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Abstract

Superconducting radio frequency (SRF) niobium cavities are widely used in high-energy physics to accelerate particle
beams in particle accelerators. The performance of SRF cavities is affected by the microstructure and purity of the niobium
sheet, surface quality, geometry, etc. Following optimum strain paths in the forming of these cavities can significantly con-
trol these parameters. To select these strain paths, however, information about the mechanical behavior, microstructure,
and formability of the niobium sheet is required. Due to the lack of information, first an extensive experimental study was
carried out to characterize the formability of the niobium sheet, followed by examining the suitability of Hill’s anisotropic
yield function to model its plastic behavior. Results from this study showed that, due to intrinsic behavior, it is necessary to
evolve the anisotropic coefficients of Hill’s yield function in order to properly model the plastic behavior of the niobium
sheet. The accuracy of the newly developed evolutionary yield function was verified by applying it to the modeling of the
hydrostatic bulging of the niobium sheet.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The superconducting accelerator niobium cavities, shown in Fig. 1, are traditionally fabricated by deep
drawing of subcomponents, which are later joined by electron beam welding. High purity niobium sheet is
the favorite material for the fabrication of these cavities. The knowledge of the mechanical properties of
the niobium sheet plays a significant role in the fabrication and treatment of these cavities. Most laboratories
working on superconducting accelerator technology have strict requirements for the niobium material that
they use, and have developed a quality assurance (QA) strategy for this purpose. Nevertheless, the quality con-
trol tests that they perform are limited in scope. But recently, due to the need for more powerful accelerators,
new fabrication techniques for making seamless cavities have been considered. The idea of manufacturing
seamless cavities would have the following benefits:
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Fig. 1. A six cell superconducting accelerator niobium cavity (Courtesy of National Superconducting Cyclotron Laboratory at Michigan
State University).
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• Elimination of electron beam welds.
• Improvement of mechanical and physical properties of the cavities.
• Reduction of manufacturing costs.
• Facilitating mass production.

Several attempts has been made by Kneisel and Palmieri (1999), Palmieri (1999), and Singer et al. (2001a,b)
to fabricate seamless cavities by using techniques such as tube hydroforming, explosive forming, or spinning of
deep drawn or spun tubes and more recently combination of swaging and hydroforming of high purity nio-
bium tubes.

It was shown by Pagani et al. (2001) that the most important issue to be considered in the manufacturing of
these cavities is the optimum design of its geometry; such as the cell length, iris radius, sidewall inclination and
position, cell radius, etc. Therefore, the forming processes must be carefully selected in order to produce the
desired geometry after deformation. For this purpose, understanding the material behavior and developing
accurate constitutive and mathematical models are important. Kneisel and Palmieri (1999) reported observing
non-uniformity in the hydroformed highly pure niobium cavities, which they thought was related to the non-
uniformity of the structure of the niobium tube.

Several investigators, e.g. Nakamachi and Xie (2003), Asensio et al. (2001) have shown that for good form-
ability, the material must have the following properties:

• High rm value (mean normal anisotropy coefficients).
• High n value (work hardening exponent).
• Low Dr value (planar anisotropy coefficient or earring parameter, which is responsible for cross section

geometry and thickness variation).

All the above parameters can be measured from simple tensile tests at different directions, compared
with rolling direction. The ductility of the material also can be precisely determined using these tests. Asen-
sio et al. (2001) reported that texture has a strong influence on rm value and Dr in cold formed and
annealed metallic sheets, however, n value is primarily influenced by the chemical composition and the
presence of second-phase particles, and only secondarily by the grain size. More recently, Zamiri et al.
(2006) provided an overview of the mechanical properties and microstructure of superconducting niobium
sheet.

Anisotropy has a significant effect on the strain distribution in a metallic alloy sheet forming. The anisot-
ropy of a metal in a sheet metal forming process is a combination of the initial anisotropy of the sheet before
forming, which is related to the initial microstructure and texture of the sheet metal, and the deformation-
induced anisotropy, which is due to the microstructure and texture evolution of the sheet metal during forming
process. The initial anisotropy leads to a symmetry with orthotropic properties in a sheet metal while the
deformation-induced anisotropy can destroy this symmetry and make the modeling of the plastic anisotropy
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very complex in a forming process. Therefore, for practical purpose, it is assumed that the deformation-
induced anisotropy is small and negligible. Several anisotropic yield functions for modeling the plastic defor-
mation of metals have been proposed based on this assumption. For example, One may see the quadratic yield
function proposed by Hill (1948), non-quadratic functions developed by Hill (1979, 1990), Hershey (1954),
Hosford (1972), Bassani (1977), Gotoh (1977), Logan and Hosford (1980), Budianski (1984), Barlat and Lian
(1989), Barlat et al. (1991, 1993, 1997, 2003), Yoon et al. (2003).

Up to now, there have not been any published results about the forming properties of the high purity nio-
bium sheet. In this paper we will attempt to evaluate its forming properties by means of experimental and
numerical studies. The layout of this paper is as follows. In Section 2, the experimental work to characterize
the mechanical properties of the high purity niobium sheet will be described. In Section 3, an evolutionary
yield function for the high purity niobium sheet will be proposed. Sections 4–6 will describe the incremental
formulation and the simulation results of the application of the evolutionary yield function to the modeling of
the hydrostatic bulging of the niobium sheet. Finally, Section 7 will discuss the texture and its effect on the
forming behavior of the high purity niobium sheet.
2. Experimental characterization

The material used in the experiments was a 2 mm thick high purity superconducting niobium sheet manu-
factured by Tokyo Denkai Company. The chemical composition of the superconducting niobium sheet is
shown in Table 1. To evaluate the formability and the anisotropy of the rolled niobium sheet, uniaxial tensile
tests in different directions, compared to the rolling direction, were carried out. The tensile tests were con-
ducted following the ASTM E517 standard. To carefully capture the anisotropic plastic ratio or the r-value
(=dewidth/dethickness) of the niobium sheet during the uniaxial tensile test, transverse and axial extensometers
were used and also the elastic part of strain was calculated and subtracted from the total strain to maintain the
volume constancy. To evaluate the texture of the sheet, the OIM (Orientation Imaging Microscopy) measure-
ments on the initial sheet and the uniaxially deformed sheet were carried out. The orientation distribution
functions (ODFs) were then captured from the OIM measurements.
2.1. Mechanical properties and formability of the niobium sheet

2.1.1. Yield stress variation

In general, the inelastic deformation of BCC crystalline materials is strongly rate and temperature depen-
dent, e.g., see Read-Hill and Kaufman (1994). There are two explanations for this behavior; one explanation is
that the rate controlling mechanism is associated with the Peierls-Nabarro potential barriers to dislocation
motion. The other rate controlling mechanism is the thermal activation of mobile dislocations past interstitial
solute atoms. In the high purity superconducting niobium sheet four kinds of interstitial atoms have been
observed which are C, N, H, and O. The rate controlling mechanism of plastic deformation in niobium is con-
sidered to be due to the movement of screw dislocations by thermally activated formation of kink pairs over a
Peierls potential, e.g., see Nemat-Nasser and Guo (2000). On the other hand, the deformation of niobium is
affected by the interaction between the dislocations and interstitial and substitutional atoms. The experimental
stress–strain curves obtained from the uniaxial tensile tests performed at various directions in the plane of the
sheet are shown in Fig. 2. It can be seen that with the exception of the rolling direction (0-direction), the stress–
strain curves in other directions are similar. The variation of the yield stress in the plane of the sheet, measured
using the 0.2% offset strain, is shown in Fig. 3 (experiment). Again, it can be seen that the maximum difference
Table 1
Chemical composition of superconducting niobium sheet

Element Ta W Ti Fe Si Mo Ni Zr Hf O N C H

Composition
(wt%)

0.024 <0.002 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.0002
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Fig. 2. True stress–strain curves obtained from the uniaxial tensile test performed along different directions with respect to the rolling
direction.
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in the magnitude of the measured yield stress in the plane of the sheet is less than 3.5 MPa. Table 2 shows the
parameters of the Holloman equation ð�r ¼ K�enÞ fitted to the uniaxial stress–strain curves in different direc-
tions for the superconducting niobium sheet.
2.1.2. Yield function

In this paper, the following non-quadratic yield function proposed by Logan and Hosford (1980) for aniso-
tropic materials is considered:
Fig. 3.
for the
af ðrijÞ � F jry � rzja þ Gjrz � rxja þ H jrx � ry ja þ 2Ljsyzja þ 2M jsxzja þ 2N jsxy ja ð1Þ
where the exponent ‘‘a’’ is an even, integer number (e.g., a = 6 for BCC and a = 8 for FCC metals), and
parameters F, G, H, L, M and N are the anisotropy coefficients. It should be noted that by setting the exponent
a = 2, Hill’s (1948) quadratic, anisotropic yield function would be recovered.

In sheet metal forming processes, deformation takes place under the plane stress condition. Choosing the
axes of the anisotropy such that the x-axis lies in the rolling direction, y-axis in the transverse direction, and z-
axis normal to the plane of the sheet metal, then, for any stress state in the plane of the sheet the non-quadratic
yield function, Eq. (1), reduces to
Measured versus predicted variation of the yield stress (using 0.2% offset method) as a function of the angle to the rolling direction
niobium sheet. Predicted values are based on various a- and r-values.



Table 2
Parameters of Hollomon equation for superconducting niobium

Direction K (MPa) n

0� 351.25 0.2942
22.5� 361.58 0.2954
45� 368.15 0.2941
67.5� 374.09 0.3059
90� 360.14 0.2894

Table
The r-

r0

2.25
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af ðrijÞ ¼ F jry ja þ Gjrxja þ H jrx � ry ja þ 2N jsxy ja ¼ X aðGþ HÞ ð2Þ
where in Eq. (2) it is assumed that yielding, under any stress combination, occurs according to the uniaxial
tensile flow stress in the rolling direction, X. For a tensile test carried out in the plane of the sheet and in
an arbitrary direction h (0 6 h 6 90) to the rolling direction:
rx ¼ rf cos2; hry ¼ rf sin2 h; sxy ¼ rf sin h cos h ð3Þ
where rf is the tensile flow stress in h-direction. By substituting the above expressions into Eq. (2), rf can be
expressed as a function of the flow stress in the rolling direction, X, and the anisotropy coefficients:
rf ðhÞ ¼
X � ðGþ HÞ1=a

½F sin2a hþ G cos2a hþ H j cosa 2hj þ 2N j sina h cosa hj�1=a
ð4Þ
Also, using the normality rule (i.e., _e ¼ _kof =orÞ, the r-value (=dewidth/dethickness) can be calculated as a func-
tion of h-direction:
rh ¼ �
Gj cos2 hja�1 � sin2 hþ Fj sin2 hja�1 � cos2 h� Hj cos 2hja�1 � cos 2h� 2Nj sin h cos hja�1 � sin h cos h

Gj cos2 hja�1 þ Fj sin2 hja�1

ð5Þ
From Eq. (5), by setting h = 0 and h = 90� we can recover r0 ¼ H
G and r90 ¼ H

F respectively. By choosing:
F ¼ r0; G ¼ r90; H ¼ r0:r90 ð6aÞ
and by substituting these relationships into Eq. (5), the following expression can be obtained for the anisot-
ropy parameter N:
N ¼ 1

2

rhðr90 cosm hþ r0 sinm hÞ þ ðr90 cosm h sin2 hþ r0 sinm h cos2 h� r0r90 cosa 2hÞ
sina h cosa h

� �
ð6bÞ
where m = 2(a � 1). For the quadratic case (a = 2), Eq. (6b) simplifies to
N ¼ 1

2

rhðr0 sin2 hþ r90 cos2 hÞ � r0r90

sin2 h cos2 h
þ r0 þ r90 þ 4r0r90

� �
ð6cÞ
The anisotropy coefficients F, G, H and N therefore can be calculated using only three r-values measured be-
tween 0 and 90� to the rolling direction. Table 3 shows the r-values measured at 18% plastic strain, according
to the M517-ASTM standard, for the high purity niobium sheet.

The calculated values of F, G, H and N at 18% plastic strain can be found in Fig. 9. Once the four anisot-
ropy coefficients were calculated, they were substituted into Eq. (4) to calculate the variation of the yield stress
at different orientation to the rolling direction. To calculate the coefficient N, using Eq. (6b), rh was selected in
3
values for the high purity niobium sheet measured at 18% plastic strain (M517-ASTM Standard)

r22.5 r45 r67.5 r90

1.15 1.37 1.52 1.57
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such a way to minimize the difference between the calculated yield stress variation and the experimental curve.
Fig. 3 shows the variation of the yield stress calculated with the yield function exponents a = 2 and a = 6 using
the rh values at h = 22.5�, h = 45� and h = 67.5�. It can be seen from Fig. 3 that the yield stress variation pre-
dicted with a = 2 and rh at h = 45� gives the best overall prediction for the yield stress variation in the plane of
the superconducting niobium sheet. However, it should be noted that none of the models were able to accu-
rately capture the yield strength of the niobium in the transverse direction (i.e., 90�). This is primarily caused
by having only four parameters in the Hill’s yield function to capture a larger number of experimentally mea-
sured r-values and yield strengths. To eliminate this problem, it will be necessary to use a yield function with
more parameters. Based on the results in Fig. 3 it was decided, for the remainder of the paper, to only use the
Hill’s quadratic yield function (i.e., a = 2).
2.1.3. The r-value variation and normal anisotropy of the high purity niobium sheet

The r-value, which is also known as the plastic anisotropy ratio, is used to evaluate the formability of a
sheet metal. Its variation in the plane of the sheet provides a good criterion for evaluating the geometrical var-
iation in a deep drawn part. Usually the r-value of a material remains constant at large plastic strains. Fig. 4,
however, shows that the r-value of the niobium sheet is very sensitive to the plastic strain and changes as strain
increases and its variation is different in different directions. Therefore, using the r-value or the mean r-value to
evaluate the plastic behavior of the high purity niobium sheet will not be sufficient. To investigate this issue
further, the Hill’s quadratic yield function (a = 2) was used to predict the r-value variation for the high purity
niobium.

Starting with Eq. (5) and setting a = 2, the following expression for rh can be obtained:
rh ¼
Hþ ð2N� F� G� 4HÞ sin2 h cos2 h

F sin2 hþ G cos2 h
ð6Þ
Eq. (6) contains four anisotropy parameters, F, G, H and N, which are determined using three rh values, as
discussed in the previous section. According to the ASTM standard, rh must be evaluated at the strain from
which the r-value remains constant. For BCC materials (e.g., steel, niobium, etc.), it is typical to evaluate the r-
value in the range of 15–20% strain. For the niobium sheet, rh-values were evaluated along 0, 45� and 90� at
18% plastic strain. Using these three rh-values, F, G, H and N were calculated using Eqs. (6a) and (6c). Then,
by substituting these four parameters into Eq. (6), rh-values were predicted based on the Hill’s quadratic yield
function. Fig. 5 shows a comparison of these predicted rh-values versus measured ones at three different plastic
strains of 5%, 18%, and 30%. It can be seen that except for the case of 18% plastic strain, the predicted rh-val-
ues do not match the experimental data very well. These figures show that at 5% plastic strain, the predicted rh-
values underestimate the experimental rh-values, while at 30% plastic strain they overestimate them. Therefore,
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Fig. 4. Variation of the r-value with the plastic strain in different directions, compared to the rolling direction.



Fig. 5. A comparison of predicted rh-values against measured ones at three different plastic strain levels of 5%, 18%, and 30%. Predicted
values are based on using quadratic Hill’s yield function (a = 2) with constant anisotropic coefficients.
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it can be concluded that for high purity niobium sheet, it is important to include in the material model the
evolution of the rh-values with respect to the plastic strain.
2.1.4. Method of calculating the average r-value using experimental data

The average r-value and the planar anisotropy of the sheet are two important parameters to be considered
when evaluating deep drawability and geometrical variation of the part. To calculate the average r-value, first
the variation of the r-value as a function of the orientation, h, in the plane of the sheet at a fixed strain will be
considered, as follows:
Table
Averag

�r0

2.58
reðhÞ ¼
Xn

i¼0

bi cosi h; h : 0;
p
2

h i
and e : ½0; en� ð7Þ
where en is the maximum strain up to which the r-value is considered. Using Eq. (7), the average r-value can
then be calculated as
�re ¼
2

p

Z p
2

0

Xn

i¼0

bi cosi hdh ð8Þ
As can be seen from Fig. 4, the r-value for the high purity niobium sheet is very sensitive to the plastic strain.
Therefore, another expression would be needed to account for this variation. Piehler (1967) has shown that the
ideal r-value for BCC materials cannot be higher than 3. However, it can be seen from Fig. 4 that some of the
r-values are much larger than 3, which is caused by the difficulty in accurately measuring this parameter at
small strains. Therefore, to avoid introducing error in the calculation of the r-values, the following equation
was used to account for the variation of the r-value with respect to the plastic strain at a fixed direction, h:
rhðeÞ ¼

Pm
i¼0

ciei if e P e0

Pm
i¼0

ciei
0 if e 6 e0

8>><
>>: and e : ½0; en� ð9Þ
Or,
rhðeÞ ¼ H
Xm

i¼0

ðcie
i
0 � cie

iÞ
 !Xm

i¼0

cie
i
0 þ H

Xm

i¼0

ðcie
i � cie

i
0Þ

 !Xm

i¼0

cie
i ð10Þ
where H(x) is Heaviside step function, with following properties: H(x) = 1 when x > 0, H(x) = 0 when x < 0,
and H(x) = 0.5 when x = 0 and e0 is the minimum strain that gives reasonable r-values.

The average r-value at a given direction can then be calculated from Eq. (10) as
�rh ¼
1

en

Z en

0

rh de ¼ 1

en

Xm

i¼0

cie
i
0 � e0 þ

Xm

i¼0

ci

iþ 1
ðeiþ1

n � eiþ1
0 Þ

" #
ð11Þ
The first five columns in Table 4 show the average r-values for the niobium sheet calculated from Eq. (11).
Combining Eqs. (7) and (10) yields the following expression for the variation of the r-value with respect to

both plastic strain and h-direction:
rðe; hÞ ¼ H
Xm

i¼0

ðciðhÞei
0 � ciðhÞeiÞ

 !Xm

i¼0

ciðhÞei
0 þ H

Xm

i¼0

ðciðhÞei � ciðhÞei
0Þ

 !Xm

i¼0

ciðhÞei ð12Þ
4
e r-values and Dr of highly pure niobium sheets

�r22:5 �r45 �r67:5 �r90 ��rð�rmÞ D�r

1.28 1.37 1.78 1.64 1.61 0.65
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The mean r-value for the entire range of plastic strains and directions in the plane of the sheet is then:
Table
The co

Coeffic

r0

r22.5

r45

r67.5

r90
��r ¼ 2

pen

Z p
2

0

Z en

0

H
Xm

i¼0

ðciðhÞei
0 � ciðhÞeiÞ

 !Xm

i¼0

ciðhÞei
0 þ H

Xm

i¼0

ðciðhÞei � ciðhÞei
0Þ

 !Xm

i¼0

ciðhÞei

" #
dedh

ð13Þ

To obtain the r-value for the high purity niobium sheet, the variation of the r-value as a function of the plastic
strain and direction was obtained by curve fitting Eq. (12) to the experimental data. Table 5, shows the
coefficients of Eq. (10) for the high purity niobium sheet obtained by curve fitting the expression to the exper-
imental data in five directions and using m = 4. To avoid any error associated with the unreliability of the
r-values at small strains, curve fitting to the experimental data was performed at strains between 10% and
30%. Using Eq. (13), the mean r-value for the niobium sheet was computed to be ��rð�rmÞ ¼ 1:61, as shown in
the sixth column of Table 4.

2.1.5. Planar anisotropy of the high purity niobium sheet

Fig. 5 shows the in-plane variation of the r-value with respect to the rolling direction. As will be discussed
later in this paper, the large variation of the r-value with strain corresponds to the large variation in the texture
of the niobium sheet during the forming process. It is well known that the cross section and thickness of a deep
drawn part made with a material with high planar anisotropy will not be uniform and symmetric. Therefore, it
can be expected that the geometry of the superconducting accelerator cavity will not be uniform either if
formed with the niobium sheet. The planar anisotropy at a plastic strain can be defined as
Dre ¼ �rmaxje � �rminje

And at any strain:
ore

oh
¼ o

oh

Xn

i¼0

bi cosi h

" #
¼ 0 ð14Þ

rextremumje ¼
Xn

i¼0

bi cosi hj
where hj are roots of Eq. (14).
And in general:
D�r ¼ ��rmax � ��rmin ð15Þ

The average planar anisotropy of the high purity niobium sheet calculated by Eq. (15) is shown to be
D�r ¼ 0:65 in Table 4.

Fig. 6 shows the variation of Dr with respect to the plastic strain using Eqs. (10) and (11). This figure shows
two discontinuities associated with the change in the number of extremum points. At strains smaller than 20%,
the niobium sheet shows two maximums and two minimums for the variation of the r-value as a function of h
(Fig. 13). At strains between 20% and 25% it shows one minimum at 25� and two maximums; one very sharp
at 0� and one very smooth at 90�. After 25%, it shows three maximums at 0�, 45�, and 90� and two minimums
at 25� and 70�. Therefore, superconducting niobium sheet shows three different behaviors during the plastic
deformation. These behaviors can be related to the existence of unstable components in the initial texture
5
efficients of Eq. (10) for five directions obtained by curve fitting (m = 4)

ient C0 C1 C2 C3 C4

4.325 �18.678 57.067 �98.746 70.972
2.840 �18.751 79.912 �199.750 198.678
2.432 �13.957 67.657 �172.400 155.240
4.030 �31.822 161.510 �415.970 393.750
2.778 �14.849 60.977 �109.880 50.617



Fig. 6. Variation of the planar anisotropy with plastic strain.
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of the material, which are unstable with respect to the uniaxial tension performed during the measurement of
the r-values. Also Fig. 6 shows a decrease in the planar anisotropy of the niobium sheet with respect to the
plastic strain. Using Eqs. (13) and (15), the total planar anisotropy of D�r ¼ 0:65 for the high purity niobium
sheet was obtained.

3. An evolutionary yield function for the niobium sheet

As shown above, the plastic behavior of niobium sheet is complicated. Its r-value is sensitive to the plastic
strain and direction. Therefore, in developing a yield function for niobium sheet one needs to take into
account the variations of the r-values. Furthermore, the yield function should have enough parameters to
accurately predict the forming properties of the high purity niobium sheet. In this study, Hill’s yield function
was used for this purpose; however, an ongoing effort is underway to develop a yield function based on Bar-
lat’s yield functions (1997, 2003, and 2004), which have more parameters. In general, for the high purity nio-
bium sheet we will need to evolve the anisotropy parameters of the yield function using Eq. (12). In other
words, we will need to update the values of the anisotropy parameters of the yield function at every deforma-
tion increment, as a function of strain. For example, for the yield function in Eq. (1), we will need to calculate
F(e), G(e), H(e), and N(e) using Eq. (10). Fig. 7 shows the calculated values of F, G, H, and N as a function of
plastic strain using Eq. (1), a = 2, and the values of r at 0�, 45�, and 90� computed using the data given in
Table 5. Fig. 8 shows a comparison between the variations of the r-values obtained from the experiment with
those predicted by Hill’s yield function using the evolved anisotropic coefficients. In this case Hill’s yield func-
tion provides a much better prediction for both low and high plastic strains.

Fig. 9 shows the percent error in predicted r-values with respect to the experimental data versus plastic
strain using Hill’s quadratic yield function with evolving and constant coefficients. The percent error was cal-
culated using the experimental and predicted r-values at 0�, 22.5�, 45�, 67.5�, and 90�. As can be seen, the yield
function with evolving coefficients (evolutionary yield function) gives a better prediction as compared with the
yield function with constant coefficients (static yield function). It should be mentioned that by using a yield
function with higher number of anisotropy coefficients, such as Barlat, 2003 , the magnitude of the percent
error could be drastically reduced.

Fig. 10 shows the change in the shape of the Hill’s yield function with plastic strain using evolving coeffi-
cients. The shape of the yield function is similar to a highly anisotropic material at lower plastic strains (e.g.,
5%), but becomes more like an isotropic material as strain increases to 35%. Another interesting point to note
about the behavior of an evolutionary yield function is that the direction of the normal to the yield surface (As
seen from Fig. 10) at a particular stress condition also changes with plastic strain.
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4. A stress integration algorithm for the plastic behavior of superconducting niobium sheet

Assuming that the flow stress along the rolling direction is X:
ðX ð�epÞÞa � ½Gð�epÞ þ Hð�epÞ� ¼ 1
Substituting the above expression into Eq. (2) will result in the following yield function:
f ¼ Fð�epÞ
Gð�epÞ þ Hð�epÞ jry ja þ

Gð�epÞ
Gð�epÞ þ Hð�epÞ jrxja þ

Hð�epÞ
Gð�epÞ þ Hð�epÞ jrx � ry ja þ

2Nð�epÞ
Gð�epÞ þ Hð�epÞ jrxy ja

� �1
a

� Xð�epÞ

ð16Þ
It is assumed that the flow stress X changes according to a power-law form:
X ð�epÞ ¼ Kð�ep þ e�Þn ð17Þ
Assuming the associate flow rule, the normality rule can be given as
_ep ¼ _k
of
or

ð18Þ
Based on the Kohn–Tucker formulation for the optimality condition:
_kf 6 0
where
_�ep ¼ _k
Then the current rate of stress can be calculated as
_r ¼ C : ð_et � _ep
t Þ ¼ C : _et � _kC :

of
or

����
t

¼ _rt � _kC :
of
or

����
t

ð19Þ
where the index t indicates the value at the beginning of the increment. Considering an incremental formula-
tion, then based on the backward-Euler return method we will have
r ¼ r� rt � kC :
of
or

����
c

� �
ð20Þ



Fig. 8. Variations of the r-values using Hill’s quadratic yield function with evolving coefficients as compared with experimental data.
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Fig. 10. Shape change of the Hill’s yield function with plastic strain in niobium sheets.
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where r is the stress residual and index c indicates the value at the end of the increment. A Taylor’s expansion
of the above equation produces a new residual:
r ¼ r� þ Drþ kC :
o

or

of
or

� �����
c

Drþ kC :
o

oQ

of
or

� �
� DQþ DkC :

of
or

����
c

¼ 0 ð21Þ
where Q is a matrix containing the values of F, H, G, and N.
Also, a Taylor’s expansion of the yield function gives:
f ¼ f� þ
of
or

����
c

: Drþ of
oQ
� DQþ of

o�ep

����
c�
D�ep ¼ 0 ð22Þ



8640 A. Zamiri, F. Pourboghrat / International Journal of Solids and Structures 44 (2007) 8627–8647
These two equations can be solved simultaneously to obtain the change in the Lagrange multiplier:
Dk ¼
f� � of

or

��
c

: M�1r�

of
or

��
c

: M�1C : of
or

��
c
þ of

or

��
c

: M�1 kC : o
oQ

of
or

	 
���
c

oQ
o�ep þ of

oQ
oQ
o�ep

� �
þ of

or

��
c

: M�1 of
o�eP

��
c

ð23Þ
where
M ¼ Iþ kC :
o

or

of
or

� �����
c

ð24Þ
For an implicit formulation, the algorithmic elastoplastic tangent moduli must be calculated. The incremental
updating of stresses and plastic strains can be expressed as
rnþ1 ¼ C : ðenþ1 � e
p
nþ1Þ ð25Þ

e
p
nþ1 ¼ ep

n þ knþ1

of ðrnþ1;Qnþ1;�e
p
nþ1Þ

or
ð26Þ
The differential form of the above equations is expressed as
drnþ1 ¼ C : ðdenþ1 � de
p
nþ1Þ ð27Þ

de
p
nþ1 ¼ knþ1

o
2fðrnþ1;Qnþ1;�e

p
nþ1Þ

or2

: drnþ1 þ knþ1

o

oQ

ofðrnþ1;Qnþ1;�e
p
nþ1Þ

or

� �
dQnþ1 þ

ofðrnþ1;Qnþ1;�e
p
nþ1Þ

or
dknþ1 ð28Þ
And for the yield function coefficients we have
dQnþ1 ¼
oQð�ep

nþ1Þ
o�ep

d�ep
nþ1 ¼ �

oQð�ep
nþ1Þ

o�ep
dknþ1 ð29Þ
Combining Eqs. (27)–(29):
drnþ1 ¼ Nnþ1 : denþ1 þ knþ1

o

oQ

of ðrnþ1;Qnþ1;�e
p
nþ1Þ

or

� �
oQ

o�ep
nþ1

� of ðrnþ1;Qnþ1;�e
p
nþ1Þ

or

� �
dknþ1

� �
ð30Þ
where
Nnþ1 ¼ C�1 þ knþ1

o2f ðrnþ1;Qnþ1;�e
p
nþ1Þ

or2

" #�1

ð31Þ
In Eq. (30) dk is unknown, but can be calculated using the consistency condition kf = 0 due to the plastic con-
dition k > 0. Therefore, f ðr;Q;�epÞ ¼ 0 and differentiation of discrete consistency condition yields:
of ðrnþ1;Qnþ1;�e
p
nþ1Þ

or
: drnþ1 þ

of ðrnþ1;Qnþ1;�e
p
nþ1Þ

oQ
dQnþ1 þ

of ðrnþ1;Qnþ1;�e
p
nþ1Þ

o�ep
d�ep

nþ1 ¼ 0 ð32Þ
Substituting for dQ and dr from Eqs. (29) and (30) into Eq. (32) gives
dknþ1 ¼
of
or

��
nþ1

: Nnþ1 : denþ1

of
or

��
nþ1

: Nnþ1 : of
or

��
nþ1
� knþ1

o
oQ

of
or

	 

nþ1
� oQ

o�ep
nþ1

� �
þ of

oQ

���
nþ1
� oQ

o�ep

��
nþ1
þ of

o�ep

��
nþ1

ð33Þ
By substituting for dk from Eq. (33) into Eq. (30), the elastoplastic tangent moduli can be obtained:
Cep ¼ dr

de

����
nþ1

¼ Nnþ1 þ r�1Tnþ1 � Snþ1 ð34Þ
where
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Tnþ1 ¼ Nnþ1 : knþ1

o

oQ

of ðrnþ1;Qnþ1;�e
p
nþ1Þ

or

� �
oQð�ep

nþ1Þ
o�ep

� of ðrnþ1;Qnþ1;�e
p
nþ1Þ

or

� �

Snþ1 ¼ Nnþ1 :
of ðrnþ1;Qnþ1;�e

p
nþ1Þ

or

r ¼ of ðrnþ1;Qnþ1;�e
p
nþ1Þ

or
: Nnþ1 :

of ðrnþ1;Qnþ1;�e
p
nþ1Þ

or
� knþ1

o

oQ

of ðrnþ1;Qnþ1;�e
p
nþ1Þ

or

� �
� oQð�ep

nþ1Þ
o�ep

nþ1

� �

þ of ðrnþ1;Qnþ1;�e
p
nþ1Þ

oQ
� oQð�ep

nþ1Þ
o�ep

þ of ðrnþ1;Qnþ1;�e
p
nþ1Þ

o�ep
5. Numerical algorithm

Based on the above equations the following implicit integration algorithm can be developed to model the
plastic deformation of the niobium sheet:

1. Input the values of Den;�ep
n; rn at the beginning of the increment n

2. Assuming elastic solution, update the stresses at the end of the increment (Elastic predictor):
rnþ1 ¼ rn þ C : Den

�ep
nþ1 ¼ �ep

n

Qnþ1 ¼ Qð�ep
nþ1Þ
3. If f ðrnþ1;Qnþ1;�e
p
nþ1Þ 6 0, we have an Elastic solution.
dr

de

����
nþ1

¼ C; Exit
Endif
4. Plastic corrector:
k ¼ 0

kðkÞnþ1 ¼ 0

DkðkÞnþ1 ¼ 0
5. Update hardening, yield coefficients, and stresses:
�epðkÞ

nþ1 ¼ �ep
nþ1 þ kðkÞnþ1

X ð�epðkÞ

nþ1Þ ¼ Kð�epðkÞ

nþ1 þ e�Þn

Q
ðkÞ
nþ1 ¼ Qð�epðkÞ

nþ1Þ

rk
nþ1 ¼ rnþ1 � kðkÞnþ1C :

of ðrnþ1;Qnþ1Þ
or
6. If f ðrðkÞnþ1;Q
ðkÞ
nþ1�e

pðkÞ
nþ1Þ 6 0, then:
Cep ¼ Nnþ1 þ r�1Tnþ1 � Snþ1

�ep
nþ1 ¼ �epðkÞ

nþ1

rnþ1 ¼ r
ðkÞ
nþ1; Exit
Endif
7. Calculate the incremental consistency parameter
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r� ¼ r
ðkÞ
nþ1 � rn � kðkÞnþ1C :

of ðrðkÞnþ1;Q
ðkÞ
nþ1Þ

or

 !

M ¼ Iþ kðkÞnþ1C :
o

or

of ðrk
nþ1;Q

ðkÞ
nþ1Þ

or

 !

DkðkÞnþ1 ¼
f� � of

or

��ðkÞ
nþ1

: M�1r�

of
or

��ðkÞ
nþ1

: M�1C : of
or

��ðkÞ
nþ1
þ of

or

��ðkÞ
nþ1

: M�1 kðkÞnþ1C : o
oQ

of
or

	 
��ðkÞ
nþ1

oQ
o�ep

��ðkÞ
nþ1
þ of

oQ

���
nþ1ðkÞ

oQ
o�ep

��ðkÞ
nþ1

� �
þ of

or

��ðkÞ
nþ1

: M�1 of
o�eP

��ðkÞ
nþ1

kðkþ1Þ
nþ1 ¼ kðkÞnþ1 þ DkðkÞnþ1

k kþ 1
8. Go to step 5.
6. Numerical verifications

To validate the proposed algorithm, it was implemented as a user material model (UMAT) into ABAQUS
finite element code. A biaxial tension test was carried out on the niobium sheet, by means of applying hydro-
static fluid pressure to bulge the sheet, and its results were compared with finite element simulations. Fig. 11c
shows one-half of the bulged niobium sheet with fracture occurring parallel to the rolling direction and away
from the pole of the sheet. Two different forms of Hill’s quadratic yield function were used in the finite element
simulation; one with constant anisotropic coefficients and the other with anisotropic coefficients evolving with
plastic strain. Figs. 11a and b show the contour of the thickness strain in the bulged sheet predicted with and
without the anisotropy coefficients evolving with the plastic strain, respectively. As can be seen from Figs. 11a
and b, the yield function with evolutionary coefficients predicts, similar to the actual bulged sheet (Fig. 11c),
two regions with strain localization in the deformed part. On the other hand, the yield function with constant
coefficients does not show any strain localization. Fig. 12 shows the hoop stress–strain curves obtained from
the biaxial bulging of the niobium sheet and the finite element simulations. It can be seen from this figure that
predicted stresses obtained using a yield function with constant coefficients overpredicts the experimental
curve, while the one with evolved coefficients very accurately match the experimental stress–strain curve.
7. Some observations on the texture of niobium sheet

It is recognized that the planar variation of the r-value is due to the anisotropy and texture of the rolled
sheet. It is clear from Fig. 13 that the high purity niobium sheet has four extremums up to 20% strain. This
suggests that the niobium sheet will exhibit six ears in a standard cup-drawing test. Between 20% and 25%
strain it shows only two extremums, which implies it will develop only two ears. Beyond 25% strain it shows
5 extremums, which implies it will develop eight ears in the cup-drawing test.

A higher variation of the r-value occurs at around 25� and 65� orientations, and this variation is almost the
same at 0�, 45� and 90�. These behaviors, where extremums of the r-values at 0� and 90� are not the maximum
values, are known as the specific planar anisotropy. The anisotropic variation of the r-value in different direc-
tion, compared to the rolling direction, is related to the intensity of different orientations in the material’s tex-
ture (see Asensio et al., 2001). The study by Toth et al. (1990), Liu et al. (2002), Park et al. (1997), and
Nesterova et al. (2001) show that the recrystallization and deformation texture of the high purity niobium
is very similar to those in deep drawing quality steels (low carbon steels) and molybdenum. Texture measure-
ments from through-thickness of the niobium sheets showed that the main texture components of supercon-
ducting niobium sheet are on the a, c, and e fibers as shown in Fig. 14.

Fig. 15 shows the ODF sections at u2 = 45� for the undeformed niobium sheet and uniaxially deformed at
67.5� compared to the rolling direction. The 67.5� was selected because the larger variation of the r-value
occurs in this direction. An ODF section at 45� contains all three a, c, and e fibers. ODFs show a strong c



Fig. 11. (a) Simulation using yield function with constant coefficients. (b) Simulation using evolutionary yield function. (c) Experiment
(half of bulged specimen) at strain rate _e ¼ 0:05 s�1.
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Fig. 15. ODF sections at u2 = 45� for (a) undeformed superconducting niobium and (b) uniaxially deformed niobium.
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fiber in both undeformed and uniaxially deformed niobium sheet. They also show intensity for some orienta-
tions along a fiber. Components of a fibers are different in undeformed and deformed case.

A more careful study of the ODFs shows some intensity for the cube orientation or {10 0}h001i in unde-
formed sheet and the rotated cube orientation or {100}h011i in deformed sheet. More information about the
intensity of different components of texture in the a, c, and e fibers can be obtained by calculation of the skel-
eton diagrams for these fibers from ODFs as shown in Fig. 16. The skeleton diagram for c fiber, Fig. 16a,
shows an almost equal intensity of all orientations on c fiber for the undeformed niobium, while it shows a
lower intensity for {111}h110i and a maximum around {111}h123i. On the average, intensity of c fiber does
not change with uniaxial deformation.

Fig. 16b shows the intensity of the different orientations on a fiber. The undeformed sheet shows a strong
intensity for orientations from {112}h110i to {111}h1 10i, while the deformed sheet shows a big drop in the
intensity of the orientations around {112}h110i and {111}h110i, and an increase of the rotated cube or
{10 0}h110i orientations. The intensity of {100}h110i orientation in the deformed material is similar to
{10 0}h001i in the undeformed sheet. Therefore, it seems that during deformation, the cube orientations in
undeformed sheet convert to the rotated cube or {100}h011i orientations. The peak of intensity on a fiber
in deformed sheet is around {55 4}h110i.
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Fig. 16c shows the intensity of the orientations on e fiber. The undeformed sheet shows intense orientations
between {111}h11 2i to {554}h225i. Uniaxial deformation cases increase on these orientations especially
around {554}h225i. It has been observed that the {111}huvwi or the c fiber is not responsible for planar
anisotropy, but other orientations like those between {11 2}h110i to {111}h110i in a fiber, {11 1}{11 2} to
{554}h22 5i in e fiber, and the cube {100}h0 01i and rotated cube {100}h011i orientations strongly affect
the planar anisotropy. For low carbon BCC steels, usually intense orientations around {554}h22 5i and the
cube orientations or {100}h001i show increase in r-value at 0� and 90�, and decrease in the r-value around
45�, while {112}h110i to {111}h11 0i orientations and the rotated cube or {100}h011i have an inverse effect
(see Vanderschueren et al., 2000).

There is no information about the effects of the above orientations on the planar anisotropy of the
niobium sheet. The effects of different orientations on planar anisotropy are calculated with crystal plasticity
models using a single crystal with different orientations. An example of such calculations can be found in
the work of Daniel and Jonas (1990), which has been done for low carbon steel. Because of the important
effect that planar anisotropy has on geometry, which is an important parameter in the design of supercon-
ducting niobium accelerator cavities, performing similar crystal plasticity calculations for the above orien-
tations for the niobium sheet seems reasonable. This information will help in the texture design in the initial
sheet or selecting suitable strain paths in the forming of superconducting niobium cavities.

8. Conclusions

In this work the formability and planar anisotropy of the high purity niobium sheet was investigated.
Geometry is an important parameter in the design of superconducting accelerator cavities made with high pur-
ity niobium sheet. The following additional observations can also be made:

• The high purity niobium sheet shows a good formability due to a rather high �rm value, but it might not yield
symmetric and uniform cavities with exact geometry due to the high D�r value during deep drawing process.

• The r-value of the high purity niobium sheet decreases with plastic strain.
• Applying a yield function with constant anisotropy coefficients cannot correctly predict the strain localiza-

tion during the forming of the high purity niobium sheet.
• The r-values in different directions are representative of the microstructure and texture of a material and

can be used to update the evolving anisotropy coefficients of the evolutionary yield function of the high
purity niobium sheet as a function of the plastic strain.

• Usually D�r in BCC materials is constant during deformation and related to the difference between the r-val-
ues at 0�, 45�, and 90�. For the high purity niobium sheet, D�r is not constant and is more closely related to
the variation of the r-values at around 25� and 65� during deformation.

• Texture of the undeformed niobium sheet contains an intense c fiber, intense orientations between
{112}h11 0i to {11 1}h110i on a fiber, and some intensity on cube orientation {10 0}h001i. After uniaxial
deformation, the intensity of orientations around {111}h1 10i in c fiber decreases while the intensity of
orientations around {111}h112i increases. The a fiber of the uniaxially deformed niobium sheet shows a
peak intensity around {55 4}h110i and some intensity in the rotated cube or {10 0}h110i orientation. Also,
there are strong components in the vicinity of {554}h225i orientations on the e fiber of the deformed
material.

• Reduction of the r-values with plastic strain might be related to the significant change in the components of
the texture during the deformation of the niobium sheet. And the appearance of a high planar anisotropy in
the niobium sheet can be related to the appearance of the strong components in {hkl}h110i fiber of the
niobium texture.
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