.rzeszow.pl (A. Lecko), agawis@ewa.prz.rzeszow.pl (A. Wiśniowska).

Thus, the class k- \mathscr{GT} , $0 \le k < \infty$, is the subfamily of \mathscr{G} , consisting of functions that satisfy the analytic condition

$$\operatorname{Re}\frac{zf'(z)}{f(z)} > k \left| \frac{zf'(z)}{f(z)} - 1 \right|, \quad z \in U.$$
(3)

The aim of this paper is to present some geometric characterization of k-starlike functions.

2. Main results

Note that $f \in \mathscr{S}$ is k-uniformly convex in U, if $f(U(\zeta, r) \cap U)$ is a convex domain for every r > 0 and each ζ such that $|\zeta| \leq k$.

To find a similar property for functions in the class k- \mathscr{GT} , we need the following two-variable analytic characterization of the class of k-uniformly convex functions.

Theorem 1 (Kanas and Wiśniowska [3]). Let $f \in \mathcal{S}$ and $0 \leq k < \infty$. Then $f \in k$ - \mathcal{UCV} if and only if

$$\operatorname{Re}\left\{1+\frac{(z-\zeta)f''(z)}{f'(z)}\right\} \ge 0, \quad z \in U, \ |\zeta| \le k$$

Now, from relation (2) we immediately get

Theorem 2. Let $f \in \mathcal{S}$ and $0 \leq k < \infty$. Then $f \in k-\mathcal{GF}$ if and only if

Re
$$\left\{\frac{\zeta}{z} + \frac{(z-\zeta)f'(z)}{f(z)}\right\} \ge 0, \quad z \in U, \ |\zeta| \le k.$$

The last inequality can be rewritten as

$$\operatorname{Re}\frac{(z-\zeta)f'(z)}{f(z)} \ge -\operatorname{Re}\frac{\zeta}{z}, \quad z \in U, \ |\zeta| \le k$$

Hence we have

Corollary 1. Let $0 \leq k < \infty$. If $f \in k$ - \mathscr{GF} , then

$$\operatorname{Re}\frac{(z-\zeta)f'(z)}{f(z)} \ge 0$$

for $z \in U$, $|\zeta| \leq k$ and $\pi/2 \leq \operatorname{Arg}\{\zeta/z\} \leq 3\pi/2$.

Let γ be a circular arc with center at ζ , and let f be analytic on γ . Then the arc $\Gamma = f(\gamma)$ is starlike with respect to a point w_0 if and only if (see [2])

$$\operatorname{Re}\frac{(z-\zeta)f'(z)}{f(z)-w_0} \ge 0, \quad z \in \gamma.$$
(4)

Fig. 1. 0 < R < 1, $r = \sqrt{|\zeta|^2 + R^2} = |\zeta - z_1| = |\zeta - z_2|$.

It is known that every $f \in k - \mathscr{GT}$ has a continuous extension to \overline{U} , f(U) is bounded and $f(\partial U)$ is a rectifiable curve (for details see [4]).

As a consequence of the above facts, Theorem 2 and Corollary 1, we obtain

Theorem 3. Let $0 \le k < \infty$. If $f \in k$ - \mathscr{GT} , then $f(U(\zeta, r) \cap U(0, R))$ is a starlike domain for every ζ , r, R such that

$$0 < R \leq 1$$
, $|\zeta| \leq k$ and $r \geq \sqrt{|\zeta|^2 + R^2}$.

Proof. If k = 0, then $0 - \mathscr{GT} = \mathscr{GT}$ and since $\zeta = 0$ we get the well-known result: if $f \in \mathscr{GT}$, then f(U(0,R)) is a starlike domain for every $0 < R \leq 1$.

Let $0 < k < \infty$ and $|\zeta| \leq k$. For fixed ζ consider two cases:

1. Let 0 < R < 1.

(a) Let $r \ge |\zeta| + R$. Then $U(\zeta, r) \cap U(0, R) = U(0, R)$. But $k - \mathscr{GT}$ as a subclass of \mathscr{GT} maps every disk U(0, R) onto a starlike domain so the result follows.

(b) If $\sqrt{|\zeta|^2 + R^2} \leq r < |\zeta| + R$, then in view of Corollary 1 and (4), f, as an element of $k - \mathscr{GT}$, maps every arc $|z - \zeta| = r$ lying in U(0, R), connecting the intersection points z_1 and z_2 of $\partial U(0, R)$ and $U(\zeta, r)$ onto a starlike arc with respect to the origin. Hence and from starlikeness of f(U(0, R)) we obtain the thesis (see Fig. 1).

2. Let
$$R = 1$$
.

(a) It is clear that the result holds for $r \ge |\zeta| + 1$ since then $U(\zeta, r) \cap U = U$ (see Fig. 2). (b) Let $\sqrt{|\zeta|^2 + 1} \le r < |\zeta| + 1$. Then we have

$$U(\zeta,r) \cap U = \bigcup_{0 < \rho < 1} U(\zeta,r) \cap U(0,\rho).$$

Fig. 2. R = 1, $r \ge |\zeta| + 1$.

Fig. 3. R = 1, $\sqrt{|\zeta|^2 + 1} \le r < |\zeta| + 1$.

From case 1(b) with ρ instead of R we see that every domain $f(U(\zeta, r) \cap U(0, \rho))$ is starlike, so is $f(U(\zeta, r) \cap U)$ as a union of starlike domains (see Fig. 3). \Box

It turns out that k-starlike functions of the form

$$f(z) = z - \sum_{n=2}^{\infty} a_n z^n, \quad a_n \ge 0,$$
(5)

are precisely those functions that are starlike of order k/(k+1) (see [7]). Thus, from Theorem 3, we get the following geometric characterization for functions with negative coefficients that are starlike of order α .

Corollary 2. Fix $\alpha \in (0, 1)$. If f is of the form (5) and

$$\operatorname{Re}\frac{zf'(z)}{f(z)} > \alpha, \quad z \in U,$$

then $f(U(\zeta,r) \cap U(0,R))$ is a starlike domain for every ζ , r, R, such that

$$0 < R \leqslant 1$$
, $|\zeta| \leqslant \frac{\alpha}{1-\alpha}$, $r \geqslant \sqrt{|\zeta|^2 + R^2}$.

References

- [1] A.W. Goodman, On uniformly convex functions, Ann. Polon. Math. 56 (1991) 87-92.
- [2] A.W. Goodman, Univalent functions, Mariner Publishing Co, Tampa, FL, 1983.
- [3] S. Kanas, A. Wiśniowska, Conic regions and k-uniform convexity, J. Comput. Appl. Math. 104 (1999) 327-336.
- [4] S. Kanas, A. Wiśniowska, Conic regions and starlike functions, Rev. Roumaine Math. Pures Appl. 45 (4) (2000) 647 –657.
- [5] W. Ma, D. Minda, Uniformly convex functions, Ann. Polon. Math. 52 (2) (1992) 165-175.
- [6] F. Rønning, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc. 118 (1993) 189–196.
- [7] K.G. Subramanian, G. Murugusundaramoorthy, P. Balasubrahmanyam, H. Silverman, Subclasses of uniformly convex and uniformly starlike functions, Math. Japon. 42 (3) (1995) 517–522.