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It has been previously shown that bilirubin prevents the up-regulation of inducible nitric oxide synthase
(iNOS) in response to LPS. The present study examines whether this effect is exerted through modulation
of Toll-Like Receptor-4 (TLR4) signaling. LPS-stimulated iNOS and NADPH oxidase (Nox) activity in RAW
264.7 murine macrophages was assessed by measuring cellular nitrate and superoxide (O2

−) production,
respectively. The generation of both nitrate and O2

− in response to LPS was suppressed by TLR4 inhibitors,
indicating that activation of iNOS and Nox is TLR4-dependent. While treatment with superoxide dis-
mutase (SOD) and bilirubin effectively abolished LPS-mediated O2

− production, hydrogen peroxide and
nitrate release were inhibited by bilirubin and PEG-catalase, but not SOD, supporting that iNOS activation
is primarily dependent upon intracellular H2O2. LPS treatment increased nuclear translocation of the
redox-sensitive transcription factor Hypoxia Inducible Factor-1α (HIF-1α), an effect that was abolished
by bilirubin. Cells transfected with murine iNOS reporter constructs in which the HIF-1α-specific hypoxia
response element was disrupted exhibited a blunted response to LPS, supporting that HIF-1α mediates
Nox-dependent iNOS expression. Bilirubin, but not SOD, blocked the cellular production of interferon-β,
while interleukin-6 production remained unaffected. These data support that bilirubin inhibits the TLR4-
mediated up-regulation of iNOS by preventing activation of HIF-1α through scavenging of Nox-derived
reactive oxygen species. Bilirubin also suppresses interferon-β release via a ROS-independent mechan-
ism. These findings characterize potential mechanisms for the anti-inflammatory effects of bilirubin.

& 2015 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Expression of the inducible isoform of nitric oxide synthase
(iNOS), which generates nitric oxide (NO) from the catalyzed
conversion of L-arginine to L-citrulline, is triggered by the binding
of LPS to Toll-Like Receptor 4 (TLR4) [1,2]. In rodent models of
sepsis involving the intravenous administration of LPS, selective
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ker).
iNOS inhibitors prevent cardiovascular collapse and abrogate liver,
lung, renal, and gastrointestinal injury [3], supporting that NO
mediates many of the harmful consequences of endotoxemia [4].
We [5] and others [6] have demonstrated that the administration
of bilirubin, an endogenous product of heme catabolism, to LPS-
treated rats ameliorates tissue injury, reduces serum nitrate
concentrations, and attenuates the expression of iNOS message
in the liver. Physiologically relevant concentrations of bilirubin
(r50 mME3 mg/dL) also have been shown to suppress LPS-sti-
mulated iNOS up-regulation and nitrate production by murine
macrophages in vitro [5,6]. However, the mechanism(s) by which
bilirubin exerts these effects remains poorly delineated.

LPS binding to TLR4 triggers two distinct intracellular signaling
pathways [7]. The adaptor protein myeloid differentiation factor
(MyD88)-dependent pathway culminates in the early activation of
MAPK and nuclear factor-κB (NF-κB), leading to increased expression
of inflammatory cytokines, such as tumor necrosis factor-α (TNFα)
and interleukin-6 (IL-6) [8]. The MyD88-independent Toll/IL-1 re-
ceptor (TIR) domain-containing adaptor (TRIF)-dependent pathway
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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is characterized by the late-phase activation of NF-κB, up-regulation
of iNOS and interferon-β (Inf-β), and downstream modulation of
numerous interferon-inducible genes [7,9]. In previous studies, bi-
lirubin has not been found to influence the early activation of NF-κB
or MAPK in response to LPS [5,6], suggesting that it does not exert an
effect on the MyD88-dependent TLR4 pathway. On the other hand,
the ability of bilirubin to modulate TRIF-dependent TLR4 signaling
has not previously been investigated.

It is postulated that NADPH oxidases (Nox), which generate
superoxide anion (O2

−) from molecular oxygen, play an important
role in LPS-stimulated iNOS up-regulation. Support for this con-
clusion is derived from the observation that the increased ex-
pression of iNOS in response to LPS is abolished by Nox inhibitors,
such as apocynin [6,10,11]. It has further been shown that treat-
ment of macrophages with LPS stimulates the cellular production
of reactive oxygen species (ROS) [12,13], a process that also is ef-
ficiently abrogated by Nox inhibitors [6,14,15]. Specific evidence
that superoxide mediates TLR4 signaling is provided by the de-
monstrated co-localization of TLR4 with the Nox4 isoform, and by
the fact that knockdown of Nox4 prevents both LPS-induced ROS
generation and NF-κB activation [16]. It is notable that bilirubin is
able to efficiently scavenge Nox-derived ROS [6,17], likely due to
its potent antioxidant properties [18] and its ability to undergo
redox cycling within the cell [19]. To assess whether bilirubin
suppresses LPS-stimulated up-regulation of iNOS by inhibiting Nox
activity, we investigated the effect of bilirubin on TLR4-mediated
iNOS expression in RAW 264.7 murine macrophages. Our findings
indicate that bilirubin disrupts TRIF-dependent TLR4 signaling and
modulates iNOS expression by scavenging NADPH oxidase-derived
superoxide, an effect that is mediated by the hypoxia-inducible
transcription factor-1α (HIF-1α).
2. Materials and methods

2.1. Materials

Bilirubin (bilirubin IXα) was obtained from Porphyrin Products
(Logan, UT) and further purified according to the method of
McDonagh and Assisi [20]. Hydroethidine (dihydroethidium) and
Accutase were purchased from Life Technologies. Apocynin was
obtained from Cayman Chemical. Superoxide dismutase (SOD;
bovine erythrocyte, BioUltra, Z97% SDS-PAGE), catalase (bovine
liver), catalase-polyethylene glycol (PEG-catalase), (7)-α-toco-
pherol (synthetic, Z96% HPLC), 2,3,7,8-tetrachlorodibenzo-p-di-
oxin (TCDD), and the TLR-4 inhibitors cinnamaldehyde, masto-
paran, and resveratrol were purchased from Sigma-Aldrich.

2.2. Cell culture

RAW 264.7 murine macrophages and MOVAS, an SV-40 im-
mortalized murine aortic smooth muscle cell line, were obtained
from ATCC (Rockville, MD). Cells were grown in Dulbecco’s Mod-
ified Eagle Medium containing 4 mM L-glutamine, 4.5 g/L glucose,
1.5 g/L sodium bicarbonate, and 10% FBS at 37 °C in 5% CO2. Bilir-
ubin stock solutions were prepared freshly in 50 mM potassium
phosphate (pH 12), as described previously [5]. The addition of an
aliquot (r1% v:v) of bilirubin solubilized in this manner had no
appreciable effect on the pH of the medium, and neither bilirubin
nor the potassium phosphate vehicle altered cell viability.

2.3. Assays for cellular nitrate and cytokine production

RAW cells (�2�106) were seeded and grown in 12-well plates
containing 1 mL media. Nitrate accumulation in the cell super-
natant was determined 24 h following the addition of the
indicated treatments using a Nitrate/Nitrite Colorimetric Assay kit
(Cayman Chemical, Ann Arbor, MI), as previously described [5].
Briefly, nitrite is produced from the catalyzed conversion of nitrate
and then quantified colorimetrically using Griess reagent, based
on a standard curve. IL-6, Inf-β, and TNFα levels in the cell culture
medium were quantified using commercially available mouse
ELISA kits (Thermo Scientific, Rockford, IL). Data are normalized to
cellular protein, as determined by Bio-Rad protein assay, which
trivially impacted results.

2.4. Measurement of cellular superoxide production

Cells were grown on 6 well-plates, lifted with Accutase, wa-
shed, and suspended in 5 mL of phenol red-free RPMI at a con-
centration of 2�106 cells/mL. Cell suspensions were loaded with
10 mM hydroethidine (HE) at 37 °C for 5 min and then maintained
on ice until 5 min prior to the initiation of the experiments (when
the indicated treatments are added), which were performed at
37 °C. Fetal bovine serum (10%) was added to the cell suspension
in order to maintain bilirubin solubility. Cells were activated by the
addition of 16 mM phorbol myristate acetate (PMA) or 1 mg/mL LPS,
along with various inhibitor compounds, as described. Superoxide
production was quantified by the time-dependent increase in
mean fluorescence intensity (ex: 488 nm, em: 610 nm long pass
filter) of the cell population, as measured by flow cytometry.

2.5. Determination of cellular hydrogen peroxide production

Cellular hydrogen peroxide was quantified using an Amplex
Red assay kit (Molecular Probes), according to the manufacturer’s
instructions. Briefly, RAW 264.7 cells were seeded in 96-well
plates (�30,000 cells per well) and grown in phenol red-free
RPMI. Cells were activated by the addition of PMA or LPS, along
with 50 mM Amplex Red (10-acetyl-3,7-dihydroxyphenoxazine)
and 0.1 U/mL HRP at a total volume of 100 mL. Hydrogen peroxide
production was quantified from the time-dependent changes in
absorbance at 560 nm, using a standard curve.

2.6. Quantitative PCR analysis

Total cellular RNA was extracted and RT-PCR was performed
using an Mx3000P system (Stratagene, Cedar Creek, TX). Primers
for murine iNOS (sense: 5′-acatgcagaatgagtaccgg-3′; antisense: 5′-
tcaacatctcctggtggaac-3′), cytochrome P450, family 1, subfamily A,
polypeptide 1 (Cyp1A1; sense: 5′-cgggatccttacagcccaagcagc-3′, 5′-
ggggtacccagagcactcttcaggag-3′) and GAPDH (sense: 5′-tcaa-
cagcaactcccactcttcca-3′; antisense: 5′-accctgttgctgtagccgtattca-3′)
were employed, with the latter used to control for amplification.

2.7. Determination of HIF-1α activation

HIF-1α DNA binding activity was measured using an ELISA-
based HIF-1α Transcription Factor Assay Kit (Cayman Chemical),
according to the manufacturer’s instructions. Briefly, 1�107 cells
were grown in a 100 mm culture disk and, following the indicated
treatments and incubation times, nuclear proteins were isolated
using a Cayman Nuclear Extraction Kit. The nuclear extracts were
incubated with HIF-1α response elements immobilized on a 96-
well plate, and the HIF transcription factor complex detected using
an HIF-1α-specific primary antibody and HRP-conjugated sec-
ondary antibody.

2.8. Plasmid preparation and luciferase reporter assay

A 1192-bp fragment from the 5′-flanking region of the wild-
type (WT) murine iNOS gene (kindly provided by R. Lyons,
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University of New Mexico Health Science Center, Albuquerque,
NM) was inserted into a pGL3-basic vector containing a luciferase
reporter (Promega). Plasmid HRE-del, possessing a deletion of the
6-bp hypoxia response element (HRE) sequence (�226 to �221),
and HRE-TT, containing a 2-bp exchange (TACGTG to TATTTG)
within the HRE of the iNOS promoter, also were created. RAW
264.7 cells were transiently transfected with the indicated re-
porter constructs using Effectene Transfection Reagent (Qiagen,
Inc.). Promoter activity was quantified utilizing a dual Luciferase
Reporter Assay System (Promega) and employing a co-transfected
Renilla reporter vector to control for transfection efficiency.

2.9. Statistical methods

Datawere analyzed using a statistical program (SSI SigmaStat, San
Jose, CA). Mean values were compared by ANOVA with t-test to as-
sess for significance. For data that were not normally distributed, a
Kruskal–Wallis analysis of variance on ranks was performed.
3. Results

3.1. Role of NADPH oxidases and reactive oxygen species in med-
iating TLR4 signaling

To evaluate the contribution of NADPH oxidase-derived
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Fig. 1. Modulation of PMA- and LPS-induced cellular superoxide production. RAW 264.7
(1 mg/mL). Superoxide production, as reflected in the time-dependent changes in cellula
cells were treated with PMA (triangles) or vehicle (circles) in the presence (gray symbo
(1 mM; gray symbols) on cells treated with PMA (triangles), LPS (squares), or vehicle (circ
(gray inverted triangles) with vehicle (solid squares) on superoxide production by LPS-tr
treated cells (solid circles) in the absence of LPS stimulation. In panel D, the effect of 100
cells is displayed. Symbols reflect the mean (7S.E.M.) of 5 experiments. *po0.05 vs. a
superoxide to TLR4 signaling, we employed a fluorescent assay
using hydroethidine, a redox-sensitive probe with specificity
for O2

− [21]. RAW 264.7 cells were pre-loaded with HE and su-
peroxide production was quantified by measuring the time-de-
pendent changes in cellular fluorescence intensity using FACS. We
first validated the assay using the classical Nox activator phorbol
myristate acetate (PMA). As expected, incubation of cells in the
presence of PMA induced a sharp increase in HE fluorescence that
was markedly attenuated by simultaneous treatment with a
maximally effective dose (500 U) of SOD (Fig. 1A), which catalyzes
the conversion of superoxide to H2O2 and O2. As shown in Fig. 1B,
treatment of RAW 264.7 cells with LPS also increases cellular su-
peroxide generation, albeit at substantially lower levels than PMA.
Notably, apocynin, failed to suppress superoxide production by
RAW 264.7 cells in response to stimulation with either PMA or LPS
(Fig. 1B), indicating that this compound did not inhibit Nox ac-
tivity. While surprising, these findings are consistent with pre-
vious reports that apocynin does not impede the function of
NADPH oxidase in cells lacking significant myeloperoxidase ac-
tivity, which is required for apocynin activation [22,23].

Concordant with our observations in PMA-treated cells, in-
cubation of RAW 264.7 cells with SOD abrogated LPS-stimulated
superoxide production (Fig. 1C). Similarly, 50 mM bilirubin was
found to efficiently suppress superoxide production in both LPS-
activated and in non-stimulated cells (Fig. 1C), in the absence of
any alteration in cell viability (data not shown). We speculate that
bilirubin appears to be more effective than SOD in this assay
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Fig. 2. Modulation of cellular hydrogen peroxide production. RAW 264.7 cells were
activated with PMA (16 mM) or LPS (1 mg/mL), and hydrogen peroxide levels de-
termined by Amplex Red assay. Panel A shows the time course of hydrogen per-
oxide production following treatment with PMA (triangles), LPS (squares), or ve-
hicle (Veh; circles). Symbols reflect the mean (7S.E.M.) of 8 experiments. In panel
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50 mM), and apocynin (Apo; 1 mM) on PMA-induced hydrogen peroxide production
at 1 h is depicted. Panel C summarizes the effect of SOD, apocynin, and bilirubin on
LPS-stimulated RAW 264.7 cells at 1 h. Bars reflect the mean (7S.E.M.) of 5 ex-
periments. *po0.05 Vs. vehicle; **po0.05 vs. PMAþvehicle; ***po0.05 vs.
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system because it also scavenges hydrogen peroxide, which is able
to react with HE to a limited extent [21]. Additionally, we show
that cinnamaldehyde, which inhibits TLR4 signaling by preventing
receptor oligomerization [24], completely suppresses LPS-stimu-
lated O2

− production (Fig. 1D), supporting that TLR4 mediates the
increase in Nox activity induced by LPS.
Since superoxide undergoes both catalyzed and spontaneous
dismutation to form hydrogen peroxide, we further assessed cel-
lular H2O2 by Amplex Red colorimetric assay. In a similar manner
to superoxide, both PMA and LPS were observed to induce a time-
dependent increase in hydrogen peroxide production by RAW
264.7 cells, with PMA producing a more robust response (Fig. 2A).
However, in contrast with its marked inhibitory effect on super-
oxide production (Fig. 1A and C), SOD did not significantly alter
cellular ROS levels (Fig. 2B), most likely because it generates H2O2

from O2
−. In support of this proposition, the SOD mimetics [25]

Tiron (disodium 4,5-dihydroxy-1,3-benzenedisulfonate) and
TEMPOL (4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl) also
did not alter cellular hydrogen peroxide generation in response to
PMA (Fig. 2B). Notably, treatment with the cell permeant poly-
ethylene-glycolated form of catalase (PEG-catalase) [26], an en-
zyme that degrades hydrogen peroxide to form water and oxygen,
significantly reduced PMA-stimulated H2O2 formation, while the
non-PEG form of the enzyme had minimal effect, suggesting that
PMA-stimulated H2O2 is primarily intracellular. As anticipated,
bilirubin, which rapidly and spontaneously traverses cellular
membranes [27], also reduced cellular H2O2 production in re-
sponse to PMA (Fig. 2B) and to LPS (C), providing further support
that it acts as a potent scavenger of Nox-derived ROS. In contrast,
despite a lack of effect on PMA- or LPS-stimulated superoxide
production, apocynin caused a marked reduction in cellular hy-
drogen peroxide (Fig. 2B and C) supporting, as previously pro-
posed by Heumüller et al. [22], that it acts as a H2O2 scavenger.

3.2. Mechanism of LPS-stimulated nitrate production by murine
macrophages

When RAW 264.7 macrophages were incubated in the presence
of LPS, a marked increase in cellular nitrate production (indicative
of iNOS activity) was observed (Fig. 3A). Consistent with previous
reports [5,6], this effect was dose-dependently attenuated by si-
multaneous treatment with bilirubin or apocynin (Fig. 3A). To
determine whether the activation of iNOS by LPS is mediated
through TLR4, cells were incubated in the presence of the TLR4
inhibitors cinnamaldehyde [24], mastoparan [28], or resveratrol
[29]. Each of these agents effectively inhibited cellular nitrate
production in response to LPS (Fig. 1B), validating an essential role
for TLR4 in mediating LPS-induced iNOS activity [30,31]. Since
treatment with LPS previously has been shown to activate NADPH
oxidase (Nox) and generate reactive oxygen species in RAW 264.7
macrophages [13,32], we sought to determine whether LPS-sti-
mulated iNOS activation is ROS-dependent. We found that treat-
ment with PEG-catalase, but not SOD, effectively blocked cellular
nitrate production (Fig. 3C), supporting that hydrogen peroxide
(rather than superoxide) is the primary ROS mediator of LPS-in-
duced iNOS activity. Consistent with these findings, the anti-
oxidant α-tocopherol also was found to exhibit an, albeit modest,
dose-dependent inhibitory effect on nitrate release (Fig. 3C). The
observation that nitrate production is similar between cells sti-
mulated with 16 mM PMA or 1 mg/mL LPS (Fig. 3C) suggests that
iNOS expression is regulated by relatively low-levels (�1 mM) of
ROS (Fig. 2C).

3.3. Effect of bilirubin on the activation of HIF-1α by LPS

We have validated that LPS stimulates iNOS activity in RAW
264.7 cells through a mechanism that involves TLR4-dependent
ROS production. As there exists a growing body of evidence that
Nox-derived ROS modulate the activity of hypoxia inducible fac-
tor-1α [33] and, as activation of HIF-1α induces iNOS expression
through binding to a hypoxia response element (HRE) on the iNOS
promoter [34,35], we postulated that bilirubin may inhibit LPS-
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Fig. 3. LPS-stimulated nitrate production by murine macrophages. RAW 264.7 cells
were incubated in the presence or absence of 1 mg/mL LPS, and nitrate levels in the
medium were assessed at 24 h by colorimetric assay. In panel A, cells were si-
multaneously incubated for 24 h with bilirubin (Bili; 20, 50 mM), apocynin (Apo;
0.2, 1.0 mM), or vehicle (Veh). Panel B displays the effect of co-incubating cells with
the TLR4 inhibitors cinnamaldehyde (Cin; 50, 100 mM), mastoparan (Mas; 20,
50 mM), and resveratrol (Res; 50, 100 mM), or the vehicle. Panel C shows the in-
fluence of PEG-catalase (Peg-cat; 100 U), SOD (500 U), α-tocopherol (α-toc; 40,
80 mM), on LPS-stimulated nitrate production and compares the effect with that of
PMA (16 mM). Bars reflect the mean (7S.E.M.) of 6 experiments. *po0.001 vs. all
other LPS treatments; **po0.05 vs. LPSþvehicle.
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stimulated iNOS up-regulation by scavenging Nox-generated ROS
and thereby prevent activation of HIF-1α. To test this hypothesis,
we created a luciferase reporter construct containing a 1.2-kb
fragment of the wild-type murine iNOS promoter, as well as two
constructs in which the 6-bp HRE was either deleted (HRE-del) or
disrupted by a 2-bp (CG to TT) exchange (HRE-TT) (Fig. 4A).

We first examined the effect of bilirubin on LPS-stimulated HIF-
1α nuclear binding activity in RAW 264.7 cells. As shown in
Fig. 4B, treatment with bilirubin abolishes the LPS-induced in-
crease in HIF-1α nuclear binding, supporting that bilirubin pre-
vents activation of HIF-1α. Consistent with the known inhibitory
effect of bilirubin on iNOS expression [5,6], we found that treat-
ment of transiently transfected RAW 264.7 cells with bilirubin
caused a significant reduction in the LPS-stimulated increase in
luciferase activity of the wild-type iNOS promoter construct
(Fig. 4B). The responses of both the HRE-TT (Fig. 4C) and HRE-del
(D) reporter constructs to LPS also were blunted as compared with
that of the wild-type construct, confirming a contribution of HIF-
1α to TLR4-mediated iNOS up-regulation. Deletion of the HRE also
abolished the inhibitory effect of bilirubin on the iNOS promoter
response to LPS (Fig. 4D), consistent with the proposition that
bilirubin suppresses iNOS up-regulation by preventing HIF-1α
activation.

3.4. Role of the aryl hydrocarbon receptor in modulating iNOS
expression

HIF-1α binds to the hypoxia response element as a hetero-
dimeric complex with the transcription cofactor aryl hydrocarbon
nuclear translocator (ARNT), a constitutively expressed protein
that resides within the cell nucleus and mediates several signal
transduction pathways. In addition to HIF-1α, ARNT also binds to
the aryl hydrocarbon receptor (AhR), which facilitates its associa-
tion with xenobiotic-responsive elements to mediate biological
effects of halogenated aromatic hydrocarbons. A functional inter-
ference between the hypoxia (HIF-1α-dependent) and AhR path-
ways, through competition for ARNT binding, has previously been
proposed [36,37]. Since it has been reported that bilirubin serves
as an activator ligand for AhR [38,39], we speculated that bilirubin
might modulate iNOS expression by activating AhR which, in turn,
would compete with HIF-1α for binding to ARNT.

To assess whether activation of AhR could cause reciprocal in-
hibition of HIF-1α-mediated iNOS expression, we examined the
effect of TCDD, a prototypic AhR activator, on LPS-stimulated ni-
trate production in RAW 264.7 cells. As shown in Fig. 5A, treat-
ment with TCDD suppressed nitrate production in a dose-depen-
dent manner, supporting that activation of AhR can lead to re-
ciprocal inhibition of LPS-mediated (HIF-1α-dependent) iNOS up-
regulation. Because of an inability to detect expression of either of
the classic AhR inducible genes, Cyp1A1 or Cyp1B1, in RAW 264.7
cells, we utilized murine smooth muscle cells, which previously
have been shown to express AhR, Cyp1A1, and iNOS [40,41].
Treatment of MOVAS with LPS was found to up-regulate the ex-
pression of iNOS mRNA, while co-incubation with TCDD sig-
nificantly attenuated this response (Fig. 5B), consistent with the
proposed reciprocal inhibition of HIF-1α by AhR. In a parallel
manner, the TCDD-stimulated expression of Cyp1A1 was inhibited
by simultaneous treatment of MOVAS with LPS (Fig. 5C). On the
other hand, bilirubin, even at pathophysiological concentrations
(100 mM), exhibited a rather modest ability to induce Cyp1A1 ex-
pression in comparison with a half-maximal dose of TCDD
(Fig. 5D).

3.5. Influence of bilirubin on TLR-4 signaling pathways

The binding of LPS to TLR4 activates two principal downstream
signaling pathways [7]. The MyD88-dependent pathway leads to
activation of NF-κB and the production of pro-inflammatory cy-
tokines such as IL-6 and TNFα, while the TRIF-dependent pathway
induces interferon-β through activation of interferon regulatory
factor 3 (IRF3). To determine the effect of bilirubin on these two
TLR4 pathways, we treated RAW 264.7 cells with LPS and mea-
sured the production of IL-6, TNFα, and Inf-β (Fig. 6). Co-
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incubation of cells in the presence of bilirubin resulted in a marked
reduction in Inf-β production (Fig. 6B), in the absence of an effect
on IL-6 (A) or TNFα (data not shown), suggesting that bilirubin
specifically inhibits TRIF-dependent TLR4 signaling. In contrast,
apocynin inhibited both IL-6 and Inf-β production (Fig. 6A and B),
supporting a distinct mechanism of action. The induction of IL-6
and Inf-β also was effectively abolished by treatment with cinna-
maldehyde (Fig. 6C and D), mastoparan, or resveratrol (data not
shown), validating that LPS-induced cytokine production is
mediated through TLR4. While treatment of cells with SOD, PEG-
catalase, or α-tocopherol did not significantly alter LPS-stimulated
cytokine release (Fig. 6E and F), the combination of SOD plus PEG-
catalase was found to exert a modest inhibitory effect on Inf-β
production. These data suggest a limited role for ROS in mod-
ulating the TLR4-dependent induction of cytokines.
4. Conclusions

It was first speculated over 75 years ago that bilirubin exerts
anti-inflammatory effects when it was observed that patients with
rheumatoid arthritis experienced a remission of symptoms after
developing jaundice from superimposed liver disease [42]. More
recently, bilirubin has been shown to prevent tissue injury by in-
hibiting the up-regulation of iNOS by LPS [5,6]. In the present
studies, we attempt to elucidate the molecular mechanism
(s) underlying this effect. Employing RAW 264.7 murine macro-
phages, we validated that physiological concentrations of bilirubin
significantly inhibit iNOS expression and cellular nitrate produc-
tion in response to LPS treatment. Our finding that TLR4 receptor
antagonists effectively abrogate nitrate production (Fig. 3B), are
consistent with prior reports that cells [30] and animals [31] de-
ficient in TLR4 fail to up-regulate iNOS in response to LPS. We
further show that TLR4 inhibitors suppress LPS-mediated super-
oxide production (Fig. 1D), also in line with previous investigations
demonstrating that TLR4 interacts directly with NADPH oxidase
[16] and that TLR4 activation causes an increase in intracellular
ROS [43,44]. We found that both PEG-catalase and α-tocopherol,
but not SOD, suppress LPS-stimulated nitrate production (Fig. 3C),
suggesting that hydrogen peroxide (rather than superoxide) serves
as the primary ROS signaling intermediate involved in the reg-
ulation TLR4-mediated iNOS expression. Finally, we demonstrate
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that bilirubin, a potent chain-breaking antioxidant that undergoes
intracellular redox cycling [18,19], is an efficient scavenger of LPS-
induced O2

− and H2O2 (Figs. 1C and 2C). Taken together, these data
support that bilirubin suppresses TLR4-mediated up-regulation of
iNOS by scavenging Nox-derived reactive oxygen species.

As LPS activates HIF-1α through an ROS-dependent mechanism
[45] and, since the iNOS promoter contains a hypoxia responsive
element [34,35], we speculated that bilirubin inhibits the LPS-
stimulated induction of iNOS by suppressing ROS production, and
thereby preventing HIF-1α activation. This hypothesis is supported
by our finding that bilirubin blocks LPS-stimulated nuclear binding
of HIF-1α and that the induction of iNOS by LPS is significantly
blunted in cells transfected with promoter constructs where the
hypoxia response element has been modified or deleted (Fig. 4D
and E). The observation that bilirubin exerts no additional effect on
iNOS expression beyond that which occurs when the HRE is de-
leted from the promoter, further supports that HIF-1α is the pre-
dominant mechanism through which bilirubin acts to suppress
LPS-mediated iNOS induction.

Because bilirubin has been postulated to serve as an en-
dogenous ligand for the aryl hydrocarbon receptor [38,39], we
speculated that it may also regulate iNOS expression by activating
AhR, which could compete with HIF-1α for ARNT binding. While
we were able to demonstrate that the simultaneous activation of
HIF-1α with LPS and AhR with TCDD resulted in the reciprocal
regulation of message for iNOS and Cyp1A1, bilirubin was noted to
exert a quite modest effect on Cyp1A1 expression at all but su-
praphysiologic concentrations (Fig. 5D). These findings are
reasonably concordant with those of Sinal and Bend [38], who
demonstrated a dose-dependent increase in Cyp1A1 expression in
Hepa1c1c7 cells exposed to 100 µM bilirubin, reaching approxi-
mately one-third the level achieved with TCDD. Phelan et al. re-
ported a more robust effect of 50 mM bilirubin on Cyp1A1 induc-
tion in liver and intestinal cell lines, approaching that of TCDD
[39]; however, the absence of albumin in the culture medium in
these studies could have resulted in supraphysiologic free bilirubin
concentrations. Given its relatively modest influence on AhR ac-
tivation, we suspect that bilirubin is unlikely to regulate iNOS
expression through ARNT-dependent reciprocal inhibition of HIF-
1α, at least under physiological conditions. A proposed schema via
which bilirubin may modulate LPS-dependent iNOS up-regulation
is depicted in Fig. 7.

Although apocynin is commonly utilized as a specific inhibitor
of NADPH oxidase, it is well-established that this effect is depen-
dent upon activation by cellular myeloperoxidases [46]. In cells
lacking myeloperoxidase activity, apocynin not only fails to block
the generation of O2

−, but has variably been shown to scavenge
[22] or even augment [23] the production of H2O2. Consistent with
prior studies in HEK293 cells [22] and vascular fibroblasts [23], we
found that apocynin had no effect on either PMA or LPS-stimu-
lated superoxide production as measured by hydroethidine fluor-
escence. These findings suggest that apocynin does not inhibit Nox
activity in RAW 264.7 cells, at least over the 45 min incubation
period employed. Despite its lack of effect on superoxide pro-
duction, apocynin effectively blocked cellular hydrogen peroxide
generation (as assessed by Amplex Red), supporting the



Fig. 6. Effect of bilirubin, TLR4 inhibitors, and ROS scavengers on LPS-stimulated IL-6 and Inf-β production. RAW 264.7 cells were incubated in the presence or absence of
1 mg/mL LPS and the indicated inhibitors for 24 h, after which time the concentrations of IL-6 (left panels) and Inf-β (right panels) in the media were determined by ELISA.
Panels A and B show the effect of 50 mM bilirubin (Bili), 1 mM apocynin (Apo), or vehicle (Veh). Panels C and D demonstrate the dose-dependent effects of cinnamaldehyde
(Cin). In panels E and F, the effect of PEG-catalase (Peg cat; 100 U), SOD (500 U), the combination of SOD and PEG-catalase, and α-tocopherol (toc; 80 mM) are shown. Bars
reflect the mean (7S.E.M.) of 6 experiments. *po0.05 vs. LPSþvehicle.
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hypothesis originally put forth by Heumüller et al. that apocynin
acts as a scavenger for peroxide-dependent ROS [22]. These data
highlight the caution that is required when employing apocynin as
a Nox inhibitor.

One notable observation is that treatment of RAW 264.7 cells
with bilirubin results in a marked reduction in LPS-stimulated
interferon-β production, in the absence of an effect on cellular IL-6
release. These data suggest that bilirubin exerts a specific in-
hibitory effect on the TRIF-dependent TLR4 signaling pathway,
which also is believed to modulate iNOS up-regulation [47].
However, unlike iNOS, it appears unlikely that the influence of
bilirubin on Inf-β is mediated through HIF-1α, since the murine
Inf-β promoter does not possess a hypoxia response element [48].
Seleme et al. have shown that TLR3-mediated induction of Inf-β is
abolished in macrophages derived from mice possessing a spon-
taneous mutation in the Ncf1 gene encoding the p47phox subunit
of Nox, while production of IL-6 remained unaltered [49]. These
investigators further reported a reduction in TRIF message and



Fig. 7. Proposed mechanisms of bilirubin modulation of TLR4 signaling. The interaction of LPS with TLR4 activates the MyD88-dependent pathway (leading to the up-
regulation of IL-6), and the TRIF-dependent pathway (which induces the expression of Inf-β). LPS further stimulates the TLR4-dependent activity of Nox, resulting in the
generation of superoxide that dismutates to form hydrogen peroxide. Intracellular hydrogen peroxide stimulates the nuclear translocation and interaction of HIF-1α with
ARNT, which binds to the HRE in the iNOS promoter and induces gene expression. TCDD activates the translocation and binding of AhR to ARNT, causing up-regulation of
Cyp1A1 through binding to the xenobiotic response element (XRE). Reciprocal activation of Cyp1A1 and iNOS appears to occur as a result of competition for ARNT binding.
Bilirubin inhibits the LPS-stimulated induction of iNOS by scavenging Nox-derived ROS, and also suppresses the TLR4-dependent up-regulation of Inf-β. Due to the relatively
weak activation of AhR by physiological concentrations of bilirubin, it is unclear whether this mechanism plays a significant role in iNOS regulation under normal
circumstances.
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protein levels in TLR3-stimulated macrophages derived from these
superoxide-deficient animals, supporting that Nox is required for
activation of the TRIF-dependent pathway, at least with respect to
TLR3. However, our finding that incubation of RAW 264.7 cells in
the presence of SOD had no effect on LPS-mediated Inf-β pro-
duction suggests that this mechanism may not be relevant to
TLR4-mediated processes. Nevertheless, our data clearly show that
bilirubin disrupts TLR4-dependent Nox activation and interferon-β
production, which likely represents the molecular mechanism
(s) underlying its inhibitory effect on iNOS expression in response
to LPS. As Inf-β previously has been shown to act in a paracrine
manner to augment LPS-stimulated iNOS expression by murine
macrophages [50,51], the ability of bilirubin suppress interferon-β
production (in conjunction with its influence on HIF-1α activation)
could contribute to its observed inhibitory effect on iNOS up-
regulation.

Bilirubin is produced as part of the normal physiological de-
gradation of heme via the sequential activity of heme oxygenase
(HO) and biliverdin reductase. Although markedly elevated serum
bilirubin concentrations (420 mg/dLE340 mM) can cause neu-
rologic injury (kernicterus) in newborns, toxicity in adults is
negligible, and bilirubin has been administered intravenously to
patients without sequellae [52], reaching serum levels as high as
22 mg/dL (normalr1.2 mg/dLE20 mM). More modest (o3-fold)
elevations in serum bilirubin, at the levels employed in the present
studies, are commonly encountered in individuals with Gilbert’s
syndrome, a benign condition resulting from polymorphisms in
the gene encoding UGT1A1, the principal bilirubin conjugating
enzyme. Indeed, we have shown that oral [53] or intraperitoneal
[17] administration of bilirubin to rodents produces significant
physiological effects at serum levels that are 3- to 4-fold baseline
(r0.4 mg/dL) [5]. Nitric oxide generated by the activity iNOS has
been implicated in the pathogenesis of a number of clinical
disorders, including inflammatory bowel disease, cardiovascular
disease, rheumatoid arthritis, and cancer [54]. In animal models of
sepsis and intestinal malignancy, treatment with bilirubin has
been shown to ameliorate tissue injury and suppress iNOS ex-
pression in the liver, intestine, kidney, heart, and aortic tissues
[5,6,53]. Although human macrophages, even when stimulated,
produce little to no nitric oxide [55] as a result of epigenetic
modifications that effectively silence the iNOS gene [56], the fact
that epidemiological studies support an inverse association be-
tween serum bilirubin levels and cardiovascular disease [57,58],
inflammatory bowel disease [59], colorectal cancer [60], and
rheumatoid arthritis [61], raise the possibility of a potential ther-
apeutic benefit of bilirubin through its ability to inhibit iNOS up-
regulation.
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