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An unsolved problem in number theory asked the following: For a given natural
number m, what are the possible integers n for which there exist mth roots of unity
α1; : : : ; αn ∈ � such that α1 + · · · + αn = 0? We show in this paper that the set of all
possible n’s is exactly the collection of �-combinations of the prime divisors of m,
where � denotes the set of all non-negative integers. The proof is long and involves
a subtle analysis of minimal vanishing sums of mth roots of unity, couched in the
setting of integral group rings of finite cyclic groups. Our techniques also recovered
with ease some of the classical results on vanishing sums of roots of unity, such as
those of Rédei, de Bruijn, and Schoenberg. © 2000 Academic Press

1. INTRODUCTION

For a given natural number m, consider the mth roots of unity in the
field of complex numbers, �. For what natural numbers n do there exist
mth roots of unity α1; : : : ; αn ∈ � such that α1 + α2 + · · · + αn = 0? (Such
an equation is said to be a vanishing sum of mth roots of unity of weight
n.) Although linear relations among roots of unity have been studied rather
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extensively, a decisive answer to the above question is so far completely un-
known. A couple of explicit examples will show what the set of possible n’s
can look like. For instance, for m = 13, the set of n’s is �0; 13; 26; 39; : : :�;
for m = 14, the set of n’s is �0; 2; 4; 6; 7; 8; 9; 10; : : :�; for m = 15, the set
of n’s is �0; 3; 5; 6; 8; 9; 10; 11; : : :�.

For a given m, let W �m� be the set of weights n for which there exists a
vanishing sum α1+α2 + · · · +αn = 0, where each αi is an mth root of unity.
Since an empty sum is defined to be zero, we agree that 0 ∈ W �m� as in
the last paragraph. If m has prime factorization pa1

1 : : : p
ar
r (ai > 0), we can

easily name a rather large subset of W �m�. Indeed, if ζ is a primitive pith
root of unity (for any i), then we have a vanishing sum 1+ ζ + · · · + ζpi−1 =
0 of weight pi. This shows that W �m� contains each pi, and therefore it also
contains any linear combination of p1; : : : ; pr with non-negative integer
coefficients. In particular, if r ≥ 2, we see that all sufficiently large integers
n belong to W �m� (for a given m). And, if 6�m, then W �m� consists of all
non-negative integers 6= 1.

The principal result of this paper is the following:

Main Theorem. For any m = pa1
1 : : : p

ar
r as above, the weight set W �m�

is exactly given by �p1 + · · · +�pr:

Throughout this paper, � denotes the semi-ring of non-negative integers.
This is a slight deviation from the usual convention that � = �1; 2; 3; : : :�,
but it will be convenient for the purposes of this paper. Readers who have
misgivings about 0 ∈ � should feel free to replace our � by the possibly
more reasonable (but obviously clumsy) notation �+.

Note that the theorem above implies that W �m� depends only on the
prime divisors of m, and not on the multiplicities to which they occur in the
factorization of m. The theorem also shows that any (nonempty) vanishing
sum of mth roots of unity must have weight ≥ p1, where p1 is the smallest
prime divisor of m. (Vanishing sums of weight p1 turn out to be of the
expected type.)

The key technique used for the proof of the Main Theorem is that of
group rings. Group rings provide a very natural setting for studying linear
relations among roots of unity, but surprisingly they have not been exploited
as fully as they should in the literature on the subject. In fact, this is possibly
one of the reasons why the result mentioned above has not been discovered
earlier. Many of the arguments in this paper would be rather unwieldy if we
were to work with roots of unity alone without the benefit of group rings.

Let G = �z� be a cyclic group of order m, and let ζ be a (fixed) primitive
mth root of unity. There exists a natural ring homomorphism ϕ from the
integral group ring �G to the ring of cyclotomic integers ��ζ�, given by the
equation ϕ�z� = ζ. An element of �G, say x = ∑g∈G xgg, lies in ker�ϕ�
if and only if

∑
g∈G xgϕ�g� = 0 in ��ζ�. Therefore, the elements of the
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ideal ker�ϕ� correspond precisely to all �-linear relations among the mth
roots of unity. For vanishing sums of mth roots of unity, we have to look at
elements x =∑g∈G xgg in ker�ϕ� with all xg ≥ 0. In other words, we have
to look at �G ∩ ker�ϕ�, where �G denotes the group semi-ring of G over
�. If x ∈ �G ∩ ker�ϕ�, the weight of the corresponding vanishing sum of
mth roots of unity is exactly the augmentation of the group ring element
x ∈ �G.

The map ϕ: �G→ ��ζ� above will play a central role in this paper and
will often be referred to in the text as “the usual map.” It is easy to see that
the kernel of ϕ is just the principal ideal generated by 8m�z� in �G, where
8m is the mth cyclotomic polynomial. However, there are other useful de-
scriptions of ker�ϕ�. For instance, a theorem of Rédei [R1, R2], de Bruijn
[deB], and Schoenberg [Sch] can be recast in the language of group rings
to give a natural family of ideal generators for ker�ϕ� in terms of the min-
imal subgroups of G. In Section 2, we give a new proof of this theorem,
using induction and group-theoretic techniques. In Section 3, we use similar
methods to prove several other useful facts about �G ∩ ker�ϕ�. After this
preparatory work, we prove in Section 4 a Lower Bound Theorem (4.8) on
the weights of minimal vanishing sums. From this result, the Main Theo-
rem (5.2) follows easily. In Section 6, we prove the existence and uniqueness
of minimal vanishing sums with the smallest weight predicted by the Lower
Bound Theorem. The final section, 7, offers an application of the Main
Theorem to the character theory of finite groups. Throughout this paper,
we work in characteristic 0. The study of the same problems in character-
istic p requires different techniques and is published separately in [LL].

Aside from being of intrinsic interest, vanishing sums of roots of unity
also arise naturally in a number of algebraic, geometric, and combinatorial
contexts: for instance, in combinatorial design, cyclotomy, and difference
sets [St]; factorization problems in groups [deB]; trigonometric diophantine
equations [CJ]; and in the study of polar rational polygons (convex polygons
with integral sides whose angles are rational when measured in degrees)
[Sch, Ma]. For a partial survey of the literature up to 1978, see [Le]. For
obvious reasons, it is of interest to study vanishing sums α1 + · · · + αn = 0
which are minimal, in the sense that no proper subsums thereof can be
zero. Minimal vanishing sums involving “few” distinct roots of unity were
classified by Mann [Ma] and Conway–Jones [CJ]. Recently, in connection
with their work on counting the intersection points of the diagonals of
a regular polygon, Poonen and Rubinstein [PR] have classified all minimal
vanishing sums α1+ · · · +αn = 0 of weight n ≤ 12. Of course, we can always
multiply a vanishing sum by a root of unity to get another; we say that the
latter is similar to the former, or that it is obtained from the former “by a
rotation.” Naturally, the classification of minimal vanishing sums needs to
be done only up to rotations (by roots of unity).
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To conclude this introduction, a few notational remarks are in order. For
any natural number m, ζm shall denote a primitive mth root of unity (in �).
For any commutative ring (resp. semi-ring) k and any group G, we shall
write kG, or sometimes k�G�, for the group ring (resp. group semi-ring) of
G over k. Elements of kG will be written in the form x =∑g∈G xgg, where
xg ∈ k are zero except for a finite number of g’s. The number of nonzero
coefficients xg is denoted by ε0�x�, and the sum of such coefficients is
denoted by ε�x�. The latter is called the augmentation of x, and x 7→ ε�x�
defines a k-homomorphism ε:kG→ k, called the augmentation map. For
any finite subset H ⊆ G, we shall write σ�H� for the sum

∑
h∈H h in the

group (semi-)ring kG. Two basic properties of σ�H� to be used freely in
the sequel are that ε�σ�H�� = ε0�σ�H�� = �H� (the cardinality of H), and
that, if H is a subgroup, σ�H� · h = σ�H� for any h ∈ H. In the case where
k = �, we can define a partial ordering on �G, by declaring that

y =∑ ygg ≥ x =
∑
xgg⇐⇒ yg ≥ xg for every g ∈ G: (1.1)

Note that y ≥ x iff y − x ≥ 0, and the “positive cone” �z ∈ �G: z ≥ 0� is
precisely the group semi-ring �G.

2. THE RÉDEI–DE BRUIJN–SCHOENBERG THEOREM

In this section, we recast a theorem of Rédei, de Bruijn, and Schoen-
berg in the setting of group rings and give an easy inductive proof for this
theorem. This work is in preparation for what is to come in Sections 3–5.

For a cyclic group G = �z� of order m = pa1
1 : : : p

ar
r and a primitive mth

root of unity ζ = ζm, consider the usual map

ϕ: �G→ ��ζ�; with ϕ�z� = ζ: (2.1)

As we have observed before, ker�ϕ� = �G · 8m�z�, where 8m denotes
the mth cyclotomic polynomial, i.e., the minimal polynomial of ζ over
�. It turns out that there is another useful description of ker�ϕ�. Let
Pi (1 ≤ i ≤ r) be the unique subgroup of order pi in G, and consider
σ�Pi� x=

∑
g∈Pi g ∈ �G. For any nonidentity element g ∈ Pi, we have

σ�Pi� · g = σ�Pi�, so we must have σ�Pi� ∈ ker�ϕ�, since ϕ�g� 6= 1 and
��ζ� is an integral domain. The following result calculates ker�ϕ� in terms
of the special elements σ�P1�; : : : ; σ�Pr�.

Theorem 2.2. (cf. [R1, Hilfssatz 41; deB, Theorem 1; Sch, Theorem 1]).

ker�ϕ� =
r∑
i=1

�G · σ�Pi�; and ker�ϕ� = � · σ�P1� in case m = p1:

1As pointed out by de Bruijn, Rédei’s proof of his Hilfssatz 4 in [R1] was incomplete.
Complete proofs appeared later in [deB] and [R2].
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Proof. We proceed by induction on r. First assume r = 1 and write
p = p1, a = a1. Then, m = pa, P1 = �zpa−1�, and we have

σ�P1� = 1+ zpa−1 + �zpa−1�2 + · · · + �zpa−1�p−1:

On the other hand,

8m�X�=
(
Xpa − 1

)
/
(
Xpa−1 − 1

)
= (Xpa−1)p−1 + (Xpa−1)p−2 + · · · +Xpa−1 + 1:

Therefore, 8m�z� is exactly σ�P1�, and we have

ker�ϕ� = �G ·8m�z� = �G · σ�P1�:
This is just � · σ�P1� in case m = p1. For r ≥ 2, write G = H ×H ′, where
n x= �H� > 1; n′ x= �H ′� > 1, and �n; n′� = 1. As in (2.1), we have sur-
jections ψ: �H → ��ζn� and ψ′: �H ′ → ��ζn′ � (where we may assume
ζnζn′ = ζm). Let I = ker�ψ� and I ′ = ker�ψ′�. Since ��ζn� is �-free, there
exists a �-basis �ei; fj� for �H such that �ei� is a �-basis for I and �ψ�fj��
is a �-basis for ��ζn�. Similarly, we fix a basis �e′k; f ′`� for �H ′. Then,
�H ⊗ �H ′ has a �-basis

�ei ⊗ e′k; ei ⊗ f ′`; fj ⊗ e′k; fj ⊗ f ′`�;
where the first three sets of elements lie in ker�ψ ⊗ ψ′�. Since �ψ�fj� ⊗
ψ′�f ′`�� is a �-basis for ��ζn� ⊗ ��ζn′ �, it follows that �ei ⊗ e′k; ei ⊗ f ′`; fj ⊗
e′k� is a �-basis for ker�ψ⊗ ψ′�. Now, identifying �H ⊗ �H ′ with �G and
��ζn� ⊗ ��ζn′ � with ��ζm�, we see that

ker�ϕ� = ker�ψ⊗ ψ′� = I ⊗ �H ′ + �H ⊗ I ′: (2.3)

From this, the theorem follows immediately by induction. QED

In terms of roots of unity, (2.2) says that any �-linear relation among the
mth roots of unity can be obtained from the basic relations

1+ ζpi + · · · + ζpi−1
pi
= 0 �1 ≤ i ≤ r� (2.4)

by addition, subtraction, and rotation. However, this does not mean that
every vanishing sum of mth roots of unity can be obtained from those of
the type (2.4) by addition and rotation. In other words, there exist in general
minimal vanishing sums that are not similar to those in (2.4).

Example 2.5. Let m be an integer with at least three prime factors p,
q, `, and let α = ζp, β = ζq, and γ = ζ`. Following a construction of Rédei
[Re3, Satz 9], consider the sum

�α+ · · · + αp−1��β+ · · · + βq−1� + γ + · · · + γ`−1 = �−1��−1� + �−1� = 0:
(2.6)
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We claim that this vanishing sum is minimal. To see this, consider any
vanishing subsum, say

αb1 + α2b2 + · · · + αp−1bp−1 + c = 0; (2.7)

where each bi is a subsum of β+ · · · +βq−1, and c is a subsum of γ+ · · · +
γ`−1. If c is the empty sum, then (2.7) and the linear disjointness of ��α�
and ��β� over � show that all bi = 0. This implies that each bi (as well
as c) is an empty sum, so we are done. If c is not the empty sum, then the
linear disjointness of ��γ� from ��α;β� implies that c is the entire sum
γ + · · · + γ`−1 = −1, and (2.7) and the linear disjointness of ��α� from
��β� imply in turn that all bi = −1. This is possible only if each bi is also
the entire sum β + · · · + βq−1, as desired. Clearly, the minimal sum (2.6)
is not similar to one of the type (2.4). Note that, in the special case p = 2,
we have α = −1; here (2.6) takes on the simpler form

− β− · · · − βq−1 + γ1 + · · · + γ`−1 = 0: (2.8)

Minimal sums of this type were used recently by Poonen and Rubinstein in
their study of the intersection points of the diagonals of a regular polygon
[PR, Sect. 3].

Vanishing sums of the form (2.6) turn out to have a special significance.
As we shall see later in (6.5), they have the smallest possible weight among
all “asymmetric” minimal vanishing sums involving mth roots of unity, for
any m whose smallest prime divisors are p, q, `.

3. RESULTS ON �G ∩ ker�ϕ�

In this section, we study the map ϕ in (2.1) for a finite cyclic group G and
prove a few results on the structure of elements lying in the intersection
�G ∩ ker�ϕ�. The first result below is essentially equivalent to [CJ, The-
orem 1]. However, as A. Jones has pointed out in his review of [Le] (see
Math Rev. 81c, 10044), the proof of Conway and Jones contained a mis-
take. The proof we offer below (utilizing (2.2)) is of independent interest
and is formulated in terms of group rings, in a form most convenient for
later use.

Theorem 3.1. Let G be a cyclic group of order m = pa1
1 : : : p

ar
r , where

p1; : : : ; pr are distinct primes, and let ϕ: �G→ ��ζ� be the usual map, where
ζ = ζm. Let G0 ⊆ G be the (unique) subgroup of order p1 : : : pr , and let
�gj x 1 ≤ j ≤ �G x G0�� be a complete set of coset representatives of G with
respect to G0. Then �G ∩ ker�ϕ� =∑j gj��G0 ∩ ker�ϕ��.
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Proof. We need only prove the inclusion ⊆. Let x ∈ �G ∩ ker�ϕ�. By
(2.2), we can write x =∑xiσ�Pi�, where Pi is the unique subgroup of order
pi in G0, and xi ∈ �G. Using the decomposition �G = ∑j gj�G0, we can
write xi =

∑
j gjyij , where yij ∈ �G0. Then

x =∑
i

xiσ�Pi� =
∑
i

∑
j

gjyijσ�Pi� =
∑
j

gjzj;

where zj =
∑
i yijσ�Pi� ∈ �G0. Since the sum

∑
j gj�G0 = �G is direct,

the fact that x ∈ �G implies that zj ∈ �G0 for all j. On the other hand,
ϕ�zj� =

∑
i ϕ�yij�ϕ�σ�Pi�� = 0, so zj ∈ ker�ϕ� for all j. Therefore, we have

x ∈∑j gj��G0 ∩ ker�ϕ��, as desired. QED

Corollary 3.2. If α1 + · · · + αn = 0 is a minimal vanishing sum of mth
roots of unity, then after a suitable rotation, we may assume that all αi’s are
m0th roots of unity, where m0 is square-free.

Proof. Suppose the given relation α1 + · · · + αn = 0 corresponds to an
x ∈ �G∩ ker�ϕ�, where G is a group as in (3.1). Using the notations there,
we have a decomposition x =∑j gjzj , where zj ∈ �G0 ∩ ker�ϕ�. Since the
given relation is minimal, we must have x = gjzj for some j. Therefore,
after a rotation by ϕ�gj�−1, the given relation becomes α′1 + · · · + α′n = 0,
where the α′i’s are m0th roots of unity with m0 = �G0� square-free. QED

In the case where m has at most two prime divisors, there is a very
explicit description of �G ∩ ker�ϕ�. This result can be traced back to the
work of de Bruijn [DeB, Sect. 3]. For the sake of completeness, we offer
here a self-contained proof. In fact, this proof in terms of group rings (for
the case r = 2) will set the stage for several of the inductive proofs to be
given in the next section.

Theorem 3.3. Keep the notations of Theorem 3.1, and let Pi denote the
unique subgroup of order pi in G. (1) If r = 1, �G ∩ ker�ϕ� = �G · σ�P1�.
(2) If r = 2, �G ∩ ker�ϕ� = �G · σ�P1� +�G · σ�P2�.

Proof. (1) follows easily from (2.2) or (3.1) (in the case r = 1). Now
assume r = 2. In view of Theorem 3.1, it suffices to prove (2) for the unique
subgroup G0 of order p1p2 in G. Let us assume, therefore, that �G� =
�G0� = qp, where q = p1, p = p2. Let P2 = �g�, so that G = P1 × �g�. For
any x ∈ �G ∩ ker�ϕ�, we can write x = x0 + x1g + · · · + xp−1g

p−1, where
xi ∈ �P1. Then, x ∈ ker�ϕ� implies that

ϕ�x0� + ϕ�x1�ζp + · · · + ϕ�xp−1�ζp−1
p = 0;

where ζp is a primitive pth root of unity. Since ��ζp� is linearly disjoint
from ��ζq� over � (by a theorem of Kronecker), we must have ϕ�x0� =
ϕ�x1� = · · · = ϕ�xp−1�in ��ζq�. Say ε�xi� is the smallest among all ε�xj�’s.
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From ϕ�xj − xi� = 0, we have xj − xi = zjσ�P1� for some zj ∈ � (by (2.2)
for one prime). Then

0 ≤ ε�xj� − ε�xi� = zj · ε�σ�P1�� = zjq
implies that each zj ≥ 0. Therefore,

x=x0 + x1g + · · · + xp−1g
p−1

=�xi + z0σ�P1�� + �xi + z1σ�P1��g + · · · + �xi + zp−1σ�P1��gp−1

=xi�1+ g + · · · + gp−1� + �z0 + z1g + · · · + zp−1g
p−1�σ�P1�;

which lies in �G · σ�P2� +�G · σ�P1�, as desired. QED

The following is a direct consequence of (3.3)(2). In the special case when
m = 2p, this was noted recently by Poonen and Rubenstein [PR, Lemma].

Corollary 3.4. Let m = paqb, where p, q are primes. Then, up to a
rotation, the only minimal vanishing sums of mth roots of unity are 1+ ζp +
· · · + ζp−1

p = 0 and 1+ ζq + · · · + ζq−1
q = 0.

4. THE LOWER BOUND THEOREM

In this and the following sections, we will keep the notations set up in
the Introduction and at the beginning of Section 2. We say that a nonzero
element x ∈ �G∩ ker�ϕ� is minimal if it cannot be decomposed into a sum
of two nonzero elements in �G ∩ ker�ϕ�. In other words, x is minimal if
and only if ϕ�x� = 0 represents a minimal vanishing sum of mth roots of
unity. For 1 ≤ i ≤ r, let Pi be the unique subgroup of order pi in G. Then,
for any g ∈ G, g · σ�Pi� ∈ �G∩ ker�ϕ� is minimal, since it corresponds (up
to a rotation) to the minimal vanishing sum

1+ ζpi + · · · + ζpi−1
pi
= 0:

We shall refer to �g · σ�Pi�� as the symmetric minimal elements of �G ∩
ker�ϕ�; the other minimal elements will be referred to as the asymmetric
ones. A similar terminology will be used for minimal vanishing sums.

In the case r ≤ 2, (3.3) implies that all minimal elements in �G∩ ker�ϕ�
are symmetric. However, when r ≥ 3, (2.5) shows that there exist asym-
metric minimal elements. In this section, we shall study these elements in
�G ∩ ker�ϕ�, where G is a cyclic group of order m = pa1

1 : : : p
ar
r (r ≥ 3).

The main result here is Theorem 4.8, which provides an effective lower
bound on the ε0 (size of the support) of such asymmetric (minimal) ele-
ments. To begin with, we prove a preliminaryresult (in the case where �G�
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is square-free) on the ε0 of two elements x; y ∈ �G, that have the same
image under the homomorphism ϕ. Recall that a partial ordering “≥” for
elements in �G was defined in (1.1).

Theorem 4.1. Let G be a cyclic group of order m = p1p2 : : : pr , where
p1 < p2 < · · · < pr are primes and r ≥ 2. Let ϕ: �G → ��ζ� be the usual
map, where ζ = ζm. Let x; y ∈ �G be such that ϕ�x� = ϕ�y�: If ε0�x� ≤
p1 − 1, then we have either (A) y ≥ x or (B) ε0�y� ≥ �p1 − ε0�x���p2 − 1�.
In Case (A), we have ε0�y� ≥ ε0�x�, and in Case (B), we have ε0�y� > ε0�x�.

To better understand this theorem, a simple illustrative example is in
order.

Example 4.2. Let �G� = p1p2, where p1 < p2 are primes. Let Pi ⊆ G
be the unique subgroup of order pi, and let P∗i = Pi \ �1�. Let P1 = X ∪X ′
be any partition of P1, with X;X ′ 6= ∅. Now let x = c · σ�X� and y =
c · σ�X ′�σ�P∗2 �, where c is any positive integer. Then ε0�x� = �X� ≤ p1 − 1,
and since ϕ�σ�X�� + ϕ�σ�X ′�� = ϕ�σ�P1�� = 0, we have

ϕ�y� = c · ϕ�σ�X ′�� · ϕ�σ�P∗2 �� = −c · ϕ�σ�X���−1� = ϕ�x�;
checking the hypotheses in the theorem. In this example, (A) clearly does
not hold, and (B) holds with an equality, since

ε0�y� = ε0�σ�X ′��ε0�σ�P∗2 �� = �p1 − �X�� · �P∗2 � = �p1 − ε0�x���p2 − 1�:
This example shows that in general the conclusion in (4.1) is the best pos-
sible. Note that in the special case where X = �1�, we have x = c and
y = c · σ�P∗1 �σ�P∗2 �.

Proof of (4.1). The last statement in the theorem follows since, in Case
(B), we will have

ε0�y� ≥ �p1 − ε0�x���p2 − 1� ≥ p2 − 1 > p1 − 1 ≥ ε0�x�:
The proof of the theorem will be by induction on r ≥ 2. Let H ⊆ G be

the (unique) subgroup of order p1 : : : pr−1, and let g ∈ G be an element of
order p x= pr , so that G = H × �g�. Then there are unique expressions

x=x0 + x1g + · · · + xp−1g
p−1;

y = y0 + y1g + · · · + yp−1g
p−1;

where xi; yi ∈ �H. Let I = �i x xi = 0�. This is a nonempty set, since
ε0�x� ≤ p1 − 1 < p − 1. In the set �yi x i ∈ I�, choose yj such that ε0�yj�
is the smallest. From the hypothesis ϕ�x� = ϕ�y�, we have

∑p−1
i=0 ϕ�xi −

yi�ζip = 0, where, as usual, ζp denotes a primitive pth root of unity. Since
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ϕ�xi − yi� ∈ ��ζ�H��, and ��ζ�H��;��ζp� are linearly disjoint over �, we
must have ϕ�yi − xi� = ϕ�yj − xj� for all i, or, equivalently,

ϕ�yi� = ϕ�xi + yj� for all i: (4.3)

Choose k such that ε0�xk� is maximum (among all ε0�xi�’s). We shall dis-
tinguish the following two main cases.

Case 1 ε0�xk� + ε0�yj� ≥ p1. Let t x= p − �I�, which is the number of
nonzero xi’s. We may assume that t ≥ 1, for otherwise x = 0 and y ≥ x
holds. Note the following obvious upper and lower bounds on ε0�x�:

ε0�xk� + t − 1 ≤ ε0�x� ≤ ε0�xk�t:
Using the definition of yj , we have

ε0�y� ≥ �I� · ε0�yj� = �p− t�ε0�yj�
≥ �p2 − t��p1 − ε0�xk��
=p1p2 − tp1 − ε0�xk�p2 + ε0�xk�t
=p1p2 + t�p2 − p1� − p2 − �ε0�xk� + t − 1�p2 + ε0�xk�t
≥p1p2 + �p2 − p1� − p2 − ε0�x�p2 + ε0�x�
= �p1 − ε0�x���p2 − 1�;

so we have proved (B) in this case.

Case 2 ε0�xk� + ε0�yj� ≤ p1 − 1. This case assumption means that
ε0�xi� + ε0�yj� ≤ p1 − 1 for all i. We shall first take care of the case
r = 2 (to start the induction). In this case, �H� = p1, so by (4.3) and (the
one-prime case of) (2.2),

yi = xi + yj + ziσ�H� for some zi ∈ �: (4.4)

If some zi < 0, then xi + yj = yi + �zi� · σ�H� implies that ε0�xi� + ε0�yj� ≥
ε0�xi + yj� = p1, a contradiction. Therefore, we must have zi ≥ 0 for all i.
It follows from (4.4) that yi ≥ xi for all i, and hence y ≥ x in this case.

Assume now r ≥ 3. Since ϕ�yi� = ϕ�xi + yj� and ε0�xi + yj� ≤ ε0�xi� +
ε0�yj� ≤ p1 − 1, we can apply the inductive hypothesis to the pair yi and
xi + yj in �H. In particular, we will have

ε0�yi� ≥ ε0�xi + yj� for all i: (4.5)

If yi ≥ xi + yj for all i, then yi ≥ xi for all i, and we have y ≥ x, proving (A)
in this case. Otherwise, our inductive hypothesis implies that there exists an
` such that

ε0�y`� ≥ �p1 − ε0�x` + yj���p2 − 1�: (4.6)
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Note that, from (4.5), ε0�yi� ≥ ε0�yj� for all i. Using this, we have

ε0�y�= ε0�y`� +
∑
i 6=`
ε0�yi�

≥ �p1 − ε0�x` + yj���p2 − 1� + �p− 1�ε0�yj�
≥ �p1 − ε0�x`���p2 − 1� + �p− p2�ε0�yj�
≥ �p1 − ε0�x���p2 − 1�;

proving (B) in this case. QED

Corollary 4.7. Theorem 4.1 holds verbatim with ε0 replaced throughout
by the augmentation ε.

Proof. It is easy to check that every step of the above proof goes through
if we use the augmentation ε instead of ε0. Alternatively, we may note that
(4.1) is actually stronger than (4.7). For, if we assume that ε�x� ≤ p1 − 1,
then ε0�x� ≤ p1 − 1 also, so we have either (A) or (B) in (4.1). In the case
(B), we will have

ε�y� ≥ ε0�y� ≥ �p1 − ε0�x���p2 − 1� ≥ �p1 − ε�x���p2 − 1�:

QED

We are now ready to establish a lower bound (in terms of the pi’s) for
the ε0 of the asymmetric minimal elements in �G ∩ ker�ϕ�. This crucial
result, coupled with a simple fact from elementary number theory, will lead
quickly to a proof of the Main Theorem stated in the Introduction.

Lower Bound Theorem 4.8. Let G be a cyclic group of order m =
p
a1
1 : : : p

ar
r , where p1 < · · · < pr are primes, and let �G→ ��ζ� be the usual

map, where ζ = ζm. For any minimal element x ∈ �G ∩ ker�ϕ�, we have ei-
ther (A) x is symmetric or (B) r ≥ 3 and ε�x� ≥ ε0�x� ≥ p1�p2 − 1� + p3 −
p2 > p3.

Proof. By Theorem 3.1, we may assume that all the exponents ai are 1.
The proof will be again by induction on r. In the case r ≤ 2, (3.3) implies
that x is necessarily symmetric, so (A) always holds in this case. This starts
the induction, and we may now proceed to the case r ≥ 3.

Write x = x0 + x1g + · · · + xp−1g
p−1 as in the proof of (4.1), where g

has order p x= pr , xk ∈ �H, and �H� = p1 : : : pr−1. Since ϕ�x� = 0, we
have ϕ�x0� = ϕ�x1� = · · · = ϕ�xp−1� as before (by the linear disjointness
argument). Choose i such that ε0�xi� is the smallest. We shall argue in the
following three cases.
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Case 1 ε0�xi� ≥ p1. In this case, we have

ε0�x� ≥ ε0�xi�p ≥ p1p3 = p1�p2 + p3 − p2�
>p1p2 + p3 − p2 > p1�p2 − 1� + p3 − p2:

Case 2 ε0�xi� = 0. This means that xi = 0, so we have ϕ�xk� = ϕ�xi� =
0 for all k, i.e., xk ∈ �H ∩ ker�ϕ�. Since x = x0 + x1g + · · · + xp−1g

p−1 is
minimal, we must have x = xkgk for some k, with necessarily xk minimal in
�H ∩ ker�ϕ�. Invoking the inductive hypothesis, xk is either symmetric, or
we have r − 1 ≥ 3 and ε0�x� = ε0�xk� ≥ p1�p2 − 1� + p3 − p2, as desired.

Case 3 We may assume now that 1 ≤ ε0�xi� ≤ p1 − 1. By (4.1) (applied
to the elements xi; xj ∈ �H), we have the following two possibilities:

Subcase 1. xj ≥ xi for all j. In this case,

x = x0 + x1g + · · · + xp−1g
p−1 ≥ xi + xig + · · · + xigp−1 = xiσ��g��:

Since x is minimal, we must have x = xiσ��g�� and xi ∈ H, so x is sym-
metric in this case.

Subcase 2. There exists j such that ε0�xj� ≥ �p1 − ε0�xi���p2 − 1�. In
this case,

ε0�x�= ε0�xj� +
∑
k6=j
ε0�xk�

≥ �p1 − ε0�xi���p2 − 1� + �p− 1�ε0�xi�
=p1�p2 − 1� + �p− p2�ε0�xi�
≥p1�p2 − 1� + p− p2

≥p1�p2 − 1� + p3 − p2:

In any case, we have now shown that either (A) or (B) holds. (For the last
inequality in (B), note that p1�p2 − 1� +p3 −p2 = p1p2 −p2 −p1 +p3 ≥
�p2 − p1� + p3 > p3.) QED

Corollary 4.9. In the notations of (4.8), any element u ∈ �G ∩ ker�ϕ�
with ε0�u� < p1�p2 − 1� + p3 − p2 lies in

∑
i �G · σ�Pi�, where Pi is the

subgroup of order pi in G.

More can be said about the Lower Bound Theorem (4.8). But at this
point, it is perhaps imperative to show first how the Main Theorem can
be deduced from it. After showing this in the next section, we shall return
in Section 6 to the Lower Bound Theorem and determine the structure of
the asymmetric minimal elements of the smallest support (resp. weight) in
�G ∩ ker�ϕ�.
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5. THE MAIN THEOREM

After all the preparation in the previous sections, it is now an easy matter
to prove the Main Theorem. We need just one more elementary number-
theoretic fact, the proof of which we shall leave to the reader.

Lemma 5.1. (see [LeV, p. 22, Example 4]). Let p, q be relatively prime
positive integers. If n is any integer ≥ �p− 1��q− 1�, then n ∈ �p+�q.

The Main Theorem stated in the Introduction of this paper concerns the
computation of the set W �m� of integers n for which there exists (in �)
a vanishing sum of mth roots of unity of weight n. We shall now restate
this result in the convenient language of group rings and derive it as a
by-product of Theorem 4.8.

Theorem 5.2. Keep the notations in (4.8), and let x ∈ �G∩ ker�ϕ�. Then
ε�x� ∈∑r

i=1 �pi. In other words, W �m� =∑r
i=1 �pi.

Proof. Since x can be decomposed into a sum of minimal elements in
�G ∩ ker�ϕ�, it suffices to prove the theorem for minimal elements x. By
Theorem 4.8, either x is symmetric, or we will have r ≥ 3 and ε�x� ≥
p1�p2 − 1� + p3 − p2. In the former case, ε�x� = pi for some i. In the
latter case,

ε�x� > p1�p2 − 1� > �p1 − 1��p2 − 1�;
and (5.1) implies that ε�x� ∈ �p1 +�p2 ⊆

∑r
i=1 �pi. QED

Remark 5.3. Let P1; : : : ; Pr be the subgroups of G with, respectively,
orders p1; : : : ; pr . In view of Theorem 5.2, one may wonder if for any
x ∈ �G ∩ ker�ϕ�, there exist zi ∈ �G with ε�zi� ≥ 0 such that

x = z1σ�P1� + · · · + zrσ�Pr�: (5.4)

This would, of course, imply Theorem 5.2 directly by taking augmentation.
Unfortunately, such a representation is not possible in general, if r ≥ 3. To
construct a counterexample, let �G� = 30 with p1 = 2; p2 = 3; p3 = 5, and
P1 = �t�, P2 = �h�, P3 = �g�. Then, as we saw in (2.5), the element

x = t�h+ h2� + g + g2 + g3 + g4 (5.5)

lies in �G ∩ ker�ϕ�. Suppose z1, z2, z3 exist as in (5.4), with all ε�zi� ≥ 0.
Then, from

6 = ε�x� = 2ε�z1� + 3ε�z2� + 5ε�z3�;
we see that z2 = z3 = 0 or z1 = z3 = 0. In the former case, x = z1 · �1+ t�;
but then xt = z1 · �1+ t�t = z1 · �1+ t� = x, which is impossible. Similarly,
we see that the case x = z2 · �1+ h+ h2� is impossible as well.
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With the result (5.2), it is easy to compute any weight set W �m�. We
mention explicitly only the special case of even integers m, which follows
directly from (5.2).

Corollary 5.6. Let m be an even integer. Then W �m� is 2� when m is a
2-power, and is �0; 2; 4; 6; : : : ; p− 1; p;p+ 1; : : :� when m is not a 2-power
and p is the smallest odd prime dividing m.

6. ASYMMETRIC MINIMAL ELEMENTS OF SMALLEST SUPPORT

We return now to the Lower Bound Theorem 4.8 to give more precise
information on the asymmetric minimal elements of the smallest support
(resp. weight) in �G ∩ ker�ϕ�. The notations used in Section 4 will therefore
remain in force throughout this section.

First we note that the lower bound p1�p2 − 1� + �p3 − p2� in (4.8) can
be written in the more symmetrical form �p1 − 1��p2 − 1� + �p3 − 1�. In
the situation of (4.8), this lower bound is the best possible. Indeed, we have
seen earlier in (2.5) that there is an asymmetric minimal vanishing sum of
distinct mth roots of unity, of weight exactly �p1 − 1��p2 − 1� + �p3 − 1�.
Transcribing (2.6) in group ring notations, the corresponding asymmetric
minimal element in �G ∩ ker�ϕ� is

x�G� x= σ�P∗1 �σ�P∗2 � + σ�P∗3 �; (6.1)

where Pi denotes the subgroup of order pi in G, and P∗i x= Pi \ �1�. Since
x�G� realizes the lower bound in (4.8), one wonders naturally about its
uniqueness (up to similarity). In the following, we shall prove this unique-
ness property of x�G�. To this end, we must go back to the work in Sec-
tion 4 and find out exactly when some of the inequalities there can hold as
equalities. We begin with (4.1).

Proposition 6.2. Keep the notations in �4:1�, and let x; y ∈ �G be
such that ϕ�x� = ϕ�y�, ε0�x� ≤ p1 − 1, and y � x. Then ε0�y� ≥
�p1 − ε0�x���p2 − 1�, with equality iff, after a rotation, x, y are as in
�4:2�, i.e., x = c · σ�X� and y = c · σ�X ′�σ�P∗2 �, where c is a positive integer,
and X, X ′ are two (nonempty) sets forming a partition of P1.

Proof. Applying (4.1), we get the inequality ε0�y� ≥ �p1 − ε0�x���p2 −
1�. If x and y have the form described above, then equality holds as we have
checked in (4.2). Conversely, assume that ε0�y� = �p1 − ε0�x���p2 − 1�. To
pin down the structure of x and y, we retrace the steps taken in the proof of
(4.1). In particular, we shall use all the notations introduced in that proof,
inducting on r ≥ 2.
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Case 1 ε0�xk� + ε0�yj� ≥ p1. Since ε0�y� is exactly �p1 − ε0�x���p2 −
1�, the various inequalities used in the earlier analysis of this case must all
be equalities. This yields very specific information about x and y. To begin
with, since ε0�yk� was discarded in the earlier estimate of ε0�y�, we must
have ε0�yk� = 0, that is, yk = 0. After a rotation (by a power of g), we may
assume that k = 0. For all the other inequalities to be equalities, we must
have p = p2, t = 1, and (now that k = 0) also

ε0�y1� = · · · = ε0�yp−1� = p1 − ε0�x0�: (6.3)

On the other hand, (4.3) now amounts to −ϕ�x0� = ϕ�y1� = · · · = ϕ�yp−1�.
Therefore, by (2.2) (for one prime), yi + x0 = ci · σ�P1� for each i ≥ 1,
where ci ∈ � \ �0�. Let X ⊆ P1 be the support of x0, and X ′ = P1 \X. In
view of (6.3) and yi + x0 = ci · σ�P1�, we see easily that yi = ci · σ�X ′� and
x0 = ci · σ�X� for all i ≥ 1; in particular, all ci’s are equal, say to c. We
have therefore x = x0 = c · σ�X�, and

y = y1g + · · · + yp−1g
p−1 = c · σ�X ′��g + · · · + gp−1� = c · σ�X ′�σ�P∗2 �:

Case 2 ε0�xk� + ε0�yj� ≤ p1 − 1. If r = 2, the earlier argument gives
y ≥ x, which is not the case. Hence, we must have r ≥ 3, and, following
through the earlier proof, there exists ` such that (4.6) holds. Since ε0�y� =
�p1 − ε0�x���p2 − 1�, the work on inequalities following (4.6) shows that
we must have ε0�x`� = ε0�x�, ε0�yi� = 0 for all i 6= `. This implies that
x = x`g` and y = y`g`, so after a rotation we may assume that x; y ∈ �H,
and we are done by invoking the inductive hypothesis. QED

Corollary 6.4. In the notations of (4.1), let y ∈ �G be such that ϕ�y� =
c1 (a positive integer), ε0�y� = �p1 − 1��p2 − 1�, and y � 1. Then y = c1 ·
σ�P∗1 �σ�P∗2 �.

Proof. For x x= c1 > 0, we have ϕ�x� = ϕ�y�, ε0�x� = 1 ≤ p1 − 1, and
y � x. By (6.2) applied to x, y, there exist u ∈ G and an integer c > 0 such
that u · x = c · σ�X� and u · y = c · σ�X ′�σ�P∗2 �, where X, X ′ are as in
(6.2). Since x = c1 ∈ �, we must have c = c1 and X = �u�, so now

y = cu−1 · σ�X ′�σ�P∗2 � = c1 · σ�P∗1 �σ�P∗2 �:
QED

We come now to the main result of this section, which ascertains
the uniqueness of asymmetric minimal elements of the smallest support
(resp. weight) for a given cyclic group G.

Uniqueness Theorem 6.5. Let r ≥ 3 in the notation of �4:8�, and let x
be any asymmetric minimal element in �G ∩ ker�ϕ�. If either ε�x� or ε0�x�
is equal to �p1 − 1��p2 − 1� + �p3 − 1�, then x is similar to the element x�G�
defined in (6.1).
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Proof. Since ε�x� ≥ ε0�x� ≥ �p1 − 1��p2 − 1� + �p3 − 1� by (4.8), it is
sufficient to treat the case ε0�x� = �p1 − 1��p2 − 1� + �p3 − 1�. We refer
therefore to the proof of (4.8) and retrace the case distinctions there to
determine the structure of x. Since we have at least one strict inequality in
Case 1, this case cannot occur. In Case 2, we are reduced from �G∩ ker�ϕ�
to �H ∩ ker�ϕ�, so we are done by induction. Thus, it remains only to treat
Case 3, in which 1 ≤ ε0�xi� ≤ p1 − 1. Here, Subcase 1 cannot occur, since
x is asymmetric. Therefore, there must exist an index j as in Subcase 2.
Looking over the inequality work in that subcase, we see that, for ε0�x� =
�p1 − 1��p2 − 1� + �p3 − 1� to hold, we must have r = 3, ε0�xi� = 1,

ε0�xj� ≥ �p1 − ε0�xi���p2 − 1� = �p1 − 1��p2 − 1�;
and ε0�xk� = ε0�xi� = 1 for all k 6= j. After a rotation (by a power of g),
we may assume that j = 0. Thus, we now have xk = ckhk for all k ≥ 1,
where hk ∈ H and ck ∈ � \ �0�. Since ϕ�x0� = ϕ�x1� = · · · = ϕ�xp−1�
and ϕ is injective on H, we see easily that c1 = · · · = cp−1 and h1 = · · · =
hp−1. After another rotation (by h−1

1 ), we may therefore assume that h1 =
· · · = hp−1 = 1, so x now has the form x0 + c1�g + g2 + · · · + gp−1�, with
ϕ�x0� = c1. Clearly, x0 cannot have the identity element 1 in its support,
for otherwise x ≥ 1+ g + · · · + gp−1. Also, since r = 3,

ε0�x0� = ε0�x� − �p− 1� = �p1 − 1��p2 − 1�
+�p3 − 1� − �p− 1� = �p1 − 1��p2 − 1�:

Therefore, (6.4) shows that x0 = c1σ�P∗1 �σ�P∗2 �, and we have

x = c1σ�P∗1 �σ�P∗2 � + c1�g + · · · + gp−1� = c1 · x�G�:
By the minimality of x, c1 must be 1, so x = x�G�, as desired. QED

The techniques used above for proving the uniqueness of the asymmetric
minimal elements of the smallest weight can also be used to analyze asym-
metric minimal elements of slightly higher weight. For instance, for weight
one higher than the canonical lower bound �p1 − 1��p2 − 1� + �p3 − 1�,
one can prove

Proposition 6.6. Let x ∈ �G ∩ ker�ϕ� be an asymmetric minimal ele-
ment of weight �p1 − 1��p2 − 1� + p3. Then we must have p1 = 2, p2 = 3,
and x is similar to t�h + h2��1 + d� + d2 + d3 + · · · + dp3−1, where t, h, d
are suitable generators of the cyclic groups P1, P2, and P3. In particular, such
x cannot exist if �G� is not divisible by 6.

We shall not go into the details of the proof of this proposition here.
Instead, we offer an explicit illustrative example below.
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Example 6.7. Let G be a cyclic group of order m = 30 as in (5.3)
and use the notations there. Then G = �z�, where z = thg, and we have
t = z15, h = z10, g = z6. The map ϕ: �G→ ��ζ30� is defined by ϕ�z� = −α,
where α x= ζ15. According to (6.5), the asymmetric minimal element in
�G ∩ ker�ϕ� of the smallest weight is (up to a rotation)

x�G� = t�h+ h2� + g + g2 + g3 + g4 = z5 + z6 + z12 + z18 + z24 + z25;

with weight �p1 − 1��p2 − 1� + p3 − 1 = 6. Now form the element x of
weight 7 in (6.6), using d = g2 as generator for P3 (cf. [Ma, p. 114]):

x= t�h+ h2��1+ d� + d2 + d3 + d4

= t�h+ h2��1+ g2� + g4 + g + g3

= z25 + z5 + z7 + z17 + z24 + z6 + z18:

This x corresponds to the vanishing sum

0 = ϕ�x�=−α25 − α5 − α7 − α17 + α24 + α6 + α18

=−α10 − α5 − α7 − α2 + α9 + α6 + α3

=−α2�α8 + α3 + α5 + 1− α7 − α4 − α�:
Since α has degree 8 over �, the vanishing sum of 30th roots of unity
in parentheses above is clearly minimal. (Incidentally, this shows that
815�X� = X8 −X7 +X5 −X4 +X3 −X + 1.) Therefore, x is indeed an
asymmetric minimal element in �G ∩ ker�ϕ�, arising essentially from the
cyclotomic relation satisfied by α = ζ15 over the rationals.

7. AN APPLICATION TO REPRESENTATION THEORY

To close this paper, we note the following interesting application of the
Main Theorem to the theory of characters of finite groups.

Theorem 7.1. Let χ be the character of a representation of a finite
group G over a field F of characteristic 0. Let g ∈ G be an element of
order m = pa1

1 : : : p
ar
r (where p1 < p2 < · · ·) such that χ�g� ∈ �, and let

t x= χ�1� + �χ�g��. If χ�g� ≤ 0, then t ∈ ∑�pi. If χ�g� > 0 and t is odd,
then t ≥ `, where ` (= p1 or p2) is the smallest odd prime dividing m.

Proof. Let D:G −→ GLn�F� be the representation in question. Let
A = D�g�, and let α1; : : : ; αn be the eigenvalues of A. Then αmi = 1 for
each i, and χ�g� = α1 + · · · + αn. Now suppose s x= χ�g� ∈ �.

Case 1 s ≤ 0. In this case, α1 + · · · + αn + �−s� · 1 = 0 is a vanishing
sum of mth roots of unity, of weight n− s = χ�1� + �χ�g�� = t. By the Main
Theorem (5.2), t ∈∑�pi.
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Case 2 s > 0. In this case, α1 + · · · + αn + s · �−1� = 0 is a vanishing
sum of 2mth roots of unity, of weight n + s = t. Again by the Main The-
orem (5.2), t ∈ 2� +∑�pi. If t is odd, then m must have an odd prime
divisor, and if ` is the smallest odd prime divisor of m, then t ∈ 2�+∑�pi
implies that t ≥ `. QED

Examples 7.2. (1) Let G = S8 and let χ be the unique irreducible
character of degree 7 on G. For g = �23��45678� ∈ G, we have χ�g� = 0.
Here t = χ�1� + �χ�g�� = 7, which is indeed an �-linear combination of 2
and 5 (the prime divisors of the order of g). Similarly, if g′ = �123��45678�,
then χ�g′� = −1, and t ′ = χ�1� + �χ�g′�� = 8, which is an �-linear combi-
nation of 3 and 5 (the prime divisors of the order of g′).

(2) Let G = SL�2; 7� (a group of order 336), and let χ be one of
the two irreducible characters of degree 6 on G. It is known that
χ�g� = 1 for some element g ∈ G of order 14 (see [JL, p. 406]). Here
t = χ�1� + �χ�g�� = 7 is odd and is equal to the smallest odd prime divisor
of the order of g.

There is apparently no analogue of Theorem 7.1 in characteristic p, even
for p′-elements g ∈ G with χ�g� = 0. For instance, if G = �g� is a cyclic
group of order 4 and D is the 3-dimensional representation G −→ GL3��5�
given by D�g� = diag�3; 1; 1�, then χ�g� = 3 + 1 + 1 = 0 ∈ �5, but the
dimension of D is not even an �-linear combination of 2 (prime divisor of
the order of g) and 5 (the characteristic of the ground field).
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