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Abstract 

In this paper, we demonstrate the feasibility of using 3D printing technique to create functional graded shape memory polymers 
(SMPs) with both spontaneous and sequential shape recovery abilities. The created SMP components, with properly assigned 
spatial variation of the thermodynamical property distribution, react rapidly to a thermal stimulus, and return to a specified 
configuration in a precisely controlled shape changing sequence. The use of the 3D printing technique enables a manufacturing 
routine with merits of easy implementation, large design freedom, and high printing resolution, which promises to advance 
immediate engineering applications for low-cost, rapid, and mass production. 
© 2014 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of Konstantin Volokh and Mahmood Jabareen. 
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1. Introduction 

Shape memory polymers (SMPs) are defined by the ability to recover their permanent shapes from one (or 
sometimes multiple1-6) programmed temporary shape (s) when a proper stimulus is applied, such as temperature7-12, 
magnetic fields13-17, light18-23 and moisture24, 25 etc. This observed phenomenon is usually referred as shape memory 
(SM) effect in polymers. Since this type of smart materials could sense the environmental changes and then take 
reactions accordingly in a predetermined sequence, they are considered as a promising alternative for the future’s 
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spontaneous shape changing. Compared with shape memory alloys and ceramics, SMPs possess the advantages of 
high strain recovery26, low density, low cost, easy shape programming procedure and easy control of recovery 
temperature. Besides, they are also chemically tunable to achieve biocompatibility and biodegradability, and hence 
gained extensive research interests recently in various areas such as medical, civil and industrial etc.27-30 

 
While the spontaneous shape changing of SMPs has been well studied in the past few decades7, 28, 31-44, the 

achievement of highly controlled sequential shape recovery is still a challenge. Currently, there are two main 
strategies in this realm: one involves exploring additional temporary shapes in a shape memory cycle, which can be 
realized either by tuning the shape memory transition temperature range5, 6, 45, 46 or tailoring discrete reversible 
transitions into a single SMP 2-4, 47. During the polymer free recovery, different temporary shapes can be reached in a 
predefined sequence upon changing the degree of environmental stimulus. The second strategy requires the polymer 
materials or structures to have spatially dependent compositions, microstructures or associated thermomechanical 
properties, namely the functional gradient within the polymer material48-50. When a right stimulus is applied, 
independent shape recoveries in each section of SMPs will be successively activated. The sequential fashion during 
the shape changing of SMPs can be manipulated by properly assigning material properties on each section. This new 
technique is expected to enable novel devices, sensors and actuators that can be widely applied in microsystem 
actuation components21, 51-53, biomedical devices14, 42, 54 and aerospace deployable structures 55, 56. 

 
There are many approaches to achieve functionally graded SMPs with sequential shape recovery properties. For 

example, by post-curing a pre-cured SMP on a surface with linear temperature gradient, Mather et al48 successfully 
created functional SMPs where different sections of the material exhibit gradually increased glass transition 
temperature (Tg) and consequently react to different temperature degrees independently. Other synthetic methods 
include UV polymerization with patterned photo-filters57, photo-degradation with a gradually removed mask58, 
inter-diffusion of polymer bilayers59 and co-extrusion with specially designed gradient distribution60, 61 etc. Though 
all these methods have their merits, they are generally inefficient in achieving a highly non-regular but precisely 
controlled material distribution within a single SMP. Additionally, their immediate engineering applications are 
limited where the manufacturing methods require ease of implementation and suitability for low-cost, rapid and 
mass production.  

 
In this paper, we use the 3D printing technique62-71 to create SMPs with both spontaneous and sequential shape 

changing properties. The manufacturing method involves direct 3D printing from a CAD file that specifies the 
details of material configuration and property distribution, which provides considerable design freedom and 
operation convenience during the creation of functionally graded SMPs. The polymer material we used is an epoxy 
based UV curable SMP, whose shape recovery is thermally triggered. By controlling the composition of printed 
materials, the glass transition temperatures of SMPs can be controlled to create a functional gradient. By properly 
specifying material properties in different sections, we experimentally demonstrated that the deformed SMP 
component can successfully return back to the original configuration in a predefined sequence, while the shape 
recovery in a SMP component without any property gradient will be either interfered or even failed in middle. By 
using this method, even complex three-dimension (3D) solids can be created with arbitrarily defined material 
distributions, which provide a potential route for precisely controlling the shape recovery profile and enabling the 
fabrication of devices with unprecedented multifunctional performance. This characteristic has been termed as 4D 
printing72, 73. 

2. Results and Discussion 

2.1. Material Characterization 

For the thermally responsive SMPs, the key to realize a sequential shape recovery is to introduce a tailored 
distribution of thermomechanical properties, allowing the specified material sections to independently react to 
temperature changes. In view of this, we start our experimental investigation by testing the thermomechanical 
properties of seven epoxy polymers (respectively labeled as SMP 1-7) that can be directly created by using the 3D 
multimaterial polymer printer (Objet Connex 260, Stratasys, Edina, MN, USA). The printing process works by 
depositing droplets of polymer ink at ~70 oC, wiping them into a smooth film, and then UV photopolymerizing the 
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film. Different polymer inks are respectively prepared by mixing two liquid monomers in specific ratios70, 71. 
However, the exact chemical formula and composition of the commercial product is still unknown. During the 3D 
printing, we set the dimension of all SMP samples is as 15 mm×3 mm×0.6 mm in uniform for the following 
characterization tests.  

 
After the SMP materials are printed, a dynamic mechanical analysis (DMA, TA Instruments, Model Q800) in 

uniaxial tension mode is performed to characterize their glass transition behavior. The SMP sample is firstly heated 
up to 100 °C on the DMA machine and stabilized for 20 minutes to reach thermal equilibrium, and then a preload of 
1 KPa is applied. During the DMA experiment, the strain is oscillated at a frequency of 1 Hz with a peak-to-peak 
amplitude of 0.1% while the temperature is decreased from 100 °C to a given low temperature at a rate of 2 °C/min.  
Figure 1a and 1b show the storage modulus and tan δ within the temperature variation range. It is seen the polymer 
modulus decreases linearly with temperature. The temperature corresponding to the peak of the tan δ curve is taken 
to be the glass transition temperature Tg. Within the testing temperature range, it is seen that the storage modulus far 
below the Tg is about two orders of magnitude larger than that above Tg. The measured Tg of all the seven samples 
are summarized and plotted in Figure 1c. Considering the glass transition range of all the SMP materials, we select a 
temperature range from TL=10 oC to TH=100 oC in this paper to examine the polymer SME. 

 

 
 (a)  (b) 

  
(c) 

Figure 1. Thermodynamical properties of the SMP 1-7. (a) The temperature dependent storage modulus, (b) The temperature dependent tan δ 
and (c) The summary of Tg 

2.2. Sequential Shape Recovery in a Helical SMP Component 

To demonstrate the sequential free shape recovery, we designed the following helical component in CAD 
software (see Figure 2), where rectangular plates are connected by hinge sections on the corner with a radius of 
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5mm. The thickness of the helical line is 0.8mm and the depth is 6mm. The clearance between neighbouring helical 
lines is 5mm. In the following study, each hinge section of the architecture will be assigned with different material 
properties based on the polymer list shown in Figure 1, and the helical structure will be deployed into a straight 
configuration during the programming step of the shape memory cycle. The material configuration shown in Figure 
2 also represents the permanent shape that can be memorized by the printed SMP component.  

 

 
Figure 2. Schematic view of the helical SMP component 

 
In the design, we assign the material distribution for the hinge section as: Polymer 1 with lowest Tg (~32 oC) is 

assigned to the two innermost hinges (Hinges 1 and 2); Polymer 7 with highest Tg (~65 oC) is assigned to the two 
outermost hinges (Hinges 8 and 9); the rest hinges (Hinges 3 and 7) are assigned with polymers (Polymer 2-6) with 
gradually increased Tg. It should be noted that the inhomogeneity of material distribution could be further refined 
into a micron scale based on the resolution of printer.  

 
After printing, the free shape recovery of the created SMP component is exercised. We firstly heat the printed 

structure then deform it into a straight configuration in hot water with TH=100 oC, which is above Tg of all the SMP 
material sections. Then the sample is moved into an environment with TL=10 oC, where all the hinge sections are 
transferred to the glassy state and stiffen. After holding the sample at TL for a time sufficient to equilibrate the strain 
(~10 min), we released the external loading and the component is able to fix the temporary programming shape.   

 
To activate the free shape recovery of the SMP component, it is immersed into the hot water again with Tr=100 

oC. The free shape recovery process is monitored by a video camera. Figure 3 shows the snapshots of the material 
configurations at different recovery time, which visually demonstrates a spontaneous and sequential SME in the 
created SMP component. Firstly, the material shows a rapid response to the thermal energy. Within 6.5s, the straight 
SMP component assembles into the original helical configuration as shown in Figure 2. The difference in Tg of 
hinge sections leads to a different shape recovery time.  Since Tg of the three inner hinges is much lower than the 
outside ones, they firstly exhibit rotational shape recovery, and then the shape changing is successively triggered 
along the helical line. The rapid shape recovery of inner hinges leaves enough space for the coiling of out layers. 
Similar with the previous work about quantifying the shape recovery ratio, we define the bending shape recovery 
ratio (Rr) in this case as: 

 
180 (t)

90

o

r oR ,  (1) 

 
where θ(t) is the time dependent angle of each hinge section. The bending shape recovery ratio of each hinge of the 
SMP component is studied by image analysis and plotted as a function of recovery time in Figure 4. As shown in the 
figure, the first three hinges start the shape recovery within ~1s after being immersed into the hot water, and the 
process is essentially finished within 3 seconds, while the last two hinges start to recover after 3 seconds and finish 
at 6.5s. The hierarchical shape recovery profiles of hinge section enable the successful sequential shape recovery in 
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the created SMP component without interruption. 
 

  
Figure 3. Series of photographs showing the spontaneous and sequential shape recovery process of the helical SMP component with graded 
hinge sections 

 

 
Figure 4. Shape recovery ratio of each hinge section plotted as a function of recovery time 

 
As a controlling demonstration, we further tested the shape recovery behavior of SMP component without graded 

distribution of material properties. Another SMP component is manufactured with the same dimension and 
configuration as shown in Figure 1, where the hinge sections are using the same polymer material (polymer 3) with 
the Tg= ~55oC. After experiencing the same programming procedure as mentioned above, the SMP component is 
immersed in the hot water (~100oC) and the free recovery process is monitored and shown in Figure 5. Since the 
thermomechanical property is identical in each hinge section, the associated shape changing is induced almost 
simultaneously, which contrasts the first case with sequential shape recovery behavior. Before the full recovery of 
inner hinges, the outer layer of the SMP component coils back with equivalent speed. The interference of the shape 
recovery occurs at ~8.5s, where the frictional resistance due to contact prevent the SMP from recovery. In this 
manner, the shape recovery speed is dramatically decreased from 8.5s to 14.5s, and the shape changing finally stops 
at ~ 14.5s with an incomplete shape recovery in the SMP component. The result confirms that the distribution of 
material property will impact the recovery manner of SMPs and a gradually increased Tg along the helical line is the 
key to realize the successful sequential shape recovery of the created SMP component.  
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Figure 5. Series of photographs showing the shape recovery process of the helical SMP component with uniform hinge section 

2.3. Sequential Shape Recovery in an Inter-locking SMP Component 

The sequential shape changing will not only benefit us with smooth shape recovery as shown above, but also the 
realization of full recovery in SMP components manufactured in special configurations, which requires highly 
controlled sequence during the shape recovery of different material sections. To demonstrate this, a SMP component 
with interlocking feature is created and schematically shown in Figure 6. Two holes with different dimensions are 
designed on the ending plate, which allows the other end bend over through them to form the locking configuration. 
The thickness of SMP component is 0.6mm (0.8mm for the plate with holes) and the depth is 6mm. Five hinge 
sections (with a radius of 5mm in uniform) rested on the corner will be assigned with different SMP materials. For a 
representative case, Hinges 1-5 will be assigned with Polymer 2, 2, 3, 6 and 6 respectively.  

 

 
Figure 6. Schematic view of the interlocking SMP component 

 
At the temperature of 100 oC, the SMP component is firstly deployed into a straight line, namely an unlocked 

configuration. Then it is cooled back to 10oC and stabilized for 30min after removing the external load. After the 
programming step, the SMP component is immersed in the hot water (~100oC) and the free recovery process is 
monitored both of the top and side view, as shown in the snapshots of Figure 7. With the specified material 
properties on each hinge section, the SMP component is seen to return into the original interlocking configuration at 
~14.2s. The shape changing process reveals that to successfully recover into the original interlocking configuration, 
the sequential shape recovery of the SMP component should satisfy two requirements: Firstly, the shape recovery of 
the first two hinges should be the faster than the rest ones so that the two end sides could hit each other with a right 
position and angle. Secondly, the shape recovery of the last two hinges should be slower to guarantee the active 
locking side could pass through the two holes successively.  
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Figure 7. Series of photographs showing the spontaneous and sequential shape recovery process of the interlocking SMP component with graded 
distribution of hinge section 

 
These two qualitative criteria could be satisfied by properly arranging the material properties on each hinge 

section. A change in the properties distribution could lead to a change of recovery manner and potentially a failure 
in recovering the interlocking configuration of the SMP component. Figure 8 shows final shape recovery of two 
SMP components with different material assignment. In Figure 8a, the sequence of material distribution is reversed, 
namely Hinges 1-5 are assigned with Polymer 6, 6, 3, 2 and 2 respectively, while in Figure 8b, all the hinge sections 
are using the same SMP material (Polymer 3). In both two cases, the last two hinges achieved a nearly full shape 
recovery before the active locking side reaching the passive locking side, which leads to a stuck in front of the first 
hole. 

 

            
 (a)  (b) 
Figure 8. The final recovered shape of two types of interlocking SMP components. (a) All the hinge sections are using the same material. (b) The 
sequence of material distribution is reversed compared with the material in Figure 7. 

3. Conclusion 

In this paper, we experimentally demonstrated the feasibility of using 3D printing to create SMP material with 
functional gradient. Both the helical and self-interlocking SMP components featured here show not only the 
reliability of spontaneous shape recovery, but also a precisely controlled shape changing sequence that can be 
utilized to reach the specified material configurations smoothly and successfully. This precision, achieved by a 
selection of priority distribution of material properties, makes possible the implementation of the polymer shape 
memory effect in an extremely wide array of objects and applications yet to be realized, such as structures involving 
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complex deformation permutations, and the development of practical and versatile SMP solids able to self-adjust 
and self-reinforce to cope uniquely with different environmental conditions etc. By using three-dimensional printing 
technique, the SMP structures with both spontaneous and sequential properties could be directly created with large 
design freedom and high resolution of material properties distribution. Besides, the manufacturing route could be 
easily implemented and potential for immediate engineering applications for low-cost, rapid and mass production.  
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