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In this paper we study the finitely generated indecomposable modules over 
an arbitrary extension over an Artinian ring with self-(Morita) duality. Let A 
be an Artinian ring with self-duality and T an extension over A with kernel 
Q (see [ 11, Chap. XIV, Sect. 21) such that QA and A Q are isomorphic to 
injective hulls of top(A,) and topLA), respectively. Such an A-module Q 
will be called quasi-Frobenius. Then it will be proved that 

(1) T is a quasi-Frobenius ring. 

(2) If A is of ftnite representation type and hereditary, then T is also 
of finite representation type. In this case, making use of almost split 
sequences in mod T, every finitely generated indecomposable nonprojective T- 

module is constructed from a finitely generated indecomposable projective A- 
module and, simultaneously from a finitely generated indecomposable 
injective A-module. 

Recently Tachikawa [25] has proved that results similar to the above hold 
for a hereditary Artin algebra A with the center C and with T its trivial 
extension A # Q by Q = Horn&A, E(top(C))), where E(top(C)) is an 
injective hull of top(C) in mod C. He also suggested that his results will be 
still true for an arbitrary extension T (oral communication). Here it should 
be noted that, even if A is a hereditary algebra over a field K, there is a 
nontrivial extension T over A with kernel Q = Horn,@, K). This paper 
answers his question. Our proofs are quite different from the ones given by 
Tachikawa. 

In Section 1 we first recall the definition of an extension over a ring 
according to [ 11, Chap. XIV]. Let A be an Artinian ring with a quasi- 
Frobenius module Q and T an extension over A with kernel Q. Then some 
fundamental relations between indecomposable projective T-modules and 
indepcomosable injective A-modules are examined. Using these results it will 
be proved that T is a quasi-Frobenius ring which is not necessarily weakly 
symmetric, while if A is an Artin algebra with the center C and 
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Q = Horn&t, E(top(C)), then the trivial extension A # Q is always weakly 
symmetric. 

Let Ind R be the set of isomorphism classes of indecomposable R-modules. 
Let #: IndA -+ Ind flInd A be the map such that @([Ml) is [fir-(M)] for 
every nonprojective A-module M, and the isomorphism class of a projective 
cover of M in mod T for every projective A-module M, where n,(M) is the 
first syzygy module of M in mod T. In Section 2, we prove that @ is injective 
in general, and # is bijective if and only ty T satisfies the following property. 

(*) For every finitely generated indecomposable right T-module M, the 
annihilator c(Q) of Q in M is h4 or injective in mod A. 

It is also shown that if A is hereditary, then T satisfies (*), and in case 
that T is the trivial extension A K Q of A by Q the converse holds. Therefore, 
combining these results we conclude that in the case of T = A K Q, A is 
hereditary if and only if @ is bijective. In ‘case A is of finite representation 
type, this shows that A is hereditary if and only if T = A M Q is of finite 
representation type and the number of indecomposable right T-modules is 
two times the number of indecomposable right A-modules. Here we note that 
in the next paper it will be characterized the Artinian ring with an extension 
satisfying the above condition (*). 

Section 3 is a preparation for the following sections. We note some facts 
about almost split sequences. Some of them are well known, in fact, are due 
to the work by Auslander and Reiten [2-4]. 

In Section 4 we are devoted to a construction of indecomposable modules 
over an extension T, in case A is hereditary and of finite representation type. 
Assume that both A and T have almost split sequences. First we consider a 
relation between almost split sequences in mod A and in mod T. It will be 
shown that T has property (*) if and only if every almost split sequence in 
mod A is still almost split in mod T, if and only if every irreducible 
morphism between indecomposable modules in mod A is irreducible in mod 
T. In particular, these properties are valid for hereditary Artinian rings A. 
Next we assume that A is hereditary, and for the quiver of A we define a 
“distance” from the sources to a vertex. After observing the properties of this 
distance, we prove that if A is of finite representation type and hereditary, 
then every indecomposable nonprojective T-module M is isomorphic to w;(P) 
and w:(E) for some indecomposable projective A-module P and indecom- 
posable injective A-module E and some integers m and n, where or is defined 
as follows: For an almost split sequence 0 + Z -+ Y --, X -+ 0 in mod T, we 
denote Z by or(X) and X by w;‘(Z). Then the meaning of w’, is ciear for 
any integer C. In view of [lo], this construction theorem, as a corollary, 
implies the well known theorem [ 7, 121: if A is a hereditary Artin algebra of 
finite representation type, then every indecomposable A-module is 
isomorphic to (Tr D)” (P) and (D Tr)” (E) for some indecomposable 
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projective A-module P and indecomposable injective A-module E and m, 
n > 0, where Tr denotes the transpose and D the usual duality. 

In the last section, 5, for a hereditary Artin algebra A of finite represen- 
tation type we consider an almost split sequence in mod T such that the 
number of indecomposable summands of the middle term is maximal. Next, 
for a basic hereditary Artinian ring A with a quasi-Frobenius A-bimodule Q 
and of finite representation type we describe the Auslander-Reiten quiver in 
mod T. Here the Auslander-Reiten quiver in mod T is such a quiver that the 
vertices are the isomorphism classes of indecomposable T-modules, and for 
vertices [X] and [Y] there is an arrow [X] + [Y] if and only if there is an 
irreducible morphism X+ Y. As for a basic hereditary Artin algebra of finite 
representation type, it is associated with one of the Dynkin diagrams [ 121: 
A, (n Z 11, B, (n 2 21, C, (n 2 31, D, (n > 41, E,, 4, 4, F, and G,. In 
our case, if we assume that the quiver of the ring A is one of the Dynkin 
diagrams, we will obtaine the Auslander-Reiten quiver in mod T which is 
similar to the corresponding Dynkin diagram. 

The author wishes to express hearty thanks to Professor H. Tachikawa 
and the referee for their many useful suggestions. In particular, Section 5 was 
revised according to the referee’s advice. 

1. PRELIMINARIES 

Throughout this paper, rings will be assumed to be associative rings with 
identity elements. For a ring A, mod A means the category of finitely 
generated right A-modules. For a right A-module M we denote the socle of 
M by sot(M) and the top M/Mrad(A) by top(M), where rad(A) denotes the 
Jacobson radical of A. An injective hull of M in mod A is explicitly denoted 
by EA(M), but we usually denote it by E(M) for short, unless there is 
confusion. Let A and T be two rings and Q an A-bimodule such that there is 
an exact sequence 

with a monomorphism K and a ring epimorphism p. Then, T is said to be an 
extension ouer A with kernel Q [ 11, Chap. XIV, Sect. 21, provided that 

wz?) = w7) and e7a) = a?) t 

for q E Q, a ‘Z A, t E T and a = p(t). Clearly this condition is equivalent to 
saying that K(Q)* = 0. Since p is a ring epimorphism, Ker p has the structure 
of a T-bimodule as a two-sided ideal in T, while the p and the given structure 
of Q as an A-bimodule canonically induce on Q the structure of a T- 
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bimodule. The condition that K(Q)’ = 0 then means that these T-bimodule 
structures coincide via K. For this reason, in all that follows, K will be iden- 
tified as an inclusion map, if there is no confusion. An extension 0 -+ Q jK 
T -+’ A --, 0 with a ring monomorphism I: A + T such that pz = 1, seems to 
have the simplest structure among the extensions over A with kernel Q. Such 
an extension is called a trivial extension of A by Q [ 151 and is equivalent to 
the extension 

O-tQ~A#Q~A+O, 

where the ring A # Q is a direct sum A @ Q as additive groups with 

K,(q) = (03 41, PI&v 4) = a 

for a E A and q E Q, and with multiplication defined by 

(49 q&a29 92) = ha*, a,qz + 91a2) 

for a,, u2 E A and q,, q2 E Q. Here it should be remembered that for an 
algebra A over a field and an A-bimodule Q, as is well known, the set of all 
equivalence classes of extensions over A with kernel Q is in a one-to-one 
correspondence with the cohomology group H2(A, Q) of A with coefficients 
in Q. In particular, an extension whose equivalence class corresponds to the 
zero element in H2(A, Q) is a trivial extension of A with kernel Q (cf. [ 11, 
Chap. XIV, Theorem 2.1 I). 

Now let O-+Q-+’ T+” A -+ 0 be an extension over a ring A with kernel 
A Q,. Since Q’ = 0 in T, it then holds that Q c rad(T) and rad(T) = 
p-‘(rad(A)). Further, a right A-module M can be canonically regarded as a 
right T-module by p, so that it holds that MQ = 0. Conversely a right T- 
module M with MQ = 0 can be canonically regarded as an A-module by p. 
Particularly, every simple A-module is simple as a T-module and every 
simple T-module is also simple as an A-module, because Q c rad(T) and 
rad(T) =p-‘(rad(A)), In view of these facts, A-modules will be identified 
with the T-modules annihilated by Q, in all but the proofs of (2.2-3) and 
(2.8). Since Q is a nilpotent ideal in T, it is well known that a finite 
orthogonal set of primitive idempotents in A can be lifted to T. Hence, if an 
identity element 1, is a sum of orthogonal primitive idempotents e, 
(1 < i < n), then there exists an orthogonal set of primitive idempotents e, in 
T such that 1 T = Cy=, e, and p(ei) = e,. 

Now, let A be a rght Artinian ring and B a left Artinian ring such that 
there is a duality between the categories mod A and mod B”, where B” is the 
opposite ring of B. Such a duality is called a Moritu duality and the duality 
functor is characterized as a functor Hom( , U), where U is a (B, A)- 
bimodule which has the properties that U, and B U are finitely generated 
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injective cogenerators and BUA is balanced, i.e., A N EndC, 17) and 
B N End(U,) canonically (see [8, 181). Further, in this case, every indecom- 
posable injective right A-module and every indecomposable injective left B- 
module are finitely generated. Let A be a left and right Artinian ring and Q 
an A-bimodule such that 

Q, and A Q are finitely generated, 

Q, = Wop(A,)) and A Q = WopLA))~ 

In this paper we call such a finitely generated A-bimodule Q a quasi- 
Frobenius module or QF-module for short. (It must be noted that the same 
terminology is used in [8], but they do not coincide in general.) Then, since 
both QA and A Q are injective cogenerators, they are faithful. As is well 
known, a bimodule A U, such that Hom,( , U) defines a duality between 
mod A and mod A” is a QF-module. Hence an Artinian ring with a self- 
duality has always a QF-module. In fact, it will be shown in the future paper 
a QF-module is nothing but the bimodule which defines a self-duality. But 
we do not use this property in this paper. Let 1, = C:=i ei, where {ei} is an 
orthogonal set of primitive idempotents in A. Then we have that Q, = 
@FE1 qQ, ,Q=@7=, Qei, and each of eiQ and Qei is indecomposable 
injective and hence its socle is simple. Therefore, since soc(Q,) N 
@r= i top(eJ) and soc(, Q) 1: @I= i top(,4ei) by definition, there are two 
permutations rr, z’ on { 1, 2 ,..., n} such that 

soc(ei Q> N We,wA) and soc(Qei) 2 top(Ae,,,i,) 

for all i. However, it is easily shown that II’ =K’ (cf. [20, p. 81). Such a 
permutation rr is called the Nakayama permutation by A QA. In case A is a 
quasi-Frobenius ring, rr is nothing else than the usual permutation induced 
from A given in [20]. In case A is an Artin algebra over the center C, if we 
consider Hom,(A, E,(top(C))) as a QF-module Q, then it is well known that 
the Nakayama permutation by Q is identity. In the rest of this section, for an 
Artinian ring A with a QF-module Q we will prove that any extension T over 
A with kernel Q is always a quasi-Frobenius ring and the Nakayama 
permutation by T T, coincides with that by A QA . 

Given a ring R, for a right R-module M and a subset X of R the (left) 
annihilator of X in M is usually defined as e,(X) = {m E M] mX = 0}, and 
for a left R-module N the (right) annihilator of X in N is zN(X) = 
{n E NjXn = 0). 

LEMMA 1.1. Let A be an Artinian ring and A QA a QF-module. Let 
O-Q-% T-P A + 0 be an extension. Then for an idempotent e in T and 
e = p(e), the following statements hold. 
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(1) eT/eQ = eA, 

(2) f,,(Q) = eQ, 
(3) top(e7’) N top(eA) as right A-modules and as right T-modules, 

(4) soc(eT) = soc(eQT) = soc(eQ,). 

Proof Obvious from the definitions. 

PROPOSITION 1.2. Let A be an Artinian ring and A Q, a QF-module with 
Nakayama permutation rt. Then every extension T over A with kernel Q is a 
quasi-Frobenius ring, and 7c is coincident with the Nakayama permutation by 
rTT. Particularly, in case 7c is identity, T is weakly symmetric. 

Proof. First we show that T is left and right Artinian. For this, we note 
that a given A-module X with a finite (composition) length also has finite 
length as a T-module, which is an easy consequence of the fact that simple 
T-modules and simple A-modules are coincident. Then that T is Artinian 
follows form (1. l-l), because the lengths of A-modules eQ and Qe are finite. 
Thus to show that T is quasi-Frobenius we have only to show that there is a 
permutation between the set of top(e,T) and the set of soc(ejT), where 
(ei}l,, is a complete set of primitive idempotents in T, because soc(e, 2) and 
soc(Te,) are simple [20]. For this, let p be the canonical epimorphism T-t A 
and ei =p(ei) for 1 < i < n. Then, soc(eiQ) N top(ezCi,A) and soc(e,Z’) 2: 
soc(eiQ) by (1.1-4). Hence, it holds that soc(e, T) 2: top(e,&) = top(e,(i, T) 
by (1.1-3). This shows that 71 is the desired permutation, and also shows that 
the last assertion holds. 

The following well known lemma is very useful for a study of indecom- 
posable modules over a quasi-Frobenius ring. 

LEMMA 1.3. Let A be a quasi-Frobenius ring and let X and Y beJnitely 
generated right A-modules each of which has no projective direct summands, 
and P a projective right A-module such that there is an exact sequence 

o-+ Y+P+X-+O. 

Then the following assertions hold. 

(1) P is a projective cover of X tf and only if P is an injective hull of 
Y. 

(2) X is indecomposable tf and only if Y is indecomposable. 

Remark 1.4. In conclusion of this section, we will make a few remarks 
about extensions over hereditary algebras (over a field). 

Generally speaking, it is not easy to see whether a given extension is split- 
table (i.e., trivial) or not. But, for algebras over a field K, if we restrict ring 
morphisms to K-algebra morphisms (i.e., K- and ring morphisms), we can 
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show that, even for a semi-simple K-algebra A, there are nontrivial 
extensions over A with kernel Hom,(A, K), as follows: 

(1) Let A be an inseparable semi-simple algebra over a field K with 
dim, A < co. Then there is an extension 

such that f is a K-algebra morphism and there is no K-algebra morphism 
g:A-+Twithfg= 1,. 

Because, as is well known, semi-simple algebras are symmetric. Namely, 
A N Hom,(A, K) as A-bimodules [21, Theorems 55.6 and 55.101. Hence 
H’(A, Hom,(A, K)) N @(A, A) and so the desired result follows from the 
fact that H”(A, A) # 0 for n > 0 [ 14, Proposition 14). 

(2) For a hereditary algebra A over an algebraically closed field, all 
extensions over A are splittable. More generally, it is known that, for an 
algebra A over a field K all 2-cohomology groups H’(A, -) = 0 if and only 
if A/rad A is separable and A is hereditary [ 17, Theorem]. 

2. HEREDITARY ARTINIAN RINGS WITH A MORITA DUALITY 

In all that follows, unless otherwise stated, all rings will be left and right 
Artinian and all modules will be finitely generated right modules. Let A be 
an Artinian ring with a quasi-Frobenius module Q and let T be an extension 
over A with kernel Q. In this section we consider some properties of 
indecomposable T-modules, each of which will be equivalent or close to the 
property that A is hereditary. In particular, they will imply very important 
information in the case of hereditary Artinian rings of finite representation 
type. 

Throughout this section we fix once for all notations such that 

is an extension over an Artinian ring A with kernel Q, where Q is a QF- 
module over A, p a ring epimorphism and K an inclusion map. In this case, it 
should be remembered that T is a quasi-Frobenius ring by (1.2). To begin 
with, we study indecomposable T-modules without assuming that A is 
hereditary. 

LEMMA 2.1. For a projective T-module P the following properties hold. 

(1) PQ = e,(Q). 
(2) PQ is injective as a right A-module. 
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(3) soc(P,) = soc(PQ,) = soc(PQ,). 

(4) P/PQ is projective as a right A-module. 

(5) For any submodule M of P, t,(Q) = Mn PQ. 

Proof Since T is Artinian by (1.2), P is a direct sum of indecomposable 
projectives each of which is isomorphic to a primitive right ideal. Hence, 
assertions (l)-(4) are easy consequences of (1.1). 

(5) Since C,W(Q) = M n Pp(Q), the result follows from (1). 

LEMMA 2.2. Let M be an A-module and P a projective T-module such 
that there is an embedding j: M + P/PQ. Then there is aJinitely generated T- 
module ii? which satisfies the following properties. 

(1) There is a commutative diagram 

O-1 PQ sPLP/PQ+O, 

where the top row is an exact sequence with an inclusion v, the bottom is the 
canonical exact sequence and all vertical morphisms are monomorphic. 

(2) c,-(Q) c M rad(T). 

(3) If T is a trivial extension of A by Q, then it further holds that 

JR(Q) = MQ. 

Proof (1) Let p: P(M) -+ M be a projective cover of M in mod T. 
Then, for a given embedding j: M -+ P/PQ, we have a morphism f: P(M) -+ P 
which makes the following diagram commutative 

P(M)5 M -0 

1 li 
P sP/PQ-0. 

Now let M =f (P(M)). Since p’(M) =j(M), there is then an epimorphism 
u: a-+ M, so that the following commutes: 

O-d,(Q)*ri;l* M -0 

I If 
0- PQ APLP/PQ-0, 
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where the morphisms M+ P and u: t@(Q) + M are inclusions. Then, 
Keru=ii?nKerp’=MnPQ and so Keru=Mn&,(Q)=e,(Q)by (2.1). 
Hence we can conclude that the top row in the above is an exact sequence 
and there is an inclusion I,-(Q)- PQ which makes the above diagram com- 
mutative. 

(2) By the construction, it is clear that Ker u =f(Ker@‘f)) and that 
Ker@lf) is small in P(M). Hence Ker u must be small in M, because the 
image of a small submodule of a given module X is also small in the image 
of X. Since M rad( T) contains all small submodules of M, we thus have that 
Ker u c M rad( T). 

(3) Our aim is to find the module M which satisfies all properties 
(l)-(3). In this proof we forget the agreement in Section 1 such that the A- 
modules are identified with the T-modules annihilated by Q. We denote by 
X6 Y the direct sum of given abelian groups X and Y. Now assume that 
T = A M Q and I is a ring monomorphism with pz = 1,. Then T = A 6 Q and 
P = P’ 6 PQ, where P’ is projective in mod A such that P’ E P/PQ as A- 
modules, because the projective module P is isomorphic to a direct sum of 
direct summands of T,. Then M may be regarded as a submodule of the 
right A-module P’, so that MT is a T-submodule of P gerenated by M in P. 
On the other hand, M 6 MQ is a T-submodule of P and of course contains 
M. It therefore holds that 

MT=M&MQ, McP’, MQ c PQ. 

Since MQ c (MT) rad(T) and MN MT/Me as A-modules, it follows that 
top(MT,) N top(M,), and so top(MT,) N top(P(M),). Thus there exists an 
epimorphism g: P(M) + MT such that 

P(M)2 MT + P 

P 
I I I 

j :  M -Z MT/M& - P/PQ 

is commutative, where the middle and right vertical morphisms are canonical 
epimorphisms and the composition of morphisms in the bottom is j. Hence if 
we put fi’= MT (= g(P(M))), then we see that assertion (1) holds for this M 
from the proof of (1). Noting that M c P’ and MQ c PQ, we have that 

t,(Q) = MT n tp(Q) = (M 6 MQ) n PQ = MQ, 

in view of (1.1). 
Now property (2) for his M is clear from the fact that Q c rad(T). 
For an arbitrary Artinian ring R and an R-module M, Lt;t(M) means the 
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nth syzygy module for n > 0. Namely, for a minimal projective resolution 
. . . +P,+*+P,+‘** +P,-+M+O, we put 

Q:(M) = Im(P, + , + P,). 

Dually we define on,“(M) by a minimal injective resolution of M for n > 0. 
We put G:(M) = M and Q;(M) = Q,(M). If the ring R is quasi-Frobenius 
and M an indecomposable nonprojective R-module, then it follows from 
(1.3) that QR-‘(R(M)) -M-fl(C’(M)). As we noted in Section 1, this is 
an important fact. 

PROPOSITION 2.3. Let M be a T-module without projective summands, P 
a projective cover of M and 

is exact. Then it holds that 

(1) PQA is an injective hull oft,,(,,(Q), and 

0 + C,,,,w,(Q) -5 PQ u’ MQ -+ 0 

is exact, where u’ and v’ are canonically induced from u and v. 

(2) PIPQ, is a projective cover of M/Me, and 

0 + WW/&,,,(Q) -% P/PQ -% M/MQ + 0 

is exact, where ii and ii are canonically induced from u and v. 

Proof. (1) It clearly holds that soc(f2,(M)) c ERro,)(Q), because 
Q c rad(T). Since P is an injective hull of R,(M) by (1.3), it further holds 
that sot(P) = soc(S,(M)). Hence it follows from (2.1) that soc(PQ) c 
E n,CM,(Q). But soc(e,+,(Q)) c soc(PQ), because tQTcM,(Q> c PQ. Therefore 
we have that 

soc(~,,w,(Q>) = soc(PQ). 

On the other hand, PQ is an injective A-module by (2.1). Thus we can 
conclude that PQ is an injective hull of [RAM) (Q). The second assertion is an 
easy consequence of (2. l), because c,,,,,(Q) = e,(Q) n R,(M). 

(2) Since Q c rad(T), it holds that top(M) N top(M/MQ) and 
top(P) z top(P/PQ). H ence top(P/PQ) N top(M/MQ), because P is a 
projective cover of M and so top(P) 1: top(M). On the other hand, P/PQ is a 
projective A-module by (2.1). Therefore the canonical epimorphism 
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U: P/PQ + M/iWQ must be a projective cover. As for the kernel of ri, let X be 
a T-module such that X/PQ = Ker ii. Then X = U- ‘(MQ) and u(PQ) = 
MQ = u(X). Hence X= PQ + Ker U. Thus we have that 

PROPOSITION 2.4. For a T-module M without projective summands the 
following assertions hold. 

(1) MQ = 0 if and only if t,,,,(Q) is an injective A-module. 

(2) n,(M) Q = 0 if and only if M/MQ is a projective A-module. 

(3) If MQ = 0 and 52,(M) Q = 0, then M is a projective A-module and 
an,(M) is an injective A-module. 

Proof: Assertions (1) and (2) follow easily from (2.3). For (3), C,,,,W,(Q) 
is injective from (1) and Q,(M) = eDTo,, by assertion. Hence R,(M) is an 
injective A-module. Similarly we can show that M is a projective A-module. 

The above lemmas are general consequences in the sense that they imply 
no restrictions for the ring A. Next we prove some lemmas which are closely 
related to hereditary rings. 

LEMMA 2.5. For an idempotent e in T and e =p(e), we assume that 
M/t,(Q)A is projective for any submodule M of eT with MQ # 0. Then every 
submodule of eA is projective. 

ProoJ Let eI be a nonzero submodule of eA. Then by (2.2) there exists a 
submodule M of eT such that 

Hence it follows from the assumption that eI., is projective. 
Here we recall the definition of torsionless modules. For an arbitrary ring 

R, a right R-module M is said to be torsionless provided that there is a 
monomorphism from M to some product of copies of R,. In our case, since 
we assume that the ring A is right Artinian, every finitely generated 
torsionless A-module can be embedded into a finitely generated free A- 
module. 

PROPOSITION 2.6. Let M be a nonprojective torsionless A-module and 
@ ;=, Pi a projective cover of M in mod T, where each Pi is indecomposable. 
Then it holds that PiQ t? a,(M) Q for any i and 
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Proof. Let u: P -+ M be a projective cover of M in mod T and 
P = @I=, Pi. It is then that Ker u = n(M), PQ = eker ,(Q) by (2.1-5) and 

W u) Q = PQ = Cker ,<Q>. 

Hence we must show that (Ker u) Q $ PQ. For this, it suffices to show that 

PiQ d (Ker U) Q for any i. 

Since M can be embedded into some projective A-module by assumption, 
from (2.2) there is a T-module M such that 

O-+&(Q)-M&M-,0 

is exact. By the projectivity of P,, there is then a morphism U: P-+ fi such 
that u = WU. Since v(Ker U) c Ker w = Em(Q), it holds that 

u((Ker U) Q) = 0. 

Now suppose that there is Pi such that PiQ c (Ker u) Q. Then v(P,Q) = 0 
from the above, i.e., v(Pi) c C,(Q). Hence, u(P,) = wu(P,) c w(e,(Q)), and 
so it holds that u(Pi) = 0, because t,(Q) = Ker w. But this contradicts that P 
is a projective cover of M in mod T. Hence we have that PiQ & (Ker U) Q 
for all i. 

Making use of the above lemmas, we can now characterize a hereditary 
Artinian ring with respect to indecomposable T-modules. 

THEOREM 2.1. Let A be an Artinian ring with a QF-module Q and let T 
be an extension over A with kernel Q. Then the following statements are 
equivalent. 

(1) A is hereditary. 

(2) MQ is an injective A-module for every indecomposable T-module 
M with MQ # 0. 

(3) MQ = t,JQ) for every indecomposable T-module M with MQ # 0. 

(4) M/C,(Q) is a projective A-module for every indecomposable T- 
module M with MQ # 0. 

Proof. First we prove that (1) implies all the others. Let M be an 
indecomposable T-module with MQ # 0, and let u: P’ + M be a projective 
cover of M. Then u(P’Q) = MQ and P’Q is injective in mod A by (2.1). 
Since A is hereditary, any factor of an injective module is also injective, and 
so MQ is injective in mod A, which proves (2). Now let P be an injective hull 
of M. By the fact just proved above, MQ is injective in mod A and hence we 
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have that e,(Q) =MQ @X for some submodule X,. Thus we have the 
following commutative diagram: 

o- X -5 A4 -M/X-O 

St 
I 

I 
I 

0 - l,(Q)/MQ * WMQ 4 P/PQ, 

where s, t, u, v and w are all canonical morphisms. In this diagram the two 
sequences are exact. For, we know that 

Ker w = (M 1’7 PQ)/MQ, 

and by (2.1) 

E,,,(Q) = M n PQ. 

By (2.1) we know also that P/PQ is projective in mod A and hence Im w is 
projective in mod A, because A is hereditary. This shows that the exact 
sequence 

0 + l,(Q)/MQ 4 M/MQ -+ Im w -+ 0 

is splittable. Hence there is a morphism u’: M/MQ -+ tJQ)/MQ with U’U is 
an identity on &,,,JQ)/MQ. Hence s = (u’u) s = (u’t) U, which implies that u is 
splittable, because s is an isomorphism. Therefore MN X @ M/X. But 
XQ = 0 and M is indecomposable with MQ # 0. Hence X must be zero. This 
means that MQ = e,(Q) and w is monomorphic, that is, M/MQ is projective 
in mod A. Thus (3) and (4) are proved. 

(2) + (1) Let E be a nonsimple indecomposable injective A-module. 
To show (1) it suffices to show that any factor of E is also injective (see [ 1, 
Corollary 11 I). By the definition of the QF-module, there is an idempotent e 
in A such that E N eQ. Then it is sufficient to show that any factor of eQ is 
injective. Let e be an idempotent in T with e = p(e), and M = eT/eI for an 
arbitrary proper submodule eI of eQ. Then, clearly M is indecomposable, 
because top(M) is simple, and A4Q # 0 for MQ = eQ/el. Hence, by 
assumption (2), MQ is injective in mod A, that is, eQ/el is injective in 
mod A. 

(3) = (1) It suffices to show that rad(eA) is projective for any idem- 
potent e in A. Suppose that rad(eA) is not projective for some idempotent e. 
There is then an indecomposable nonprojective summand M of rad(eA). 
Then R,(M) is indecomposable by (1.3) and, since M is nonprojective in 
mod A, R,(M) is not annihilated by Q, in view of (2.4). Hence, by 
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assumption (3), we have that R,(M) Q = en+,(Q). However, since M is 
torsionless in mod A, this contradicts (2.6). Thus A must be hereditary. 

(4) + (1). Let I be a nonzero right ideal in A. Then, by (2.2) there is a 
T-module M such that 

is exact. For a decomposition M = @;= 1 Mi with Mi indecomposable T- 
modules, it is clear that tM(Q) = @7=, PMMi(Q). Hence, 

By assumption (4), the right hand side is projective and so I is projective in 
mod A. Thus we are done. 

LEMMA 2.8. Let A be an Artinian ring with a QF-module Q and T a 
trivial extension of A by Q. For a primitive idempotent e in T let M = eT/eI, 
where eZ is a proper submodule of eQ. Then, ifl,(Q) is injective in mod A, it 
holds that MQ = tM(Q). 

Proof. In this proof we again forget the agreement in Section 1 for the A- 
modules (see the proof of (2.2-3)). Since T is a trivial extension of A by Q, 
there is a splittable ring monomorphism I: A + T with pr = 1, by definition. 
By this morphism z, every T-module may be canonically regarded as an A- 
module. Then M can be considered as an A-module, so that it is decomposed 
into a direct sum of t,+,(Q) and some A-module X, because EM(Q) is an 
injective A-module: 

Here, X # 0 because MQ = eQ/el# 0. Since M has the unique maximal 
submodule in mod T, it therefore holds that M is a T-module generated by X, 
i.e., M = XT, while X @ XQ is a T-submodule of M. Hence 

M=X@XQ (2) 

as right A-modules. Comparing (1) with (2), we conclude that XQ = e,(Q) 
because XQ c tM(Q). On the other hand, it is clear that MQ = XQ, thus we 
have proved that MQ = l,(Q). 

THEOREM 2.9. Let A be an Artinian ring with a QF-module Q and Tan 
extension over A with kernel Q. 
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(I) The following statements are equivalent. 

(1) M/MQ is a projective A-module for any indecomposble T- 
module M with MQ # 0. 

(2) t,(Q) is an injective A-module for any indecomposable T- 
module M with MQ # 0. 

(3) fin,(M) Q = 0 for any indecomposable T-module M with 
MQ#O. 

(4) Q;‘(M) Q = 0 for any indecomposable T-module M with 
MQfO. 

(II) IfA is hereditary, the assertions of (I) hold, and conversely if T is 
a trivial extension of A by Q. 

Proof: (I) Since T is a quasi-Frobenius ring by (1.2), (1.3) asserts that 
L!,(fi;‘(M)) N M and n; ‘(R,(M)) 1: M for any nonprojective indecom- 
posable T-module M. Hence, (1) o (3) and (2) o (4) are obtained from 
(2.4). 

(3) * (4) Let M be a nonprojective indecomposable T-module with 
MQ # 0. The n;‘(M) is indecomposable nonprojective by (1.3). By 
assumption, if fi;l(M) Q # 0, then G,(n;‘(M)) Q = 0. But this means that 
MQ = 0, because M Y fi,(n; l(M)), a contradiction. 

(4) * (3) This is proved by the same argument as in the above and we 
omit the proof. 

(II) By (2.7) we know that if A is hereditary, (I) holds. To show the 
converse for a trivial extension T, we show that (I-2) implies that A is 
hereditary. Now let e be a primitive idempotent in A such that eQ is not 
simple. Then it suffices to show that all factors of eQ are also injective [ 1, 
Corollary 111. Let eZ be a proper submodule of eQ and e a primitive idem- 
potent in T with e = p(e). Let M = eT/eZ. Then, since M is indecomposable, 
MQ = CM(Q) by (2.8). Hence, MQ is injective in mod A, which shows that 
eQ/eZ is injective in mod A. 

EXAMPLE 2.10. Here we note that if T is not a trivial extension of A by 
Q, then assertion (II) in (2.9) does not hold in general, even if T is weakly 
symmetric. 

Let T be a serial quasi-Frobenius algebra over a field such that 1 T = e, + 
e, + e3, where {ei} is an orthogonal set of primitive idempotents such that 
each composition length 1 e, TI is 4 and 

top(e, rad(T)) = top(e, T), 

top(e, rad(7’)) = We, T), 
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and 

top(e, rad(7’)) 2: top(e, T). 

Let Q = rad(T)2, A = T/Q and ei = e, + Q in A. Then Q2 = 0 in T and T is 
an extension over A with kernel Q, but not of course trivial. For, if 
T=A K Q, rad(7’) = rad(A)@Q as additive groups and so rad(T)3 =O, a 
contradiction. Further, A is a serial quasi-Frobenius algebra with a 
Nakayama permutation 

123 

‘= 231 c ) 

by ,A, and it is not difficult to see that 

e, Q - e,A, e,Q = e,A, e,Q=e,A, 

Qe, = Ae,, Qe, = Ae,, Qe, 1: Ae, . 

This shows that Q, N A, and A Q N A A. Hence Q is a QF-module. On the 
other hand, since T is serial, by Nakayama’s theorem [20, Theorem 171 all 
indecomposable right T-modules are factors of primitive right ideals in T. 
Using this fact, we can easily check that each property in (2.9, I) holds. 
Furthermore, clearly A is not hereditary but T is weakly symmetric. 

Example 2.10 is generalized as follows. 

PROPOSITION 2.11. Let A be an Artinian ring and Q a QF-module and 
let 0 -+ Q + T+ A + 0 be an extension of A with kernel Q. Assume that T is 
a serial ring. Then for every indecomposable T-module M with MQ # 0 it 
holds that MfMQ is projective in mod A. 

Proof Let M be an indecomposable T-module with MQ # 0. By 
Nakayama’s theorem there is an idempotent e such that eT+* M + 0 is 
exact. Since f(eQ) = MQ # 0, it holds that eQ dr Kerf= a.(M). Hence 
Q.(M) $ eQ because the set of right ideals of T is totally ordered, so that 
a.(M) is annihilated by Q. Hence the conclusion follows from (2.4-2). 

In conclusion of this section, we apply our theorems to the representation 
theory of Artinian rings. Especially properties (3) and (4) in (2.9, I) are 
remarkable, which will give a correspondence between indecomposable A- 
modules and indecomposable T-modules which are not annihilated by Q. To 
say it more explicitly, for an Artinian ring R we denote by Ind R the set of 
isomorphism classes of finitely generated indecomposable right R-modules. 
Now let A be an Artinian ring with a QF-module Q and T an extension over 
A with kernel Q. Then Ind qInd A is the set of finitely generated indecom- 
posable right T-modules which are not annihilated by Q. We define a map CD 

481/73/2-9 
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from IndA to Ind qInd A as follows. (i) @([Ml) = [R,(M)] for a nonpro- 
jective indecomposable module M in mod A and (ii) @([Ml) is the 
isomorphism class of a projective cover of M in mod T for a projective 
module M in mod A (cf. (2.4)). Then we have 

Theorem 2.12. Let A be an Artinian ring with a QF-module Q and Tan 
extension over A with kernel Q. Then it holds that 

(1) @ is an injection. 

(2) @ is bijective if and only if tM(Q) is injective in mod A for every 
indecomposable right T-module M with MQ # 0. 

(3) If A is hereditary, CD is bijective. Moreover, in case T is a trivial 
extension of A by Q, the converse holds. 

Proof. (1) Let P(A) be the set of isomorphism classes of indecom- 
posable projective right A-modules. Then it is clear that @ is injective on 
P(A) by (2.1) and on Ind A\P(A) by (1.3). Moreover, since T is quasi- 
Frobenius, it is clear that Q=(M) is nonprojective in mod T for 
[M] E Ind A\P(A). H ence @(P(A)) fY @(Ind A\P(A)) = 0. This shows that 
@ is injective on Ind A. 

(2) @ is a bijection if and only if for [M] E Ind flInd A there is an 
[N] E Ind A such that M =fi,(N), i.e., [Q;‘(M)] E Ind A, which means 
condition (4) in (2.9). Thus we are done. 

(3) This is an immediate consequence of (2.9-11) and the above result 

(2). 

COROLLARY 2.13. Let A be an Artinian ring offinite representation type 
with a QF-module Q and Tan extension over A with kernel Q. Then, tfA is 
hereditary, T is offinite representation type and the number of isomorphism 
classes of indecomposable right T-modules is two times the number of 
isomorphism classes of indecomposable right A-modules. In case T is a 
trivial extension of A by Q, the converse holds. 

Proof This is obvious from (2.12). 

EXAMPLE 2.14. In (2.12-3) the condition that T is a trivial extension of 
A by Q cannot be removed. For example, we consider the rings A and T 
given in (2.10). Then, since both T and A are serial, it is easy to see that 
n(T) = 12 and n(A) = 6 (see [20, Theorem 17]), where II means the number 
of isomorphism classes of indecomposable modules. But neither A is 
hereditary nor T is a trivial extension of A by Q. 

Remark 2.15. In the case T = A K Q, (2.13) has already been proved in 
[ 251 as noted in the introduction. 
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3. ALMOST SPLIT SEQUENCES OVER A QF-RING 

In this section we remark some results for almost split sequences, which 
will be used in the following sections. We are concerned with setting up a 
principle of construction of indecomposable modules over a quasi-Frobenius 
ring. 

We first recall definitions from 121. Let A be an Artinian ring. Let 
CI: 0 +X+ Y * Z -+ 0 be a nonsplittable exact sequence in mod A with X 
and Z indecomposable modules. E is called almost split if any morphism 
f: X + W in mod A which is not a splittable monomorphism can be extended 
to Y, or equivalently any morphism g: W + Z in mod A which is not a split- 
table epimorphism can be factored through Y. A nonsplittable morphism 
f: X -+ Y in mod A is called irreducible provided that if f = hg for some 
morphisms g: X + W and h: W -+ Y in mod A, then g is a splittable 
monomorphism or h is a splittable epimorphism. The ring A is said to have 
almost split sequences if there are almost split sequences in mod A 

o-+X-+X'+X"-+O, 

o+ Y/'-t Y'+ Y-+0 

for any indecomposable noninjective module X and any indecomposable 
nonprojective module Y. For an almost split sequence 0 +X + Y -+ Z -+ 0 we 
denote X by wA(Z) and Z by w;‘(X). For an indecomposable module M, let 

o:(M) = WA+.$‘(M)), 
w,“(M) = u,‘(Op+yM)) forn > 0 

if the right hand sides are well defined. By the uniqueness of the almost split 
sequences, it holds that for any indecomposable module X, X ‘v w, loA if 
X is not projective and wA(X) is defined, and X N oA w, i(X) if X is not 
injective and 07 ‘(X) is defined. If there is no confusion, w: will be denoted 
by W’ for short. 

The following lemma is very fundamental and it is proved in (31. (See 
(2.4) (2.15) and (3.1) in [3].) 

LEMMA 3.1. Let A be an Artinian ring with almost split sequences. Then 
the following statements hold in mod A. 

(1) For indecomposable modules X and Z, a nonsplittable exact 
sequence 0 - Z -+” Y +’ X + 0 is almost split if and only if both u and v are 
irreducible. 

(2) For an indecomposable nonprojective module X and a nonzero 
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morphism u: Y + X in mod A, u is irreducible if and only tf there is an 
almost split sequence 

O-+w(X)+ Y@ yr-ll,x+o 

such that f = u 0 u’ for some morphism u’: Y’ + X. In this case, there is an 
irreducible morphism w(X) --f Y. 

(3) For an indecomposable noninjective module X and a nonzero 
morphism u: X + Y in mod A, u is irreducible tf and only tf there is an 
almost split sequence 

o-+xL Y@ Y’+or’(X)+0 

such that f = u 0 u’ for some morphism u’: X + Y’. In this case, there is an 
irreducible morphism Y+ o-‘(X). 

(4) For a nonzero morphism u: X + Y, 

(i) if X is injective, u is irreducible tf and only tf the following 
diagram is commutative: 

24 Y 

i- I 
m 

x -5 X/SOC(x), 

where p is the canonical epimorpohism and m is a splittable monomorphism. 

(ii) if Y is projective, u is irreducible if and only if the following 
diagram is commutative: 

rad(Y) L Y, 

where k is the inclusion and m a splittable monomorphism. 

The following is a special case of [ 3,4.1 I]. 

LEMMA 3.2. Let A be a quasi-Frobenius ring and P an indecomposable 
projective A-module. Then the exact sequence 

E: 0 + rad(P) -5 P @ (rad(P)/soc(P)) -% P/sot(P) + 0 
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is almost split, where u(x) = (x, x t sot(P)) and v(y, z + sot(P)) = 

(Y-Z> + soW)f or x, z E rad(P) and y E P. Moreover, rad(P)/soc(P) does 
not contain a projective submodule. 

For a module M over an Artinian ring A, L(M) denotes the upper Loewy 
length, that is, it is the smallest number n such that M rad(A)” = 0. Let A be 
an indecomposable quasi-Frobenius ring with L(A) = 2. Then it is well 
known that A is serial and so nonprojective indecomposable modules are 
simple. This is a trivial case. The following lemma gives information for a 
quasi-Frobenius ring A with L(A) > 2 [5, Lemma 4.31. 

LEMMA 3.3. Let A be an indecomposable quasi-Frobenius ring with 
L(A) > 3. Then L(P) > 3 for every indecomposable projective module P. 

The construction of indecomposable modules considered in this paper is 
closely connected with irreducible morphisms between indecomposable 
modules. For an Artinian ring A with almost split sequences, a set {Mi}i,, of 
finitely generated indecomposable modules is called an w-generating set for a 
given class C of finitely generated indecomposable modules provided that for 
any module M belonging to C there is some M, such that MN w”(Mi) for an 
integer n. Further the set {Mi}i,, is called an w-basis [ 161 in case that it is 
an w-generating set for the class of all finitely generated indecomposable 
modules and that it is not o-generated by any proper subset. It is the 
problem that we find an o-basis for an Artinian ring of finite representation 
type. As example, o-bases are known for those Artinian rings of finite 
representation type that are serial rings [ 3, 201, algebras with squared zero 
radical [ 191, hereditary algebras [ 121 and algebras of local-colocal represen- 
tation type [ 161. For the others, see 19, 131. 

Before stating the main result in this section, we recall notation from [27]. 
Let A be an Artinian ring with almost split sequences. For an indecom- 
posable module M, E,(M) is defined for any integer n > 0 as follows (for 
n < 0 it is similarly defined); 

(i> EoPf) = i WI I. 
(ii) [Xl E E,+,(M) if and only if X is indecomposable and there is an 

irreducible morphism X + Y for some [Y] E E,(M), where [ ] denotes the 
isomorphism class of a given module. Let E,(M) = {[Xl 1 [X] E E,,(M) and X 
is not projective or injective}. For two sets E,, E, of isomorphism classes of 
indecomposable modules, the ordered pair (E,, E,) is called reflexive 
provided, for any irreducible morphism X, -+ X0 between nonprojective, 
noninjective and indecomposable modules Xi, [X0] E E, if and only if 

IX, 1 E E,. 

PROPOSITION 3.4. Let A be an indecomposable quasi-Frobenius ring with 
almost split sequences and L(A) > 3. Let B, be a set of isomorphism classes 
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of indecomposable nonprojective A-modules Mi (i E I), and let 
E, = Uie, B,(Mi) for any integer n. Zf (E,, E,) is a rejlexive pair, then it 
holds that 

(1) (E,, E,- ,) is reflexive for any integer n. 

(2) E, U E, is an w-generating setfor UnEL E,. 

Proof: (a) We will note that every almost split sequence has a nonpro- 
jective middle term. For this, suppose that 0 -+ w(X) + Y + X+ 0 is an 
almost split sequence such that Y has an indecomposable projective 
summand P. Then L(P) > 3 by (3.3), hence rad(P)/soc(P) # 0. Moreover 
there is an irreducible morphism P -+X by (3.1). Again by (3.1) since P is 
injective, X must be isomorphic to a direct summand of P/sot(P). However, 
since P has the simple top, P/sot(P) is indecomposable. Hence X is 
isomorphic to P/sot(P). Therefore, from the uniqueness of almost split 
sequences and (3.2), we know that Y N P @ rad(P)/soc(P) and rad(P)/soc(P) 
is not projective, so Y is not projective. It follows from this fact that if E,, is 
not empty, then neither En+, nor E, _, is empty. Hence, in fact, it holds that 
E, is not empty for every integer n, because E, # 0 by assumption. 

(b) We will show the following properties by induction on n > 1. 

(l),: (E,, E,-,) is reflexive. 

(2),: E, has E0 U E, as an o-generating set. 

For this, first of all we will observe that for every n > 1 and [X] E En+, 
there exists [ Yz] E E, with an irreducible morphism X+ Yz, i.e., 
[X] E E,( Y2). By the definition of &, there is [ Y] E E, with [Xl E E,(Y). 
Here, if Y is nonprojective, there is nothing to prove. Now then, assume that 
Y is projective. By definition there is [ Y3] E E,- , with [Y] E E,(Y,). Since Y 
is indecomposable projective, it follows from (3.2) that there is an almost 
split sequence 0 -+ X + Y @ Y’ + Y3 + 0 (cf. the proof of (a)). In particular, 
Y, is nonprojective and Y’ has a nonprojective indecomposable summand 
Y,. Hence [Y,] E E,- i and so [ Yz] E E,,. Moreover, [X] E E,(Y,) clearly. 

Now, (l)i, (2)0 and (2), hold clearly. Assume that assertions ( l)k and (2)k 
are valid for all integers k such that 0 < k < n. Let [X] E E,,, i and Y, be an 
indecomposable nonprojective module with [X] E E,(Y). From the above 
observation there exists [Y,] E E,, with [X] E E,( Y,). Since A is quasi- 
Frobenius, X is noninjective and so there is an irreducible morphism 
Yi+ o-‘(x) for i= 1, 2 by (3.1). Then by the induction hypothesis (l), we 
have that [w-‘(X)] E En-,, because [ Y2] E & and o-‘(X) is nonprojective. 
Hence [Y,] E E,,, because Y, is nonprojective. This shows that (l),, , holds. 
On the other hand, by the induction hypothesis (2),-,, there exists [M] in 
E,, U E, such that cu- ‘(X) z u”(M) for some integer m and hence 
XE w(w-‘(X)) N cfY+l (M). This shows that (2), + , holds. 

For n < 1 we can similarly prove (I), and (2),. 
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4. CONSTRUCTION OF INDECOMPOSABLE MODULES 

The aim of this. section is to find an o-basis for every extension over a 
hereditary Artinian ring of finite representation type with kernel Q a QF- 
module. First we study some relations between irreducible morphisms in 
mod A and in mod T. 

THEOREM 4.1. Let A be an Artinian ring with a QF-module Q and Tan 
extension over A with kernel Q, and consider the following properties: 

(1) l,,(Q) is injective in mod A for every finitely generated indecom- 
posable T-module M with MQ # 0. 

(2) Every irreducible morphism between indecomposable modules in 
mod A is irreducible in mod T. 

(3) Every almost split sequence in mod A is almost split in mod T. 

Then the implications (1) 3 (2) => (3) always hold. Moreover if A has 
almost split sequences, then the implication (3) * (1) holds. 

Proof. (1) + (2). Suppose for a contradiction, that f: X-+ Y is 
irreducible in mod A, but that f = hg in mod T, where g: X+ W is not a 
splittable monomorphism and h: W * Y is not a splittable epimorphism. 
Since XQ = 0 in mod T, g(X) c f,(Q), so that g = ig’, where g’: X+ I,(Q), 
and i: I,(Q) --t W is the inclusion. Similarly, since h( WQ) = 0, we have that 
h = h’p, where p: W + W/ WQ is the projection and h’: Wf WQ + Y. 

Now f = (hi) g’ in mod A, so the irreducibility in mod A off and the 
assumption that h is not a splittable epimorphism imply that g’: X+ t,(Q) 
is a splittable monomorphism. Similarly, the factorisation f = h’(pg) implies 
that h’: W/ WQ -+ Y is a splittable epimorphism. Next we will show that X is 
injective and Y is projective in mod A, which of course contradicts the 
irreducibility off (cf. (3.1)). 

Now let W = W, @ W,, where W, has no direct summands annihilated by 
Q and W, Q = 0. Then 

f,(Q) = L,(Q) 0 W, 

and I,,,,(Q) is injective by assumption. Let 

(w(Q) = g(W 0 W’ 
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for some module IV’. Since g(x) has the exchange property (cf. [26]), we 
have that 

for some W; E e,,(Q) and W; E W,. If X is not injective in mod A, it must 
be that W; = I,,(Q). On the other hand, clearly soc( W,) c e,,(Q). Therefore 
(g(X) @ W;) n W, = 0. Consequently, we have that 

W= W, + c,(Q) = W, + (g(W 0 &v,(Q) 0 W 

= w, @g(X)@ w;. 

This shows that g is a splittable monomorphism, which contradicts the 
assumption for g. Hence X is injective in mod A. Moreover, since W/WQ = 
(W,/ W, Q) 0 W, and W,/ W, Q is projective in mod A by (2.9), it will be 
shown that Y is projective in mod A by the similar argument. Thus we 
conclude the proof. 

(2) - (3). This is an immediate consequence of (3.1-l). 

(3) =z- (1). Let M be an indecomposable T-module with MQ # 0, and 
suppose that C,(Q) is not injective in modA. Let X be a noninjective 
indecomposable summand of C,(Q) and 

an almost split sequence in mod A. Then by assumption, E is also almost 
split in mod T. Hence, for an inclusion h: X+ kf, there is a morphism 
g: Y+ M such that h = gf: Since g(Y) Q = 0, g induces a morphism g’: Y-t 
I,(Q) such that g = kg’, where k: tM(Q) -+ M the inclusion. Let i: X-+ tM(Q) 
andj: fM(Q) -+ X be the canonical injection and projection, respectively. Thus 
the following diagram is commutative: 

M . 

Since ki = h = sf= k( g’f), i = g’J: Hence 1, = ji = (jg’)f. This shows that f 
is a splittable monomorphism, a contradiction. 

Combining (4.1) with (2.9), we have 
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COROLLARY 4.2. Let A be an Artinian ring with a QF-module Q and T 
an extension over A with kernel Q. Then 

(1) If A is hereditary, then all properties in (4.1) hold. 

(2) If A has almost split sequences and T is a trivial extension of A by 
Q, then each property in (4.1) implies that A is hereditary. 

In the following we assume that A is a hereditary Artinian ring with a QF- 
module Q and T an extension over A with kernel Q. 

LEMMA 4.3. For an indecomposable projective T-module P, it holds that 

(1) If top(P) is an injective A-module, then PQ is a simple injective A- 
module. 

(2) If sot(P) is a projective A-module, then P/PQ is a simple 
projective A-module. 

Proof: We prove only (l), then (2) will be obtained by the dual 
argument. Let K be a submodule of PQ such that PQ/K is simple and let 
S = PQ/K. We must show that K = 0. Since A is hereditary, S is an injective 
A-module by (2.1). Let P’ be an injective hull of S in mod T. Then since P’Q 
is injective indecomposable in mod A (2. l), S = P’Q and hence P’/S is a 
projective A-module. Consider the following commutative diagram: 

O-+PQ/K*P/KAP/PQ-0 

where u, v, u’ and v’ are canonical, and f, g are morphisms induced from the 
injectivity of Pk. It then holds that f(P/K) +J u’(S). For, suppose that 
f(P/K) = u’(S). Then it is clear that u is a splittable monomorphism, that is, 
in mod T 

P/K = PQ/K @ P/PQ. 

But the right hand side is annihilated by Q, so that (P/K) Q = 0. Hence 
PQ c K, which contradicts the choice of K. Consequently, v’f # 0 and hence 
g # 0 by the commutativity of the above diagram. Since A is hereditary and 
both P/PQ and PI/S are indecomposable projective A-modules, g is then a 
monomorphism. Hence g induces a monomorphism 8: top(P) + 

(P’lWg@WYpQ) in mod A. Since top(P) is injective in mod A, S is split- 
table, and so g must be an isomorphism because (P’/S)/g(rad(P)/PQ) is 
indecomposable. This implies that g is an isomorphism. Thus f is an 
isomorphism. Since P' is projective in mod T, P/K is aso projective in 
mod T. Since P is indecomposable, this implies that K = 0. 
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LEMMA 4.4. Let eA be an indecomposble projective A-module such that 
top(eA) is injective in mod A, and let f: M+ eA be an irreducible morphism 
in mod T with M an indecomposable T-module. Then either 

(1) MQ = 0 and f is irreducible in mod A, or 

(2) M is projective in mod T such that f induces an isomorphism from 
M/MQ to eA . 

Proof. If MQ = 0, then M is an A-module. Hence it is clear from the 
definition of irreducible morphism that f is irreducible in mod A. Assume 
that MQ # 0. Then f is not monomorphic, because (eA) Q = 0 regarding eA 
as a T-module. Therefore f is epimorphic by the definition of irreducible 
morphism. Let P be an indecomposable projective T-module with 
P/PQ = eA. Then there is a morphism g: P + M such that p = fg. where p is 
the canonical morphism P+ eA. By (4.3-l), PQ = sot(P). Since P is 
injective, it follows that p: P + P/sot(P) N eA is irreducible, and then clearly 
g is a splittable monomorphism. Since M is indecomposable, g is an 
isomorphism and (2) follows at once. 

Here we will recall the definition of the quiver of A from [ 121. Let r be a 
set in a one-to-one correspondence with the set of isomorphism classes of 
indecomposable projective right A-modules, and we denote by P,. an 
indecomposable projective module corresponding to a vertex v E r. For 
~‘1, ~2 E r, d,.,,pI denotes the multiplicity of top(P,,*) in composition factors 
of top(P,., rad(A)), and d:,l,,., is the multiplicity of top(P:J in composition 
factors of top(rad(A) P:,), where ( )* = Hom,( , A). Then the quiver -z?(A) 
of A means the set (r, d), where d stands for the set of d,.,,,.i for vi, vj E r. 
We use the symbols 

and 

0-0 

Ui Uj 

simply for dL,i,Uj = d&v, = 1. 

That is, the quiver means the oriented valued graph here. 
The following proposition shows fundamental relations between the quiver 

of a hereditary Artinian ring and almost split sequences in mod T. 

PROPOSITION 4.5. Let A be a hereditary Artinian ring with a QF-module 
Q, T an extension over A with kernel Q and (T, d) the quiver of A. Assume 
that both A and T have almost split sequences. Then for any vertex v E r, 
W,‘(P”,) N Wi’ (P,,) for d,,.,, # 0, and there is an almost split sequence E,,,. 
in mod Tfor any integer n such that 
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0 -+ w”,(P,) -+ @ w;-‘(P,,.)~q @ ( @ w;(P”~t)(f~*~‘) @P 
d,.,,.,#O d,.,,.,. + 0 

+ co;-‘(P,,) -+ 0 

for some integers i, (, I,,, (>O), where P is zero or indecomposable projective 
right T-module. In particular, 

(1) iftop(P,,) is noninjective in mod A, w;‘(P,) N w,‘(P,) and E,,, is 

0 + P,. - 
( 

@ WA ‘(PJ(+) @ @ (Pui,yir) -+ w, ‘(P,) + 0 
d,.,‘#O i ( d,,,,,,.fO 

(2) if top(P,) is injective in modA, FE,,, is 

0 + P,. + @ W‘y ‘(P,,,)“f.” 0 P, + o$(Pt.) -+ 0, 
d,.,,.‘#O 

and there is an almost split sequence in mod T such that 

0 + rad(P,) -+ @ (P,.y,,’ @ P, + P,, + 0, 
d,.,, ,# 0 

where P, is zero or indecomposable projective in mod T and P, is indecom- 
posable projective in mod T such that PJP, Q N P,. 

Remark. If A is a hereditary Artin algebra, it will be seen from the proof 
and 14, Sect. 2] that 

C,,, = l;,. = d,,,., and L,,,, = d;,,,,. 

Proof. It should be noted that if 0 -+X+ Y + Z + 0 is an almost split 
sequence in mod T such that Y has a projective summand P, then P is 
indecomposable by (3.2). 

(1) The case top(P,) is noninjective in mod A : Let X be an indecom- 
posable nonprojective A-module. Then, since P,, is noninjective in mod A, by 
(3.1) there is an irreducible morphism P, -+X in mod A iff there is an 
irreducible morphism oA(X) --t P, in mod A iff there exists a vertex v’ E V 
such that w,(X) N P,, and d,,,, # 0, or equivalently, X ‘v w,‘(P,,). On the 
other hand, in case X is indecomposable projective in mod A, again by (3.1) 
there is an irreducible morphism P, + X in mod A iff there is a vertex v” E r 
such that X-P,,, and d,,,,, # 0. Thus we have an almost split sequence E,,,, 
in mod A such that for some integers E,,, eC,, > 0, 

w; ‘(P,.,)(‘~~‘)) @ ( @ (P,.,,)(‘r”)) -+ w;‘(P,) -+ 0. (i) 
d,.,s,r#O 
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By (4.2) we know that IE,,, is also almost split in mod T, so that 
w;‘(P”) z cc,;’ (P,) in particular. Furthermore it follows from (4.2) that 
w,‘(P,J 1: co;’ (P,,), because P,, is not injective in mod A. 

(2) The case top(P,) is injective in mod A: By (3.1), for a nonpro- 
jective indecomposable T-module X, there is an irreducible morphism P, + X 
in mod T iff there is an irreducible morphism w&Y) --) P, in mod T. Since X 
is nonprojective in mod T, w,(X) is nonprojective in mod T. Hence, if there 
is an irreducible morphism f: w,(X) -+ P, in mod T, o,(X) Q = 0 by (4.4) 
and f is irreducible in mod A, so that U&Y) r P,,, for some v’ E V with 
d,,,,,, # 0, or equivalently X = 0; ‘(P,,). 

Conversely assume that f: P,, -+ P, is irreducible in mod A for v’ E P with 
d,,,, # 0. Then f is also irreducible in mod T by (4.2). Hence by (3.1) there 
is an irreducible morphism P, + w;’ (P,,) in mod T, Therefore, by (3.1), 
w;‘(P,,) appears in the middle term of the almost split sequence 

in mod T. Thus we know that there is an almost split sequence E,,,, in mod T 
such that 

(PJ~~” ) @P, -+ o;‘(P,,) -+ 0 (ii) 

for some integer C,, > 0, where P, is zero or indecomposable projective in 
mod T. Moreover, by the same reason as in (1) it holds that w;‘(P,,) ‘Y 
W; ‘(Pur) for d,,,, # 0. 

Next we consider the second sequence. Let P, be a projective cover of P, 
in mod T. Then P, ‘v P2/PzQ by (2.3). Since top(P,) N top(P,) and top(P,,) 
is injective in mod A, it follows from (4.4) that P, Q = soc(Pz) and hence 
P,, N P2/soc(P2). Hence there is an almost split sequence in mod T such that 

0 + rad(P,) + P, @ (rad(P,)/soc(P,)) -+ P, -+ 0. 

Further, since no indecomposable direct summand X of rad(P,)/soc(P,) is 
projective in mod T by (3.2) but there is an irreducible morphism X --) P,, by 
(4.4) it holds that XQ = 0 and X-P,, for some v’ E P with d,,,, # 0 in view 
of (3.1). Conversely we easily see that for any v’ E P with d,,,, # 0, P,, 
appears in rad(P,)/soc(P,) as a direct summand by (3.1) and (4.2). Thus we 
have the almost split sequence in mod T 

0 + rad(P,) + (,,o,, (P”,)“-‘) 0 P, 3 P” -+ 0. 
. I’ 
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The rest immediately follows from (i) and (ii), in view of (3.1) and (3.2). 
To show that a given set of isomorphism classes of indecomposable 

modules is an w-basis, it is convenient to define “a distance a from sources” 
for every vertex. Let A be a hereditary Artinian ring and %(A) = (r, d) the 
quiver of A. We assume that 9(A) does not contain any quiver with cyclic 
orientation. Let {zI(~) IV(~) E I-, 1 < i < s} be the set of sources in S(A) and, 
for u E r, Ti(v) be the set of vertices such that u’ E Ti(u) if and only if there 
are arrows with u - ... - U’ - ... - uCi), where - denotes -+ or +-. Now we 
define a mapping 

a;: Ti(V) x Ti(V) + z, l<i<s, VET, 

as follows; for u,, u2 E Ti(v) 

(1) The case dL,,,UZ # 0: 

a& q) = 1 iff there are arrows uCi) - ..a - u, -+ vz - .a. - u, 

af,(u,, II*) = -1 ifftherearearrowsv”‘-...--u,cu,-...-v. 

(2) The case d,,,,,, = 0: we set c?~(u,, vz) = 0. 

Let for u E r 

and 

a(v) = Max(a’(v) 1 1 < i < s). 

Then a defines a mapping 

where N denotes the set of nonnegative integers. For, ai(vCi’) = 0 for any 
1 < i < s, and for v a nonsource there is i such that there exist arrows with 
u(i) -+ ... + V. Hence a’(u) > 0 by definition, and hence we have that 
a+) > 0 for ail nonsources u in r. 

LEMMA 4.6. For any vertices v,, v2 E r such that d0,,L,2 # 0, it holds that 
a(u,)-a+,)= 1. 

ProoJ: Since dl,,,L.l # 0, there is an arrow u r + u, . For the arrow there are 
two possible cases such that for a source u(i) 

&)- . . . -u,pll* or u(i) - . . . -VI+-V,. 



414 KUNIO YAMAGATA 

However, in any case, it is easily seen from the definition that 
~(UJ - 1 = #(vi). Hence it holds that ai - C?(U,) = 1 for any source uCi) 
such that y(i) - . . . - uj for j = 1, 2. Thus we have that a(~,) - a(~,) = 1. 

For any integer n > 0 and vertex v E r, we set 

n,, = fa(u) + n if a(v) is even, 

=i(a(v)- 1)+n if a(u) is odd. 

Then we have 

LEMMA 4.1. Assume that both A and T have almost split sequences. Let 
X and Y be nonprojective indecomposable T-modules and assume that there 
is an irreducible morphism Y + X. Then for any integer n > 0, 

(I) The following statements are equivalent. 

(1) XE W;yPU)f or some v E r such that a(v) is even. 

(2) Y N co;“‘. (P,,) for some v’ E r such that a(v’) is odd. 

(II) Let 

E, = { [w;“l,(P,)] / v E r, a(v) is even] 

and 

E, = { (oq v(PJ] / v E r, a(v) is odd}. 

Then (E,, E,) is reflexive. 

Proof: Assertion (II) is obvious from (I). 

(I) (1) 3 (2). By (3.1) there is an almost split sequence in mod T 

O+o;n,.+‘(PJ+ Y@ Y’+o,“l’(P,.)+O, 

where Y’ is a T-module. It follows from (4.5) that either 

0) Y N C@J(P,,) ford,,,,, # 0, 

or 

(ii) YE-W, ++‘(P”,,) for d,,,,,: # 0. 

First we assume case (i). Then, by (4.6), a(v’) - a(u) = 1 and so a(u’) is 
odd. Hence we have 

n,, - - f(a(d)- l)+ n= ;a+)+ n-n,. 

As a consequence, it holds that Y- w;“~‘(P~,,) for a(v’) odd. 
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Next we assume case (ii). By the same way as in the proof of (i), we then 
know that a(~“) is odd and n,” = n, - 1. Hence it holds that YE o;~~“(P~.,,) 
for a(~“) odd. 

(2) + (1). By (3.1) there is an almost split sequence in mod T such 
that 

where X’ is some T-module. Using this fact the implication (2) 3 (1) is 
proved by the same argument as in the (1) * (2), and we omit the rest. 

Now we can prove the main theorem on a construction of indecomposable 
T-modules (cf. (5.3)). 

THEOREM 4.8. Let A be a hereditary Artinian ring with a QF-module Q 
and Tan extension over A with kernel Q. Assume that A is offinite represen- 
tation type. Then the set of nonisomorphic indecomposable projectie A- 
modules and nonisomorphic indecomposable projective T-modules is an wT- 
basis. Similarly the set of nonisomorphic indecomposable injective A-modules 
and nonisomorphic indecomposable injective T-modules is also an co,-basis. 

Proof: We my assume, without loss of generality, that A is an indecom- 
posable ring. Since A is hereditary, T is also of finite representation type by 
(2.12). Hence, in particular, T has almost split sequences. If L(A) = 1, A is 
semi-simple Artinian, so that T is clearly serial quasi-Frobenius ring with 
L(T) = 2. Therefore nonprojective indecomposable T-modules are nothing 
but simple A-modules. Hence the assertions for this case are trivial. Now 
assume that L(A) > 2. Then L(T) > 3 clearly. Hence we can apply (3.4) for 
the ring T. 

Let 2(A) = (r, d) be the quiver of A. Then top(P,) denotes an arbitrary 
simple A-module for v E T. On the other hand, from the proof given in [27, 
Theorem 11 we know that for any v E T, there is a sequence of arrows in 
mod A such that 

P,k@+ ... +x m(u) - 1 --+L top(P,), 

where eachfi denotes an irreducible morphism and Xi an indecomposable A- 
module. Let n be an arbitrary integer greater than m(v) for every v E T, and 
with the notations given in (4.7) before we put 

E. = { [w;~~~(PJ] 1 a(v) is even}, 

Ei = U iEiCx) I Ix1 E EO13 for iE Z, (2) 
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where each Bi is taken in mod T. Then, it is easily seen from (4.7) that 

E, = { [w;“$P,)] 1 a(v) is odd} (3) 

and the ordered pair (8,) E,) is reflexive. Now let 

E= u Ei. 
icZ 

Then for every vertex V, clearly [Pv] E Ek for k = n, or flv + 1. It follows 
from this and (1) above that for these k 

[top( E Ek-mW a 

This shows that E contains all isomorphism classes of simple T-modules. 
Therefore we know that 

u (E,(S)] S is simple in mod T} c i? U P, 
i>O 

(4) 

where P denotes the set of isomorphism classes of indecomposable projective 
T-modules. (See (3.4) before for the notations.) On the other hand, since T is 
of finite representation type, the left hand side in (4) consists of all 
isomorphism classes of indecomposable T-modules by [27]. Hence we have 
that 

E U P = u {E,(S)]S is simple}, 
i>O 

and it is the set of all isomorphism classes of indecomposable T-modules. As 
a consequence, since E,U i?i is an w-generating set for E by (3.4) 
E, U 8, U P is an w-basis. This shows that the set of isomorphism classes of 
indecomposable projective A-modules and of indecomposable projective T- 
modules is an w-basis, in view of the above (2) and (3). 

The case of the indecomposable injective modules is also proved in this 
way. 

Let A be a hereditary Artin algebra of finite representation type. Then it is 
well known that every indecomposable A-module M is isomorphic to 
(Tr, D)m (P) and to (D Tr,)” (E) for some nonnegative integers m and n, 
where P and E are indecomposable projective and indecomposable injective 
in mod A, respectively, Tr, a transpose and D the usual duality functor 
[ 7, 121. However, taking account of the fact [ 21 that D TrA(X) = wA (X) and 
Tr, D(Y) N ~7’ (Y) for every indecomposable nonprojective module X and 
for every indecomposable noninjective module Y, we can now obtain this 
result as an easy consequence of (4.8): 



EXTENSIONS OVER ARTINIAN RINGS,1 417 

COROLLARY 4.9. Let A be a hereditary Artinian ring offinite represen- 
tation type and with a QF-module. Then, for every indecomposable A-module 
M, there is an indecomposable projective A-module P and an indecomposable 
injective A-module E such that 

M 2L w,“(P) and M-w;(E) 

for some nonnegative integers m and n. 

Proof: Let Q be a QF-module and T an extension over A with kernel Q. 
For an indecomposable A-module M, by (4.8) there is an indecomposable 
projective A-module P such that MN w;“(P) for some m > 0. We will prove 
by induction on m that ME u;“‘(P) for some m’ > 0. 

Now, for an indecomposable A-module isomorphic to w;‘(P) = P, there is 
nothing to prove. For a given m > 0 assume that every indecomposable A- 
module which is isomorphic to w;“(P) (0 < k < m) is isomorphic to w;“‘(P) 
for some k’ > 0. Let M be an indecomposable A-module which is isomorphic 
to wfCm+‘)(P) but not isomorphic to w;“(P) for 0 < n < m. Then clearly M 
is not projective in mod A. Hence there exists an wA(M) in mod A, so that 
CO,.,(M) N wr(M) by (4.2). Since ME w;(“‘+ ‘j(P), it then follows that 

WA(M) 11 W&p+ l’(P)) = w;“(P). 

This also shows that U;“(P) is an A-module. Therefore w;“(P) N Wan’ 
for some m’ > 0 by induction hypothesis. Thus we have that 

MN w,‘(o,“(P)) N W;(m’+‘)(P), 

which is a desired result. 
The case of injective modules is proved in a similar way. 

5. AUSLANDER-REITEN QUIVERS 

Let A be a hereditary Artin algebra with a QF-module Q and T an 
extension over A with kernel Q. In this final section we are concerned with 
the number of indecomposable direct summands of the middle term of an 
almost split sequence in mod T and the Auslander-Reiten quiver of T. 

Following Refs. [6] and [ 221, we use the following notations. Let 0 + Z + 
Y + X-t 0 be an almost split sequence over an Artinian ring R and 

Y= @ Y;, 
I<i<a(X) 

481/73/Z-10 
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where each Y, is an indecomposable module. We denote by a(R) the 
maximal number among the a(X), where X ranges over the indecomposable 
nonprojective R-modules. 

In Ref. 1121 it is shown that the quiver of a hereditary Artin algebra A of 
finite representation type is a disjoint union of the 
diagrams. 

following Dynkin 

A,: O-O- ** * -O---O, 
1 2 n-1 n 

(1.2) 

B,: o-c,- . . . -0-0 

1 2 n-1 n 

(2.1) 
c,: o-o- . . . -0-o 

1 2 n-1 n 

1 

D,: \ /3-~--*-- n-1 n 

2 

E,: 

(1.2) 
F,: 0-0-0-0, 

(1.3) 

G,: O-0, 

where 0 -0 means 0-0 or 0-0. 

(n > 21, 

(6 < n < 81, 

In the proof of (5.1) below, we determine for any Artin algebra A 
associated with any of these Dynkin diagrams, an almost split sequence in 
mod T whose middle term is a sum of a(T) indecomposable summands. 

PROPOSITION 5.1. Let A be a hereditary Artin algebra with a QF-module 
Q and T an extension over A with kernel Q. Then it holds that 

(1) a(A)<a(T)<a(A)+ 1. 
(2) If A is indecomposable and the quiver of A is one of the Dynkin 

diagrams, then we have the following table. 



EXTENSIONS OVER ARTINIAN RINGS. I 419 

the quivers of A a(A) a(T) 

A, I 1 
A2 1 2 

A, (n > 2) 2 2 or 3 
B2 2 3 

B,, (n > 2) 3 3 or 4 
c, (n > 2) 2 3 
D, (a > 4) 3 3 or 4 
E,, E,,E, 3 3 or 4 

F4 3 3 or 4 
G* 3 4 

ProoJ (1) The inequality a(A) < a(7) is clear by (4.2). To show the 
other, we first consider the case that there is an injective and projective right 
A-module. In this case, it is clear that A is serial, because A is hereditary by 
assumption. Let P be an indecomposable projective right T-module, and let 
p: P’ + soc(P/PQ) be a projective cover in mod T. Since soc(P/PQ) is 
projective in mod A, it then follows that P’Q = P’ rad(T). Let f: P’ + P be 
the canonical morphism determined by the projectivity of P’. Thenf(P’Q) is 
injective in mod A and f(P’Q) c PQ, so that f(P’Q) = PQ. Hence 
f(P’) rad(T) = PQ. Thus we know that P is serial, i.e., T is serial, in view of 
the fact that P/PQ and PQ is serial. Hence a(A) < 2 and a(T) < 2 by [3, 
4.121. 

Next we consider the case that any projective A-module is not injective. 
Let E: 0 + Z --) Y + X -+ 0 be an almost split sequence in mod T. Then there 
are three posibilities: (a) XQ = 0 and X is nonprojective in mod A, (b) 
XQ = 0 and X is projective in mod A, and (c) XQ # 0. In case (a), E is an 
almost split sequence in mod A by (4.2). In case (b), n,(X) Q = 0, and 
Q,(X) is injective and hence not projective in mod A by (2.4). Hence fin,(E) 
is an almost split sequence in modA by [4, 5.11 and (4.2), where n,(E) 
denotes the short exact sequence in the top of the following canonical 
diagram (n;‘(E) is also similarly defined): 

0 0 0 

1 1 1 
Ll,(E):O-Q,(Z)-+ Kerp -+n,(X)+O 

1 1 1 
o- P, -Po@P,- P, -0 

PI 
I 

P 
I 

PO 
I 

E:O- z - Y - x -0 

1 1 1 

0 0 0 3 



420 KUNIO YAMAGATA 

where p,,: P, +X and p,: P, + Z are projective covers in mod T and p is the 
canonical morphism defined by pi. In case (c), Q;‘(X) Q = 0 and a; ‘(X) is 
nonprojective in mod A by (2.9) and (2.4). Hence sZ;‘(E) is also an almost 
split sequence in mod A. Thus we know that the middle term of E in case 
(a), WE) in (b), and B;‘(E) in (c) have a(A) summands at most. Hence 
the result follows from 14, 5.11 and (3.2). 

(2) We will examine a(A) and a(T) for each quiver of A. Let (r, d) be 
the quiver of A. Since every almost split sequence E in mod A is still almost 
split in mod T by (4.2), E is of the form 

o-, w;(P”)+ @ 
( d,,,,#O 

-+ o”r-‘(Pu) + 0, 

where e,, = d,,,, and 6,,, = d:,,,, by (4.8), (4.5) and its Remark. Hence, for 
each quiver of A, a(A) will be easily obtained, i.e., 

On the other hand, it also follows from (4.2) that a(T) > a(A), i.e., 
a(T) = a(A) + I by (1) if and only if there is an almost split sequence in 
mod T whose middle term contains an indecomposable projective T-module 
and has at least a(A) + 1 direct summands. Thus, in order to know a(T), we 
have only to check almost split sequences in mod T with projective 
summands in the middle terms. For vi E r, Pi denotes a projective cover of 
Poi in mod T. For B,, C, , F, , and G, it suffices to consider the orientations 
with 

o (a,b) ,. fora > b 

because of the self-duality of A. We make use of (4.5). 

(i) A,: Y(A) =2. a(T) = 1. 

Since indecomposable A-modules are P,, only, no almost split sequence 
exists in mod A, and since T is serial quasi-Frobenius, the almost split 
sequence in mod T is only 

(ii) A,: Y(A) = “d,“,‘. a(A) = 1, a(T) = 2. 
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Since top(P,) 21 top(P,,) and they are injective in mod A, by (4.5) there is an 
almost split sequence 

Hence a(T) > 1 and so a(T) = 2. 

(iii) (a) A, (n > 3): 

In this case, A is serial. Hence a(T) = 2 (see the first part of the proof 
of Cl))* 

(b) A, (n > 3): 

Ok-1 Ok Uktl “!I 

Y(A) = ‘k- . . . -o+-o-,o- . . . -0, 

a(A) = 2, a(T) = 3. 

Since top(P,) ‘v top(P,,) and these are injective in mod A, by (4.5) there is 
an almost split sequence in mod T 

0 + rad(P,) + P, 0 PVkm, 0 PUk+, + PLtk -+ 0. 

Hence a(T) > 3 > a(A) (=2) and so a(T) = 3. 

Cc> A,(n > 3): 

a(A) = 2, a(T) = 3. 

This is a dual statement of (iii(b)). 

(iv) B,: 

L), (2.1) 1’2 
r’(A) = o-0, a(A) = 2, a(T) = 3. 

Since top(P,) II top(P,,) and they are injective in mod A, by (4.5) there is 
an almost split sequence in mod T 

0 + WP,) + P, 0 P,, @ P,, -+ P,.* -, 0. 

Hence a(T) > 3 > a(A) (=2). So a(T) = 3. 
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(~1 (a> B, (n > 3): 

L’l t’,-2 u,-, (231) “” 
2(A)= CJ- . . . ---0+----OrO) a(A) = 3, a(T) = 4. 

The top(P,- ,) is injective in mod A, and hence there is 
sequence 

0 --f rad(P,- J -+ P,-, 0 Pun-* 0 p,,, 0 pun - Pun+, 

Hence we know that a(r> = 4. 

@I B, (n 2 3): 
u”-2 U.-l (2.1) u, 

q/&L . . . -0-0-0, a(A) = 3, 

an almost split 

--t 0. 

a(T) = 3. 

Every indecomposable injective A-module has the top with length 2 at 
most. Hence, in case rad(P,) = Pie, 

ItoP((rad(Pi)/soc(Pi))I = I toP(Pi Q/sOC(f’i Q>>l < 2. 

On the other hand, the radical of every indecomposable projective A-module 
has the top with length 2 at most. Hence, in case rad(P,) + PiQ, 

I toP(rad(Pi)/soc(Pi))I = I WrW’JPiQ))l 
= I top(P,,)I < 2. 

Thus, in any case, rad(Pi)/soc(Pi) h as at most two indecomposable direct 
summands. Hence a(T) < 3 in view of (3.2), so that a(T) = a(A). 

(vi) C, (n > 3): 

0, (2.1) “2 03 0” 

P(A) = o-0-0 - *** -0, a(A) = 2, a(r) = 3. 

The top(Pr) is injective in mod A and so we have an almost split sequence 
by (4.5) 

Hence a(T) > 3 > a(A) (=2) and so a(T) = 3. 

(vii) D, (n > 4), E,, E,, E,: 

(a) The case .9(A) contains 
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Assume that 3(A) contains the first quiver. Then top(Pi) is injective in 
mod,4 and we have an almost split sequence 

0 -+ rad(P,) -+ P, 0 P,? @ P,, @ Puq + P,, + 0. 

Hence a(7) > 4 > a(A) (=3), so that a(7) = 4. The other case can be 
obtained by the dual argument. 

(b) The case B(A) contains 

a(A) = 3, a(T) = 3. 
This is proved by the same argument as for (v(b)). 

(viii) (a) F,: 

2(A) ,“d >y (2,1) :Z’ ;: a(A) = 3, a(T) = 3. 

This is also proved by the same argument as for (v(b)). 

(b) F,: 

L’I UI (2.1) uj u4 
k(A) = O-O-O-O) a(A) = 3, a(T) = 3. 

The top(P,) is injective in mod A and hence we have an almost split 
sequence 

0 -+ rad(P,) + P, 0 P,, @ Puj @ P,, --) PUT --) 0. 

Hence a(Z) > 4 > a(A) (=3), and so a(T) = 4. 

(ix) G,: 

“I (3,l) “2 

i?(A) = o-0, a(A) = 3, a(T) = 4. 

The top(P,) is injective in mod A and hence we have an almost split 
sequence 

0 + rad(P,) -+ P, 0 Puz 0 PuI 0 P,, --) P,, --) 0. 

Hence a(7J > 4 > a(A) (=3). So a(r) = 4. 

Remark 5.2. In Ref. [6] it has been proved that a(A) < 3 for a 
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hereditary algebra A of finite representation type. It is also given there an 
example such that A is a quasi-Frobenius algebra with Loewy length 3 and 
of finite representation type such that A/rad(A)* is hereditary and that it 
satisfies that o(A) = 4. But this example is incorrect. In fact, there does not 
exist a quasi-Frobenius ring A with Loewy length 3 such that A/rad((A)’ is 
hereditary. To show this, assume that A is an indecomposable quasi- 
Frobenius ring with L(A) = 3, and suppose that A/rad(A)* is hereditary. Let 
P be an indecomposable projective A-module with L(P) = 3. Then, since 
P/sot(P) is a projective module over A/rad(A)*, rad(P)/soc(P) is projective 
in mod A/rad(A)‘. Let S be a simple summand of rad(P)/soc(P) and P’ a 
projective cover of S in mod A. Since P’/soc(P’) is a module over 
A/rad(A)*, P’/soc(P’) is simple. For, S is a factor of P’/soc(P’) and is 
projective in mod A/i-ad(A)*. Hence the canonical morphism P’/soc(P’) -+ S 
splits and so it must be an isomorphism, which implies that the composition 
length of P’ is 2, because soc(P’) is simple. This means that L(P’) = 2, but 
this contradicts (3.3). 

Next we observe a construction of the Auslander-Reiten quiver of T. Let 
A be a hereditary Artin algebra, Q a QF-module, and T an extension over A 
with kernel Q. We conclude this paper by noting how to construct the 
subquiver of the Auslander-Reiten quiver of T which contains all indecom- 
posable projective A-modules or all indecomposable injective A-modules. 
Here we recall a definition of the Auslander-Reiten quiver. Let R be an 
Artinian ring with almost split sequences. A quiver is said to be the Aushn- 
der-Reiten quiver rR of R (or the quiver for mod R) if it satisfies the 
following condition: the set of vertices are in a one-to-one correspondence 
with the set of isomorphism classes of indecomposable R-modules, and there 
is an arrow from a vertex i to another vertex j iff there is an irreducible 
morphism from Mi to Mj, where M, is an indecomposable R-module 
corresponding to the vertex k. For two vertices i, j and the corresponding 
modules M,, Mj, let Mi + M (resp. N+ Mj) be a minimal right (resp. 
minimal left) almost split morphism (cf. [3]). We denote by d, the 
multiplicity of Mj in direct summands of M, and dJi the multiplicity of Mi in 
direct summands of N. Then we use the symbol 

0 
(dii.dji) 

,o 

if d, # 0 or equivalently d;i # 0. As usual, the symbol 

stands for 

0-0 
I j 

0 (1.1) o. 
I i 
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Now then, a construction of the Auslander-Reiten quiver of T is given by 
the following method: we first draw the Auslander-Reiten quiver rA of A 
(for example, this is always possible for a hereditary algebra of finite 
representation type [ 121). Ta is a subquiver of the quiver Tr for mod T by 
(4.2). Next double Ta by applying a,, so we have a subquiver fi,(r,) by 
[4, 5.11. Then fit the two together, and locate the T-projectives using (3.2). It 
follows from (2.9) that the quiver obtained by this method is the Auslan- 
der-Reiten quiver of T. 

As examples, we will observe hereditary algebras A over a field K with the 
following quivers: 

4 

(1) A,: ot--O---+0, (2) D,: ’ o-0-0, 

For a T-module M, we denote its dimension type by (dim M/MQ)/dim MQ 
for MQ # 0, and dim A4 for MQ = 0, where dim stands for the usual 
dimension type for A-modules (cf. [ 121). Now, following the method 
mentioned above, for (1) and (2) we have the Auslander-Reiten quivers rT 
which are given in Figs. 1 and 2, respectively. For (3), A is not of finite 
representation type and so the subquivers rlA containing A-projectives is 
disjoint from the subquiver TzA containing A-injectives. However, both 
Ll,(T’,A) U rlA and rza U 52,(r,J are connected and, locating T-projectives 
we have the subquivers Tlr and r17, respectively. Those quivers are given in 
Fig. 3. 

Here it should be noted that the subquivers without T-projectives of rr in 
(1) and (2), and Tir in (3) are of types similar to that of graphs (without 
orientations) of the given quivers I(A). To say this more explicitly, we recall 
some definitions. Let R be an Artinian ring with almost split sequences. The 
stable Auslander-Reiten quiver r, of R [23] is the full subquiver of rR with 
vertices corresponding to the stable indecomposable R-modules, that is, to 
the indecomposable modules on which wi is defined for n E Z. For a 
subquiver To of rR, let , i/i be the set of connected subquivers S of To such 
that every subquiver 

[MI1 
(dl.dd ) [M,] 0, [M3] c s 

satisfies that M, & oR(M3). .Y is clearly a partially ordered set by inclusion. 
Then a maximal element in .Y is called a section of To (in the sense of 
Bautista). Now then we have the following result. It is essentially the same 
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statement as in (4.8). In fact it will be shown by making use of (4.7) as in 
(4.8) and so we omit the proof. 

PROPOSITION 5.3. Let A be an indecomposable hereditary Artin algebra 
with a QF-module Q and T an extension over A with kernel Q. Let Q, and 
Q2 be the subquivers of Ta consisting of A-projectives and A-injectives, 
respectively, and let F,, and F2, be the connected subquivers of r, which 
contain A-projectives and A-injectives, respectively. Then Qi is a section of 
FiT, and every section Of ?;iT has the same graph as Qi for i = 1,2. 

Again, as for the above examples, FT in (1) and (2) are of type A, and D, 
in Fig. 4, respectively, and ri (i = 1, 2) in (3) are of type D)4 in Fig. 5. 

Remark. Let A be an indecomposable hereditary Artinian ring with a 
QF-module Q, and T an extension over A with kernel Q. If we write 

0-0 

i j  

simply instead of 

0 
@j.d;i) 

‘0, 
i i 

then we can also know the types of the subquivers, of the stable 
Auslander-Reiten quiver of T, which contain the A-projectives or A- 
injectives. For example, according to the diagrams A,, B, (n > 2), C, 
(n > 3), D, (n > 4), E, (n = 6, 7,8), F,, and G,, associated with A, the 
stable quivers for mod T are of type A,, A, (n > 2), A,, (n > 3), D, (n > 4), 
E, (n = 6, 7,8), A,, and A,, respectively. 

FIGURE 1 
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r* : 

n,(r*) : 

001 

T- 

010 

/\ 
0 1 

+lol+&l 
0 

010 

1/ 

0 
010 

1 
* 

0 

FIGURE 2(i) 

FIGURE 2(C) 



qrl 1 (n 22) : 
A 

1.0 

np, ) (n 1.2) : 
A 

F~J~E 3(i) 

.  .  

FIGURE 3(ii) 



EXTENSIONS OVER ARTINIAN RINGS, I 429 

FIGURE 3(iii) 
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FIG. 4. Stable Auslander-Reiten quivers of extensions over heriditary Artin algebras of 
finite representation type. 
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Fq : \ 
\ 

// 

\ 
\ 

FIG. 4-Continued. 
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FIGURE 5 
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