Geometric properties of subclasses of starlike functions

Adam Lecko*, Agnieszka Wiśniowska
Department of Mathematics, Rzeszów University of Technology, ul. W. Pola 2, 39-959 Rzeszów, Poland

Received 22 July 2002; received in revised form 10 October 2002

Abstract

We present some geometric characterization of the class $k-\mathscr{Y} \mathscr{T}$ consisting of the so-called k-starlike functions.

(c) 2003 Elsevier Science B.V. All rights reserved.

1. Introduction

Let $U(\zeta, r)$ denote the open disk with center at ζ and radius r, and $U=U(0,1)$ be the unit disk. By \mathscr{S}, as usual, we denote the class of functions f that are analytic and univalent in U, normalized by $f(0)=f^{\prime}(0)-1=0$. The class of all starlike univalent functions will be denoted here by $\mathscr{S} \mathscr{T}$. By $k-\mathscr{U} \mathscr{C} \mathscr{V}, 0 \leqslant k<\infty$, we denote the class of all k-uniformly convex functions introduced in [3]. Recall that a function $f \in \mathscr{S}$ is said to be k-uniformly convex in U, if the image of every circular arc contained in U with center at ζ, where $|\zeta| \leqslant k$, is convex. Note that the class $1-\mathscr{U} \mathscr{C} \mathscr{V}$ coincides with the class $\mathscr{U C V} \mathscr{V}$ of uniformly convex functions, introduced in [1]. Moreover, for $k=0$ we get the class of all convex univalent functions. It is known that $f \in k-\mathscr{U} \mathscr{C} \mathscr{V}$ if and only if it satisfies the following condition:

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>k\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right|, \quad z \in U, 0 \leqslant k<\infty \tag{1}
\end{equation*}
$$

For $k=1$ we get one-variable characterization of $\mathscr{U} \mathscr{C} \mathscr{V}$ obtained in [5], and independently in [6].
We consider the class $k-\mathscr{S} \mathscr{T}, 0 \leqslant k<\infty$, of k-starlike functions (see [4]) which are associated with k-uniformly convex functions by the relation

$$
\begin{equation*}
f \in k-\mathscr{U} \mathscr{C} \mathscr{V} \Leftrightarrow z f^{\prime}(z) \in k-\mathscr{S} \mathscr{T} . \tag{2}
\end{equation*}
$$

[^0]Thus, the class $k-\mathscr{S} \mathscr{T}, 0 \leqslant k<\infty$, is the subfamily of \mathscr{S}, consisting of functions that satisfy the analytic condition

$$
\begin{equation*}
\operatorname{Re} \frac{z f^{\prime}(z)}{f(z)}>k\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|, \quad z \in U . \tag{3}
\end{equation*}
$$

The aim of this paper is to present some geometric characterization of k-starlike functions.

2. Main results

Note that $f \in \mathscr{S}$ is k-uniformly convex in U, if $f(U(\zeta, r) \cap U)$ is a convex domain for every $r>0$ and each ζ such that $|\zeta| \leqslant k$.

To find a similar property for functions in the class $k-\mathscr{S} \mathscr{T}$, we need the following two-variable analytic characterization of the class of k-uniformly convex functions.

Theorem 1 (Kanas and Wiśniowska [3]). Let $f \in \mathscr{S}$ and $0 \leqslant k<\infty$. Then $f \in k$ - $\mathscr{U} \mathscr{C} \mathscr{V}$ if and only if

$$
\operatorname{Re}\left\{1+\frac{(z-\zeta) f^{\prime \prime}(z)}{f^{\prime}(z)}\right\} \geqslant 0, \quad z \in U,|\zeta| \leqslant k
$$

Now, from relation (2) we immediately get
Theorem 2. Let $f \in \mathscr{S}$ and $0 \leqslant k<\infty$. Then $f \in k-\mathscr{S} \mathscr{T}$ if and only if

$$
\operatorname{Re}\left\{\frac{\zeta}{z}+\frac{(z-\zeta) f^{\prime}(z)}{f(z)}\right\} \geqslant 0, \quad z \in U,|\zeta| \leqslant k
$$

The last inequality can be rewritten as

$$
\operatorname{Re} \frac{(z-\zeta) f^{\prime}(z)}{f(z)} \geqslant-\operatorname{Re} \frac{\zeta}{z}, \quad z \in U,|\zeta| \leqslant k
$$

Hence we have

Corollary 1. Let $0 \leqslant k<\infty$. If $f \in k-\mathscr{S} \mathscr{T}$, then

$$
\operatorname{Re} \frac{(z-\zeta) f^{\prime}(z)}{f(z)} \geqslant 0
$$

for $z \in U,|\zeta| \leqslant k$ and $\pi / 2 \leqslant \operatorname{Arg}\{\zeta / z\} \leqslant 3 \pi / 2$.
Let γ be a circular arc with center at ζ, and let f be analytic on γ. Then the arc $\Gamma=f(\gamma)$ is starlike with respect to a point w_{0} if and only if (see [2])

$$
\begin{equation*}
\operatorname{Re} \frac{(z-\zeta) f^{\prime}(z)}{f(z)-w_{0}} \geqslant 0, \quad z \in \gamma \tag{4}
\end{equation*}
$$

Fig. 1. $0<R<1, r=\sqrt{|\zeta|^{2}+R^{2}}=\left|\zeta-z_{1}\right|=\left|\zeta-z_{2}\right|$.

It is known that every $f \in k-\mathscr{S} \mathscr{T}$ has a continuous extension to $\bar{U}, f(U)$ is bounded and $f(\partial U)$ is a rectifiable curve (for details see [4]).

As a consequence of the above facts, Theorem 2 and Corollary 1, we obtain

Theorem 3. Let $0 \leqslant k<\infty$. If $f \in k-\mathscr{S} \mathscr{T}$, then $f(U(\zeta, r) \cap U(0, R))$ is a starlike domain for every ζ, r, R such that

$$
0<R \leqslant 1, \quad|\zeta| \leqslant k \quad \text { and } \quad r \geqslant \sqrt{|\zeta|^{2}+R^{2}} .
$$

Proof. If $k=0$, then $0-\mathscr{S} \mathscr{T}=\mathscr{S} \mathscr{T}$ and since $\zeta=0$ we get the well-known result: if $f \in \mathscr{S} \mathscr{T}$, then $f(U(0, R))$ is a starlike domain for every $0<R \leqslant 1$.

Let $0<k<\infty$ and $|\zeta| \leqslant k$. For fixed ζ consider two cases:

1. Let $0<R<1$.
(a) Let $r \geqslant|\zeta|+R$. Then $U(\zeta, r) \cap U(0, R)=U(0, R)$. But $k-\mathscr{S} \mathscr{T}$ as a subclass of $\mathscr{S} \mathscr{T}$ maps every disk $U(0, R)$ onto a starlike domain so the result follows.
(b) If $\sqrt{|\zeta|^{2}+R^{2}} \leqslant r<|\zeta|+R$, then in view of Corollary 1 and (4), f, as an element of $k-\mathscr{P} \mathscr{T}$, maps every arc $|z-\zeta|=r$ lying in $U(0, R)$, connecting the intersection points z_{1} and z_{2} of $\partial U(0, R)$ and $U(\zeta, r)$ onto a starlike arc with respect to the origin. Hence and from starlikeness of $f(U(0, R))$ we obtain the thesis (see Fig. 1).
2. Let $R=1$.
(a) It is clear that the result holds for $r \geqslant|\zeta|+1$ since then $U(\zeta, r) \cap U=U$ (see Fig. 2).
(b) Let $\sqrt{|\zeta|^{2}+1} \leqslant r<|\zeta|+1$. Then we have

$$
U(\zeta, r) \cap U=\bigcup_{0<\rho<1} U(\zeta, r) \cap U(0, \rho) .
$$

Fig. 2. $R=1, r \geqslant|\zeta|+1$.

Fig. 3. $R=1, \sqrt{|\zeta|^{2}+1} \leqslant r<|\zeta|+1$.

From case 1 (b) with ρ instead of R we see that every domain $f(U(\zeta, r) \cap U(0, \rho))$ is starlike, so is $f(U(\zeta, r) \cap U)$ as a union of starlike domains (see Fig. 3).

It turns out that k-starlike functions of the form

$$
\begin{equation*}
f(z)=z-\sum_{n=2}^{\infty} a_{n} z^{n}, \quad a_{n} \geqslant 0 \tag{5}
\end{equation*}
$$

are precisely those functions that are starlike of order $k /(k+1)$ (see [7]). Thus, from Theorem 3, we get the following geometric characterization for functions with negative coefficients that are starlike of order α.

Corollary 2. Fix $\alpha \in(0,1)$. If f is of the form (5) and
$\operatorname{Re} \frac{z f^{\prime}(z)}{f(z)}>\alpha, \quad z \in U$,
then $f(U(\zeta, r) \cap U(0, R))$ is a starlike domain for every ζ, r, R, such that

$$
0<R \leqslant 1, \quad|\zeta| \leqslant \frac{\alpha}{1-\alpha}, \quad r \geqslant \sqrt{|\zeta|^{2}+R^{2}}
$$

References

[1] A.W. Goodman, On uniformly convex functions, Ann. Polon. Math. 56 (1991) 87-92.
[2] A.W. Goodman, Univalent functions, Mariner Publishing Co, Tampa, FL, 1983.
[3] S. Kanas, A. Wiśniowska, Conic regions and k-uniform convexity, J. Comput. Appl. Math. 104 (1999) 327-336.
[4] S. Kanas, A. Wiśniowska, Conic regions and starlike functions, Rev. Roumaine Math. Pures Appl. 45 (4) (2000) 647 -657.
[5] W. Ma, D. Minda, Uniformly convex functions, Ann. Polon. Math. 52 (2) (1992) 165-175.
[6] F. Rønning, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc. 118 (1993) 189-196.
[7] K.G. Subramanian, G. Murugusundaramoorthy, P. Balasubrahmanyam, H. Silverman, Subclasses of uniformly convex and uniformly starlike functions, Math. Japon. 42 (3) (1995) 517-522.

[^0]: * Corresponding author.

 E-mail addresses: alecko@prz.rzeszow.pl (A. Lecko), agawis@ewa.prz.rzeszow.pl (A. Wiśniowska).

