On the Mean Curvatures Sharp Estimates of Hypersurfaces

Alain R. Veeravalli

Département de Mathématiques, Université d’Evry-Val d’Essonne, Boulevard des Coquibus, F-91025 Evry Cedex, France

Abstract

Sharp estimates for the mean curvatures of hypersurfaces in Riemannian manifolds are known from the works of Jorge-Xavier [3], Markvorsen [6] and Vlachos [11]. We first give a simplified proof of these estimates. This proof shows that a similar original result holds for hypersurfaces in Einstein manifolds which are warped product of \mathbb{R} by Ricci-flat manifolds.

1 Introduction and notations

For $n \geq 1$ and $c \in \mathbb{R}$, let $(M = \mathbb{M}_{n+1}(c), g = \langle \cdot, \cdot \rangle)$ be the $(n+1)$-dimensional simply connected space form of constant curvature c, d its Riemannian distance, ∇ its Levi-Civita connection and ∇^2 its Hessian operator. If N is a closed (compact without boundary) connected hypersurface of M, we endow N with the induced metric, also denoted by $\langle \cdot, \cdot \rangle$. The induced connection and Hessian are denoted by ∇ and ∇^2 respectively. By the generalized Jordan theorem, N is orientable and divides M into two connected components, one of which (the interior) is relatively compact and has N as its oriented boundary. Let η the smooth unit inner normal vector field of N, h its second fundamental form and A its shape operator. We recall that the mean curvatures of N are the functions $(H_i)_{0 \leq i \leq n}$ defined by $\sum_{i=0}^{n} \sigma_i X^i \equiv \sum_{i=0}^{n} \binom{n}{i} H_i X^i$ where $(k_i)_{1 \leq i \leq n}$ are the principal curvatures of N, σ_i the i^{th}-elementary symmetric polynomial in the k_i's and $\binom{n}{i}$ the binomial coefficient. The notation $\|H_i\|$ will mean the uniform norm of H_i on N. We also introduce the radius of N in M, defined by $\text{rad } N := \min_{p \in M} \max_{q \in N} d(p, q)$ and which is the radius of the smallest closed ball(s) in (M, d) containing N. We recall that a geodesic sphere of radius r (with $r < \pi/\sqrt{c}$ if $c > 0$) in M is a totally umbilical hypersurface: more precisely, if s_n is the solution of the differential equation $\dot{y}(t) = cy(t)$ with the initial conditions $(y(0), \dot{y}(0)) = (0, 1)$ and $\cot_c = \frac{\sin c}{\sin c}$ its logarithmic derivative, its principal curvatures are all equal to $-\cot_c(r)$.
Thanks to the works of Jorge-Xavier, Markvorsen and Vlachos, we have the following estimates for the mean curvatures of N and this leads to a characterization of geodesic spheres:

Theorem 1 [3, 6, 11]. Let N be a closed connected hypersurface of \mathbb{R}^n. We assume that $\text{rad } N < \pi/(2\sqrt{c})$ if c is positive. Then

1. For any integer $k \in \{1, \ldots, n\}$, we have $\|H_k\| \geq \cot_c(\text{rad } N)$.
 In other words, we obtain a sharp lower bound for the radius of N:
 $$\text{rad } N \geq \cot_c^{-1}\left(\min_{k\in\{1,...,n\}} \|H_k\|^{1/k}\right).$$

2. If there exists an integer $k \in \{1, \ldots, n\}$ for which $\|H_k\| = \cot_c(\text{rad } N)$, then N is a geodesic sphere.

We will present here a simplified proof of this result. The key point is to choose an appropriate function and to consider the Newton $(1,1)$-tensors introduced by Reilly. The papers quoted above did not show the necessity of the assumption "rad $M < \pi/(2\sqrt{c})" when c is positive: we fill this gap by producing a counter-example at the end of section 2. Moreover, our approach allows the discovering of a new similar result (section 3, theorem 3).

2 A short proof of theorem 1

Let h_c be the primitive of \sin_c which vanishes at 0. For a fixed point p of \mathbb{M}, we introduce the smooth modified distance function $h_c \circ d_p$ on \mathbb{M} which Hessian is proportional to the metric:

Proposition [9]. - The function $h_c \circ d_p$ satisfies: $\nabla^2(h_c \circ d_p) = (\sin_c \circ d_p) \cdot g$.

In the sequel, let p be a point of \mathbb{M} for which N is included in the closed ball $B_d(p, \text{rad } N)$. If we set $F = h_c \circ d_p$, let $\mathbb{f} = F\rvert_N$ be the restriction of F to N and q_0 a point of N where \mathbb{f} achieves its maximum. By the Hopf principle, we have $\langle \nabla \mathbb{f}(q_0), X \rangle = 0$ and $\nabla^2 \mathbb{f}(q_0)(X, X) \leq 0$ for any $X \in T_{q_0}N$. But

$$\langle \nabla \mathbb{f}(q_0), X \rangle = \langle \nabla F(q_0), X \rangle = \sin_c(d_p(q_0)) \cdot \langle \dot{\gamma}(d_p(q_0)), X \rangle$$

where $\gamma : [0, d_p(q_0)] \to \mathbb{M}$ is the unique unit-speed geodesic in \mathbb{M} joining p to q_0. This shows that $\dot{\gamma}(d_p(q_0)) \in (T_{q_0}N)^\perp$. On the other side, by the above proposition

$$\nabla^2 \mathbb{f}(q_0)(X, X) = \nabla^2 F(q_0)(X, X) + \langle \nabla F(q_0), h_{q_0}(X, X) \rangle$$

$$= \sin_c(d_p(q_0)) \cdot |X|^2 + \langle \nabla F(q_0), h_{q_0}(X, X) \rangle$$

In this way,
\[\nabla^2 f(q_0)(X, X) \geq \sin_c(d_p(q_0)) \cdot |X|^2 - \sin_c(d_p(q_0)) \cdot \langle A_q X, X \rangle \]
(1)

This shows that the principal curvatures \((k_1(q_0))_{1 \leq i \leq n}\) of \(N\) at \(q_0\) are all greater than or equal to \(\cot_c(d_p(q_0))\). Since \(d_p(q_0) \leq \text{rad } N\), as \(\cot_c\) is a decreasing function and as \(\cot_c(\text{rad } N)\) is positive (we use here the assumption on the radius if \(c\) is positive), we have \(\|H_k\| \geq \cot_c^k(\text{rad } N)\) and this shows the first point of the theorem.

If there is equality, i.e. if \(\|H_k\| = \cot_c^k(\text{rad } N)\), then \(d_p(q_0) = \text{rad } N\) and all the principal curvatures of \(N\) at \(q_0\) are equal to \(\cot_c(\text{rad } N)\) which is positive. Let \(U\) be an open neighborhood of \(q_0\) in \(N\) such that the principal curvatures are all positive on \(U\). On \(U\), we will use the classical inequalities [2]:

In [7], Reilly introduced a family \((T_k)_{k \in \{0, \ldots, n\}}\) of \((1,1)\)-tensors on \(N\) defined by the formulae: \(T_0 = \text{Id}\) (identity map) and \(T_{k+1} = \sigma_{k+1} \text{Id} - AT_k\) for \(0 \leq k \leq n - 1\) which satisfy the following formula:

\[\text{Div}(T_k \nabla f) = (n - k) \cdot \binom{n}{k} \cdot \left\{ (\sin_c \circ d_p) \cdot H_k + \langle \nabla F, \eta \rangle \cdot H_{k+1} \right\} \]
(2)

where \(\text{Div}\) is the divergence operator on \(N\). As \(\cot_c\) is a decreasing function, then for any point \(q\) of \(U\), we have by equation (2):

\[\text{Div} \left(T_{k-1} \nabla f(q) \right) = \binom{n}{k} \cdot \left\{ (\sin_c \circ d_p(q)) \cdot H_{k-1}(q) + \langle \nabla F(q), \eta(q) \rangle \cdot H_k(q) \right\} \]

Now \(H_k(q) = \|H_k\|^{1/k} \cdot H_k^{(k-1)/k}(q) \leq \|H_k\|^{1/k} \cdot H_{k-1}(q)\). This shows that \(\text{Div} \left(T_{k-1} \nabla f \right)\) is nonnegative on \(U\). As \((\cdot \mapsto \text{Div} \left(T_{k-1} \nabla \cdot \right))\) is an elliptic operator on smooth functions on \(U\) ([4]), the function \(f\) is therefore constant on \(U\) by the maximum principle for these operators. Hence, the non-empty closed subset \(\{q \in N/f(q) = f(q_0)\}\) of \(N\) is also open. The connectedness of \(N\) implies that \(N\) is included in the geodesic sphere \(F_{\text{rad }}(F_p(q_0))\). As this geodesic sphere is also connected and \(n\)-dimensional, \(N\) coincides with this geodesic sphere.

Remark 1. For \(k = 1\), theorem 1 can be stated if one replaces \(M_{m+1}(c)\) by a manifold \(M\) with sectional curvature bounded from above by \(c\): this has been done by Markvorsen [6], Jorge-Xavier [3] and can be derived easily from the above equations: indeed, for a hypersurface in an arbitrary manifold, (2) is still true for \(k = 0\). On the other hand, we have the following comparison result:
Lemma ([8], p 153). - Let M be a complete Riemannian manifold with sectional curvature bounded from above by a constant c ($c \in \mathbb{R}$), d the distance of M and p a point of M. Then if q_0 is not a cut point of p, the function d_p is smooth at q_0 and for any vector $X \in T_{q_0}M$ which is normal at q_0 to the unique unit-speed geodesic joining p to q_0, we have

$$\nabla^2 d_p(q_0)(X, X) \geq \cot_c(d_p(q_0)) \cdot |X|^2.$$

which makes true inequation (1). The end of proof is similar.

Remark 2: a counter-example without the radius assumption. Let n be an integer ≥ 2, c a positive number, j and k two integers ≥ 1 with $j + k = n$ and s a number of $]0, \pi/2[$. We will write $\mathbb{R}^{n+2} = \mathbb{R}^{j+1} \times \mathbb{R}^{k+1}$ and any point x of \mathbb{R}^{n+2} will be decomposed as $x = (y, z)$ where $(y, z) \in \mathbb{R}^{j+1} \times \mathbb{R}^{k+1}$. In [10], the author proves that $N := S^j(\cos(s)/\sqrt{c}) \times S^k(\sin(s)/\sqrt{c})$ is a compact connected hypersurface of $M_{n+1}(c) = S^{n+1}(1/\sqrt{c}) = \{x = (y, z) \in \mathbb{R}^{j+1} \times \mathbb{R}^{k+1}/ |y|^2 + |z|^2 = 1/c\}$ which principal curvatures at any point are $(-\sqrt{c} \tan s)$ et $\sqrt{c} \cot s$ with multiplicities j and k respectively (for $c=j=k=1$ and $s = \pi/4$, one recognizes the Clifford torus in S^3).

Moreover, We claim that

$$\text{rad } N = \frac{1}{\sqrt{c}} \cdot \left\{\frac{3\pi}{4} - \left|\frac{s - \pi}{4}\right|\right\},$$

which proof is a straightforward calculation: let $p = (y_p, z_p)$ and $q = (y, z)$ be arbitrary points of $S^{n+1}(1/\sqrt{c})$ and N respectively. In $S^{n+1}(1/\sqrt{c})$, the distance between p and q is $d(p, q) = (1/\sqrt{c}) \cdot \cos^{-1}(c(p, q))$. By Cauchy-Schwarz inequality, one obtains $c(p, q) = c(|y_p|^2 + |z_p|^2) \geq -c(|y_p||y| + |z_p||z|) = -\sqrt{c}(|y_p| \cdot \cos s + |z_p| \cdot \sin s)$. So $\max_{p \in N} d(p, q) \leq (1/\sqrt{c}) \cdot \cos^{-1}(-\sqrt{c}(|y_p| \cdot \cos s + |z_p| \cdot \sin s))$. Moreover, this inequality is sharp (indeed, if y_p and z_p are both non zero, take $(y, z) = (\frac{-y_p}{|y_p|} \cos s, \frac{-z_p}{|z_p|} \sin s)$ and if $y_p = 0$, then z_p is nonzero necessarily and take $z = (z_p/|z_p|) \sin s$ and any point of $S^j(\cos(s)/\sqrt{c})$ for y). Using the relation $\cos^{-1} a + \cos^{-1}(-a) = \pi$, we deduce that

$$\text{rad } N = \min_{p \in S^{n+1}(1/\sqrt{c})} \left\{\frac{\pi}{\sqrt{c}} - \cos^{-1}\{\sqrt{c} \cdot (|y_p| \cdot \cos s + |z_p| \cdot \sin s)\}\right\},$$

$$= \frac{\pi}{\sqrt{c}} - (1/\sqrt{c}) \cos^{-1}\left\{\min_{p \in S^{n+1}(1/\sqrt{c})} \left\{\sqrt{c} \cdot (|y_p| \cdot \cos s + |z_p| \cdot \sin s)\right\}\right\},$$

$$= \frac{\pi}{\sqrt{c}} - (1/\sqrt{c}) \cos^{-1}\left\{\min_{0 \leq |y_p| \leq (1/\sqrt{c})} \left\{\sqrt{c} \cdot (|y_p| \cdot \cos s + \sqrt{1/c - |y_p|^2} \cdot \sin s)\right\}\right\},$$

$$= \frac{\pi}{\sqrt{c}} - (1/\sqrt{c}) \cos^{-1}\{\cos s, \sin s\},$$

$$= \frac{\pi}{\sqrt{c}} - (1/\sqrt{c}) \max\{s, \pi/2 - s\},$$

$$= (1/\sqrt{c}) \cdot \{3\pi/4 - |s - \pi/4|\}. \quad \square$$

In the particular case where $s = \pi/4$ and $j = k = n/2$, the radius of N is $3\pi/(4\sqrt{c})$ and $\cot_c(\text{rad } N) = -\sqrt{c}$. Since the mean curvatures of N satisfy the relation $\sum_{i=0}^{n} \binom{n}{i} \cdot H_i \cdot X^i =$
(1 - X √c) i ∙ (1 + X √c) j = (1 - cX^2)^j = \sum_{l=0}^{j} (-c)^l \binom{j}{l} X^{2l}, \text{ the mean curvatures of odd order all vanish and}

\[H_{2j} \| = \left(\frac{j}{2^j} \right) \cdot c^j \begin{cases} \cot \frac{2j}{2\ell} (\text{rad } N) & \text{if } \ell = j \\ < \cot \frac{2j}{2\ell} (\text{rad } N) & \text{if } \ell < j \end{cases} \]

As N is not a geodesic sphere (not even homeomorphic), this shows that the radius assumption cannot be omitted in theorem 1.

3 A New result

The Hessian of D is proportional to the metric g of \(M_{n+1}(c) \). This remark has simplified a lot the calculation of \(\nabla^2 f \) in section 2. We are naturally led to ask for natural questions:

Question 1. “Which are the complete Riemannian manifolds \((M, g, \nabla) \) admitting a smooth function \(F \) which Hessian satisfy \(\nabla^2 F = \lambda g \) for some function \(\lambda \)?

Question 2. “Among them, which ones admit totally umbilical hypersurfaces?”

Other manifolds than space forms satisfying this both questions exist:

Example. Consider a \(n \)-dimensional complete Ricci-flat manifold \((N, g_*) \) and consider the Riemannian manifold \(M = \mathbb{R} \times e^{2ct} N_* \) with the warped product metric \(g = dt^2 + e^{2ct} g_* \) where \(c \) is a constant. The function \(F : M \rightarrow \mathbb{R} : (t, x) \mapsto e^{ct} \) satisfies \(\nabla^2 F = c^2 F \cdot g \) and the levels \(\{ t \} \times N_* \) of \(F \) are totally umbilical hypersurfaces of \(M \) with principal curvatures all equal to \(-c\). We also remark that the Ricci formulae for warped products, which may be found in Besse book [1], show that \(M = \mathbb{R} \times e^{2ct} N_* \) is an Einstein manifold with (constant) scalar curvature \(-n(n + 1)c^2\).

Fortunately, question 1 has been studied since 1925 ([5]) and solved: the manifold has to be conformally diffeomorphic to either a space form either the Riemannian product \(I \times N_* \) of an open interval \(I \) of \(\mathbb{R} \) by an arbitrary \(n \)-dimensional complete manifold. If one considers only Einstein manifolds, the second question is also settled:

Theorem 2 [5]. Let \((M, g) \) be an \((n + 1) \)-dimensional complete connected Einstein manifold admitting a smooth function \(F \) which Hessian satisfies \(\nabla^2 F = \lambda g \) where \(\lambda \) is non-identically zero. Then \(M \) is isometric to a space form or the above example.

Moreover, if \(c \) is the Einstein constant (i.e. the constant for which the Ricci curvature \(\text{Ric} \) of \((M, g) \) satisfies \(\text{Ric} = n cg \)), there exists constants \(s \) and \(t \) such that \(\lambda = -cF^2 + s \) and \(|\nabla F|^2 = -cF^2 + 2sF + t \). In particular, \(\lambda \) and \(|\nabla F| \) are constant on the level sets of \(F \). At last, the non empty level sets of \(F \) above regular values are totally umbilical hypersurfaces of \(M \), with principal curvatures all equal to \(-\lambda/|\nabla F|\).
So we are naturally led to expect a similar result to theorem 1 with hypersurfaces of \(\mathbb{R} \times e^{2\tau} N_\tau \). This is done below:

Theorem 3. Let \(N \) be a closed connected hypersurface of \(M = \mathbb{R} \times e^{2\tau} N_\tau \) with the warped product metric \(g = dt^2 + e^{2\tau} g_\tau \), \((N_\tau, g_\tau) \) being an \(n \)-dimensional compact connected Ricci-flat manifold \((c > 0) \). Then

i) For any integer \(k \in \{1, \ldots, n\} \), we have \(\|H_k\| \geq c^k \).

ii) If \(\|H_1\| = c \) or \(\|H_2\| = c^2 \), then \(N = \{t\} \times N_\tau \) for some real \(t \) and is a totally umbilical hypersurface of \(M \) with principal curvatures all equal to \(-c \).

We refer again the reader to [1] for numerous examples of compact Ricci-flat manifolds. The proof of the above result is quite similar and only sketched: we apply the Hopf principle to the function \(f = F_N \) and obtain

\[
\nabla^2 f(q_0)(X, X) \geq c^2 F(q_0) \cdot |X|^2 - cF(q_0) \cdot \langle A_{q_0} X, X \rangle
\]

which shows the first part of theorem 3. To study the equality case, we claim that formula (1) is still true for \(k = 0 \) and \(k = 1 \): indeed, it is a straightforward calculation for \(k = 0 \). For \(k = 1 \), an examination of Reilly’s proof shows that

\[
\text{Div}(T_1 \nabla f) = n(n - 1) \left\{ (\text{sn}_c \circ d_p) \cdot H_1 + \langle \nabla F, \eta \rangle \cdot H_2 \right\} + \sum_{i=1}^{n} \langle \nabla f, (\nabla_{e_i} T_1) e_i \rangle
\]

where \(\{e_i\}_{i=1}^n \) is a local orthonormal basis of \(N \). In space forms, the Codazzi equation implies that \(T_1 \) is divergence-free that is \(\sum_{i=1}^{n} (\nabla_{e_i} T_1) e_i = 0 \). It is still zero in the present case: fix a point \(x \) in \(N \) and let us choose an orthonormal basis \(\{e_i\}_{i=1}^n \) with \(\nabla_{e_i} e_j(x) = 0 \) for all \(i \) and \(j \). Denoting by \(\hat{R} \) the Riemann tensor of \(M \), by \(\hat{\text{Ric}} \) its Ricci curvature, using Codazzi equation and Bianchi identities, we have at the point \(x \)

\[
\sum_{i=1}^{n} (\nabla_{e_i} T_1) e_i = \sum_{i=1}^{n} (\nabla_{e_i} (\sigma_1 Id) - (\nabla_{e_i} A) e_i)
= \nabla\sigma_1 - \sum_{i=1}^{n} (\nabla_{e_i} A) e_i
= \nabla\sigma_1 - \sum_{i,j=1}^{n} (\nabla_{e_i} A) e_i e_j
= \nabla\sigma_1 - \sum_{i,j=1}^{n} (\nabla_{e_i} A) e_i (\nabla_{e_j} A) e_j
= \sum_{i,j=1}^{n} (e_i, (\nabla_{e_j} A) e_j) e_j
= \sum_{i,j=1}^{n} (e_i, (\nabla_{e_j} A) e_j) e_j + \hat{R}(e_i, e_j) \eta e_j
= \sum_{i=1}^{n} (e_i, \hat{R}(e_i, e_j) \eta) e_j
= \sum_{j=1}^{n} \hat{\text{Ric}}(e_j, \eta) e_j
= 0.
\]

In the case of equality, the same argument implies that \(\Delta f(q) \geq ncF(q) \{ \|H_1\| - H_1(q) \} \geq 0 \) or \(\text{Div}(T_1 \nabla f) \geq n(n - 1)cF(q) \{ \|H_2\|^{1/2} H_1(q) - H_2(q) \} \geq 0 \) on \(\mathcal{U} \) and we conclude as above.

\[\Box \]

Acknowledgements. It is a pleasure to thank Professors Lucas Zakaria and Lamiae V. Jabri for many helpful discussions. This paper is dedicated to them.
References

Received: 04.02.2002