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In the present paper we examine the accuracy of the quasiclassical approach on the example of small-
angle electron elastic scattering. Using the quasiclassical approach, we derive the differential cross section 
and the Sherman function for arbitrary localized potential at high energy. These results are exact in the 
atomic charge number and correspond to the leading and the next-to-leading high-energy small-angle 
asymptotics for the scattering amplitude. Using the small-angle expansion of the exact amplitude of 
electron elastic scattering in the Coulomb field, we derive the cross section and the Sherman function 
with a relative accuracy θ2 and θ1, respectively (θ is the scattering angle). We show that the correction 
of relative order θ2 to the cross section, as well as that of relative order θ1 to the Sherman function, 
originates not only from the contribution of large angular momenta l � 1, but also from that of l ∼ 1. This 
means that, in general, it is not possible to go beyond the accuracy of the next-to-leading quasiclassical 
approximation without taking into account the non-quasiclassical terms.

© 2015 Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

In the high-energy QED processes in the atomic field, the char-
acteristic angles θ between the momenta of final and initial parti-
cles are small. Therefore, the main contribution to the amplitudes 
of the processes is given by the large angular momenta l ∼ ερ ∼
ε/� ∼ 1/θ , where ε, ρ , and � are the characteristic energy, impact 
parameter, and momentum transfer, respectively (h̄ = c = 1). The 
quasiclassical approach provides a systematic method to account 
for the contribution of large angular momenta. It was successfully 
used for the description of numerous processes such as charged 
particle bremsstrahlung, pair photoproduction, Delbrück scatter-
ing, photon splitting, and others [1–8]. The accurate description 
of such QED processes is important for the data analysis in mod-
ern detectors of elementary particles. The quasiclassical approach 
allows one to obtain the results for the amplitudes not only in the 
leading quasiclassical approximation but also with the first quasi-
classical correction taken into account [9–14]. We stress the dif-
ference between the quasiclassical approximation and the eikonal 
approximation often used in the description of the high-energy 
processes (see, e.g., Ref. [15]). This difference was recognized al-
ready in Ref. [3] where it was shown that the Coulomb corrections 
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to the cross section of e+e− pair photoproduction can be obtained 
within the quasiclassical approach but not within the eikonal ap-
proximation.

A natural question arises: how far can we advance in increas-
ing accuracy within the quasiclassical framework? In this paper we 
examine this question by considering the process of high-energy 
small-angle scattering of polarized electrons in the atomic field. 
The general form of this cross section reads (see, e.g., Ref. [15])

dσ

d�
= 1

2

dσ0

d�

[
1 + S ξ · (ζ 1 + ζ 2) + T ijζ i

1ζ
j

2

]
, ξ = p × q

|p × q| ,

(1)

where dσ0/d� is the differential cross section of unpolarized scat-
tering, p and q are the initial and final electron momenta, respec-
tively, ζ 1 is the polarization vector of the initial electron, ζ 2 is the 
detected polarization vector of the final electron, S is the so-called 
Sherman function, and T ij is some tensor. In Section 2 we use the 
quasiclassical approach to derive the small-angle expansion of the 
cross section of electron elastic scattering in arbitrary localized po-
tential. As for the unpolarized cross section dσ0/d�, its leading 
and subleading terms with respect to the scattering angle θ are 
known for a long time [16]. They can both be calculated within the 
quasiclassical framework. We show that the Sherman function S in 
the leading quasiclassical approximation is proportional to θ2. We 
compare this result with that obtained by means of the expansion 
with respect to the parameter Zα [17–21] (Z is the nuclear charge 
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number, α ≈ 1/137 is the fine structure constant). The leading in 
Zα contribution to the Sherman function is due to the interfer-
ence between the first and second Born terms in the scattering 
amplitude. In contrast to the quasiclassical result (proportional to 
θ2), it scales as θ3 at small θ . There is no contradiction between 
these two results because the expansion of our quasiclassical re-
sult with respect to Zα starts with (Zα)2. Therefore, depending on 
the ratio Zα/θ , the dominant contribution to the Sherman func-
tion is given either by the leading quasiclassical approximation or 
by the interference of the first two terms of the Born expansion. 
One could imagine that the terms O (θ3) in the function S can 
be ascribed to the next-to-leading quasiclassical correction and, 
therefore, they come from the contribution of large angular mo-
menta. However, by considering the case of a pure Coulomb field, 
we show in Section 3 that the account for the angular momenta 
l ∼ 1 is indispensable for these terms. Thus, we are driven to the 
conclusion that, in general, it is not possible to go beyond the ac-
curacy of the next-to-leading quasiclassical approximation without 
taking into account the non-quasiclassical terms.

2. Scattering of polarized electrons in the quasiclassical 
approximation

It is shown in Ref. [22] that the wave function ψp(r) in the 
arbitrary localized potential V (r) can be written as

ψp(r) = [g0(r, p) − α · g1(r, p) − � · g2(r, p)]u p ,

u p =
√

ε + m

2ε

(
φ

σ · p

ε + m
φ

)
, (2)

where φ is a spinor, α = γ 0γ , � = γ 0γ 5γ , m is the electron 
mass, and σ are the Pauli matrices. In this section we assume that 
m/ε � 1. In the leading quasiclassical approximation, the explicit 
forms of the functions g0 and g1, as well as the first quasiclassi-
cal correction to g0, are obtained in Ref. [9]. The first quasiclassical 
correction to g1 and the leading contribution to g2 are derived in 
Ref. [14]. The asymptotic form of the function ψp(r) at large dis-
tances r reads

ψp(r) ≈ ei p·ru p + eipr

r
[G0 − α · G1 − � · G2] u p . (3)

The functions G0, G1, and G2 can be easily obtained from the ex-
pressions for g0, g1, and g2 in Ref. [14]:

G0 = f0 + δ f0 , G1 = −�⊥
2ε

[ f0 + δ f0 + δ f1],

G2 = i
[q × p]

2ε2
δ f1 , (4)

where

f0 = − iε

2π

∫
dρ e−i�⊥·ρ [

e−iχ(ρ) − 1
]

,

δ f0 = − 1

4π

∫
dρ e−i�⊥·ρ−iχ(ρ)ρ

∂

∂ρ

∞∫
−∞

dxV 2(rx)

δ f1 = i

4π�2⊥

∫
dρ e−i�⊥·ρ−iχ(ρ)�⊥ · ρ

ρ

∂

∂ρ

∞∫
−∞

dxV 2(rx) ,

χ(ρ) =
∞∫

dxV (rx) , rx =
√

x2 + ρ2 . (5)
−∞
Here � = q − p, q = pr/r, ρ is a two-dimensional vector per-
pendicular to the initial momentum p, and the notation X⊥ =
X − (X · np)np is used for any vector X , np = p/p. For small scat-
tering angle θ � 1, we have δ f0 ∼ δ f1 ∼ θ f0. Taking this relation 
into account, we obtain the following expressions for dσ0

d�
, T ij , and 

S in Eq. (1)

dσ0

d�
= | f0|2

[
1 + 2 Re

δ f0

f0

]
, (6)

T ij = δi j + θε i jkξk ,

S = −mθ

ε
Im

δ f1

f0
. (7)

In Eqs. (6) and (7) we keep only the leading and the next-to-
leading terms with respect to θ in dσ0/d� and T ij , and the leading 
term in the function S . The form of T ij is a simple consequence of 
helicity conservation in ultrarelativistic scattering. The expression 
for dσ0/d� coincides with that obtained in the eikonal approxi-
mation [16]. Note that f0 → − f ∗

0 , δ f0 → δ f ∗
0 , and δ f1 → δ f ∗

1 at 
the replacement V → −V as it simply follows from Eq. (5). There-
fore, the quasiclassical result for the Sherman function S , Eq. (7), 
is invariant with respect to the replacement V → −V . In con-
trast, the term 2 Re(δ f0/ f0) in dσ0/d� in Eq. (6) results in the 
charge asymmetry in scattering, i.e., in the difference between 
the scattering cross sections of electron and positron, see, e.g., 
Ref. [15]. Similarly, the account for the first quasiclassical correc-
tion leads to the charge asymmetry in lepton pair photoproduction
and bremsstrahlung in an atomic field [13,14,22].

Let us specialize Eqs. (6) and (7) to the case of a Coulomb field. 
Substituting V (r) = −Zα/r in Eq. (5), we have

f0 = 2η

εθ2−2iη

�(1 − iη)

�(1 + iη)
,

δ f0

f0
= 1

4
πθηh(η) ,

δ f1

f0
= − πθηh(η)

4(1 + 2iη)
,

h(η) = �(1 + iη)�(1/2 − iη)

�(1 − iη)�(1/2 + iη)
, (8)

where η = Zα and �(x) is the Euler � function. Then, from Eqs. (6)
and (7) we obtain

dσ0

d�
= 4η2

ε2θ4

[
1 + πθη

2
Re h(η)

]
, (9)

S = πmηθ2

4ε
Im

h(η)

1 + 2iη
. (10)

The remarkable observation concerning the obtained Sherman 
function (10) is that it scales as θ2 while the celebrated Mott re-
sult [17] for the leading in η contribution to S scales as θ3 ln θ . 
There is no contradiction because the expansion of (10) in η starts 
with η2, while the Mott result is proportional to η. Thus, the Mott 
result is not applicable if θ � η. In the next section we obtain the 
result (10), along with smaller corrections with respect to θ , by ex-
panding the exact Coulomb scattering amplitude represented as a 
sum of partial waves. We show that the Mott result is recovered 
in the order θ3, as it should be.

Let us now qualitatively discuss the influence of the finite nu-
clear size on the cross section dσ0/d� and the Sherman func-
tion S . We use the model potential

V (r) = − η√
r2 + R2

, (11)

where R is the characteristic nuclear size. For this potential we 
take all integrals in Eq. (4) and obtain
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Fig. 1. The asymmetry A, Eq. (13), in units ηθ as a function of b = θεR for η = 0.1
(solid curve), η = 0.4 (dashed curve), and η = 0.7 (dash-dotted curve).

Fig. 2. The Sherman function S , Eq. (14), in units S0 = mη2θ2/ε as a function of 
b = θεR for η = 0.1 (solid curve), η = 0.4 (dashed curve), and η = 0.7 (dash-dotted 
curve).

dσ0

d�
= 4η2

ε2θ4

∣∣∣∣bK1−iη(b)

� (1 + iη)

∣∣∣∣
2

(1 + A) , (12)

A = πηθ

2
Re

�(1 + iη)(2K1/2−iη(b) − bK3/2−iη(b))

�(3/2 + iη)
√

2bK1−iη(b)
, (13)

S = πηmθ2

4ε
Im

�(1 + iη)K1/2−iη(b)

� (3/2 + iη)
√

2b K1−iη(b)
, b = θεR , (14)

where Kν(x) is the modified Bessel function of the second kind. 
The quantity A in Eq. (13) is nothing but the charge asymmetry,

A = dσ0(η) − dσ0(−η)

dσ0(η) + dσ0(−η)
. (15)

As it should be, in the limit b → 0 the results (12) and (14) co-
incide with Eqs. (9) and (10), respectively. In Fig. 1 and Fig. 2 we 
plot the asymmetry A and the Sherman function S as the functions 
of b for a few values of η. It is seen that both functions strongly 
depend on b and η. It is interesting that they both change their 
signs at b ∼ 1. Presumably, the latter feature takes place also for 
the commonly used parametrizations of the nuclear potential.

3. Small-angle expansion of the Coulomb scattering amplitude

In this section we investigate the nontrivial interplay between 
the contributions of large angular momenta l (quasiclassical con-
tribution) and l ∼ 1 to the cross section and Sherman function for 
electron elastic scattering in the Coulomb field. Note that, for small 
angle θ , the main contribution to the scattering amplitude is given 
by l � 1 not only in the ultrarelativistic limit, but for arbitrary 
β = p/ε as well. Therefore, we treat the parameters η = Zα and 
ν = Zα/β as independent ones. We perform small-angle expan-
sion of the amplitude, but do not assume that η � 1, in contrast 
to the consideration in Ref. [21].

The elastic scattering amplitude reads (see, e.g., Refs. [15,23]):

M f i = i

2p
φ

†
f

[
G (θ) − iηm

p
F (θ)

− i

(
G (θ) tan

θ

2
+ iηm

p
F (θ) cot

θ

2

)
ξσ

]
φi ,

where φi and φ f are the spinors of the initial and final electron, 
respectively. The functions F (θ) and G (θ) have the form

F (θ) = −
∞∑

l=1

� (γl − iν)

� (γl + iν + 1)
eiπ(l−γl)l [Pl − Pl−1] , (16)

G (θ) = − cot
θ

2

dF

dθ
. (17)

Here Pl = Pl (cos θ) is the Legendre polynomial, γl = √
l2 − η2.

The unpolarized cross section dσ/d� and Sherman function 
S (θ) are readily expressed in terms of F (θ) and G (θ):

dσ0

d�
= 1

4p2

{
|G (θ)|2
cos2 θ

2

+ η2m2 |F (θ)|2
p2 sin2 θ

2

}
(18)

S (θ) = ηmp sin θ Re FG∗

|G (θ)|2 p2 sin2 θ
2 + η2m2 |F (θ)|2 cos2 θ

2

We want to find the expansion of dσ0/d� and S with respect 
to θ . The main contribution to the sum in Eq. (16) comes from the 
region of large l. Let us write the function F as

F = Fa + Fb ,

Fa = −
∞∑

l=1

� (l − iν)

� (l + iν + 1)
l Tl [Pl − Pl−1] ,

Fb = −
∞∑

l=1

[
� (γl − iν)

� (γl + iν + 1)
eiπ(l−γl) − � (l − iν)

� (l + iν + 1)
Tl

]

× l [Pl − Pl−1] ,

Tl = 1 + iπ

2l
η2 + η2

2l2

(
1 + 2iν − π2η2

4

)
. (19)

The quantity Tl is the expansion of �(γl−iν)/�(l−iν)
�(γl+iν+1)/�(l+iν+1)

eiπ(l−γl)

over 1/l up to O  
(
1/l2

)
. The sum in the definition of Fa can be 

taken analytically at θ � 1. In order to do this we use the integral 
representation

� (l − iν)

� (l + iν + 1)
= 1

� (1 + 2iν)

∞∫
0

dy
y2iν

(1 + y)l+iν+1

and take the sum over l using the generating function for the Leg-
endre polynomials. We obtain

Fa (θ) = 1

� (1 + 2iν)

∞∫
0

dy y2iν

(1 + y)1+iν

{
2s2 (2 + y) (1 + y)

�3

+ i

2
πη2

(
1 − y

�

)
+ η2

2

(
1 + 2iν − π2η2

4

)

× ln

[(
1 − s2

) (
2s2 + y + �

)
y + � − 2s2 (1 + y)

]}
, (20)
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where s = sin θ
2 and � = √

y2 + 4s2 (1 + y). As it follows from 
Eq. (20), the convenient variable for the small-angle expansion 
is s � 1. There are two regions, which contribute to the integral 
over y:

I. y ∼ s � 1 , II. y ∼ 1 .

The first region provides contributions ∝ sn+2iν (n = 0, 1, . . .), 
while the second region provides contributions ∝ sn (n = 2, 3, . . .). 
Calculating the integral with the method of expansion by regions, 
see, e.g., Ref. [24], we arrive at

Fa (θ) ≈ � (1 − iν)

� (1 + iν)
(t0 + t1 + t2) ,

t0 = s2iν , t1 = iπη2 s1+2iν

1 + 2iν
h(ν) ,

t2 = i
s2+2iνη2

2 (1 + iν)ν

[
1 + 2iν − π2η2

4

]

− is2η2

[
1

2ν
+ i + π

2 (1 − 2iν)
− π2η2

8ν

]
. (21)

Here t0 and t1 correspond, respectively, to the leading quasiclas-
sical approximation and first quasiclassical correction (|t0| = 1, 
|t1| ∼ θ1). The relative magnitude of t2 is θ2 and it is tempting 
to interpret t2 as a second quasiclassical correction. However, this 
is not true because the magnitude of t2 is the same as that of 
the individual terms at l ∼ 1 in the sum in Eq. (16). It is easy to 
check that the contribution to t2 proportional to s2+2iν remains in-
tact even if the sum over l starts from some l0 � 1, provided that 
l0 � 1/s. Therefore, this contribution is natural to identify with the 
second quasiclassical correction.

Let us now consider the function Fb in Eq. (19). The sum over 
l converges at l ∼ 1, and we can approximate Pl (θ) − Pl−1 (θ) by 
−2ls2. Since Fb in the leading order is proportional to s2, it is nat-
ural to sum up Fb and the term in Fa (θ), Eq. (21), proportional 
to s2. Finally we have

F ≈ FQC + δF ,

FQC = � (1 − iν)

� (1 + iν)
s2iν

[
1 + iπη2

1 + 2iν
h (ν) s

+ iη2

2 (1 + iν)ν

(
1 + 2iν − π2η2

4

)
s2

]
,

δF = � (1 − iν)

� (1 + iν)
C (η,ν) s2 , (22)

where

C (η,ν) = −iη2

[
1

2ν
+ i + π

2 (1 − 2iν)
− π2η2

8ν

]

+ � (1 + iν)

� (1 − iν)

∞∑
l=1

2l2
[

� (γl − iν) eiπ(l−γl)

� (γl + iν + 1)

− � (l − iν)

� (l + iν + 1)
Tl

]
, (23)

Tl is defined in Eq. (19), and h(ν) is given in Eq. (8). The small-
angle expansion of the function F was investigated in Ref. [21]
at small η and arbitrary ν . Expanding in η up to η4 under the 
sum sign in Eq. (23) and taking the sum over l, we find the agree-
ment with Ref. [21] up to a misprint in Eq. (3.27) of that paper (in 
the right-hand side of Eq. (3.27) one should make the replacement 
Fig. 3. The real (solid curve) and imaginary (dashed curve) parts of C(η, ν), Eq. (23), 
at ν = η as functions of η.

j → j + 1). The function C(η, ν) strongly depends on the param-
eters η and ν . This statement is illustrated by Fig. 3 where the 
real and imaginary parts of C(η, ν) at ν = η (β = 1) are shown as 
functions of η.

Substituting Eq. (22) in Eq. (18), we find

dσ0

d�
= ν2

4p2s4

[
1 + πηβ Re h (ν) s

− 2ν−1 Im[s2iνC∗ (η,ν)]s2
]

, (24)

S (θ) = ms2

εν

{
πη2 Im

[
h (ν)

1 + 2iν

]
+

[
η2

1 + ν2

(
1 − 3π2η2

4
(
1 + 4ν2

)
)

− π2η4

ν
Im

[
h (ν)

1 + 2iν

]
Re h (ν)

− 2 Re[(1 + iν) s2iνC∗ (η,ν)]
]

s

}
. (25)

It is quite remarkable that the second correction to the cross sec-
tion entirely comes from interference between the quasiclassical 
and nonquasiclassical terms. Therefore, this correction cannot be 
calculated within the quasiclassical approach. In Ref. [9] we have 
shown that the high-energy small-angle elastic scattering ampli-
tude obtained within the quasiclassical approach with the first 
quasiclassical correction taken into account coincides with that ob-
tained within the eikonal approach. The eikonal approach allows 
one to perform the regular expansion of the wave function, see, 
e.g., Refs. [25,26]. Therefore, one may ask whether it is possible to 
obtain the O (s2) term in Eq. (24) within the eikonal approach. It 
is easy to understand that the answer is ‘no’. Indeed, the eikonal 
scattering amplitude for �⊥ �= 0 has the form

M f i = − ip

2π

∫
dρe−i�⊥·ρ−iχ0(ρ)φ

†
f

×
[

1 − iχ1 − iχ2 − χ2
1 /2 + . . .

]
φi . (26)

For the Coulomb field we have χ0 = 2Zν ln pρ . Due to dimen-
sional reasons the eikonal corrections have the form χn>0(ρ) =
Pn(ln pρ)/(pρ)n , where Pn(x) are some polynomials with coeffi-
cients being the 2 × 2 matrices acting on the spinors. Performing 
the change of variables ρ → (2/�⊥)ρ , we obtain

M f i = −s2iν 2ip

π�2⊥

∫
dρe−2iδ·ρρ−2iνφ

†
f

{
1 − i

s

ρ
P1

(
ln

ρ

s

)

− s2

2

[
iP2

(
ln

ρ )
+ 1

P2
1

(
ln

ρ )]
+ . . .

}
φi , (27)
ρ s 2 s
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Fig. 4. The dependence of the differential cross section dσ0/d�, Eq. (18), in units 
�0 = ν2

4p2 s4 , as a function of s = sin θ
2 for ε � m and ν = η = 0.6. Solid curve: the 

exact result, obtained using Eqs. (16) and (17); dashed curve: the result obtained 
using Eqs. (22) and (17); dotted curve: the result obtained using F in the next-to-
leading quasiclassical approximation (given by Fa(θ), Eq. (21), with t2 omitted).

where δ = �⊥/�⊥ is the unit vector. Taking the integral over ρ
we find that the amplitude M f i in the eikonal approach reads

M f i = �(1 − iν)

�(1 + iν)
s2iν ν

2ps2
φ

†
f [1 + sQ1(ln s)

+ s2Q2(ln s) + . . .]φi , (28)

where Q1 and Q2 are some polynomials with the coefficients be-
ing the functions of ν and η. The common phase factor s2iν factor 
disappears in |M f i |2. Therefore, Eq. (28) cannot reproduce the os-
cillatory factor Im[s2iνC∗ (η, ν)] in Eq. (24). This is not surprising 
because the applicability condition of the eikonal approximation is 
violated at small distances.

We are now in position to discuss the nontrivial interplay be-
tween the small-angle approximation and the small-ν approxima-
tion. Keeping only the leading in ν terms in the coefficients of the 
expansion in s, we have

dσ0

d�
= ν2

4p2s4
(1 + sπηβ − s2β2) (29)

S (θ) = 2ηms2

ε
[πη(2 ln 2 − 1) + βs ln s] (30)

The cross section (29) agrees with the small-angle expansion of 
the corresponding result in Refs. [18,19]. The function S , Eq. (30), 
agrees with the small-angle expansion of the Sherman function in 
Ref. [20]. The term proportional to s ln s in (30) corresponds to the 
celebrated Mott result [17].

We see that the relative magnitude of the first and the sec-
ond corrections with respect to s to the differential cross section 
is proportional to the ratio ν/θ of two small parameters, and this 
ratio can be smaller or larger than unity. The same phenomenon 
takes place also in the Sherman function: the ratio of the leading 
quasiclassical term and the correction is proportional to ν/(θ ln θ).

Our result was obtained in the small-angle approximation, 
θ � 1. However, it appears that our expression (22) for the func-
tion F agrees with the exact formula (16) surprisingly well for 
all θ . Therefore, using Eqs. (22) and (17) in Eq. (18) one obtains a 
remarkable approximation for both the cross section and the Sher-
man function in all region of angles and nuclear charge numbers. 
This statement is illustrated in Fig. 4 where we plot the ultrarel-
ativistic cross section for Z = 82 (lead) as a function of s = sin θ

2 . 
Note that the agreement at large angles disappears if one neglects 
in Eq. (22) the terms of order s2 (dotted curve).
4. Conclusion

In the present paper we have examined the accuracy of the 
quasiclassical approach when applied to the calculation of the 
small-angle electron elastic scattering cross section, including the 
polarization effects. Using the quasiclassical wave function, we 
have derived the differential cross section with the account of 
the first correction in θ , Eq. (6), and the Sherman function in the 
leading order in θ , Eq. (7). The results (6) and (7) are valid for 
ultrarelativistic scattering in the localized central potential of arbi-
trary strength. In particular, we have investigated the nuclear size 
effect and found that both the Sherman function and the charge 
asymmetry (arising from the correction to the cross section) may 
change their signs in the region where the momentum transfer �
is of the order of inverse nuclear radius R−1. Using the small-angle 
expansion of the exact amplitude of electron elastic scattering in 
the Coulomb field, we have derived the cross section, Eq. (24), and 
the Sherman function, Eq. (25), with a relative accuracy θ2 and 
θ1, respectively. The coefficients of the derived expansions in θ are 
the exact functions of the parameters η = Zα and ν = Zα/β . In 
particular, Eqs. (24) and (25) are valid even for β � 1. We have 
shown that the correction of relative order θ2 to the cross sec-
tion, as well as that of relative order θ to the Sherman function, 
originate not only from the contribution of large angular momenta 
l � 1, but also from that of l ∼ 1. Thus, we are driven to the con-
clusion that, in general, it is not possible to go beyond the accuracy 
of the next-to-leading quasiclassical approximation without taking 
into account the non-quasiclassical terms.
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