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The tactile somatosensory pathway from whisker to cortex in rodents provides a well-defined system
for exploring the link between molecular mechanisms, synaptic circuits, and behavior. The primary
somatosensory cortex has an exquisite somatotopic map where each individual whisker is
represented in a discrete anatomical unit, the ‘‘barrel,’’ allowing precise delineation of functional or-
ganization, development, and plasticity. Sensory information is actively acquired in awake behaving
rodents and processed differently within the barrel map depending upon whisker-related behavior.
The prominence of state-dependent cortical sensory processing is likely to be crucial in our
understanding of active sensory perception, experience-dependent plasticity and learning.
Introduction
The whiskers on the snouts of mice and rats serve as ar-

rays of highly sensitive detectors for acquiring tactile infor-

mation. By using their whiskers, rodents can build spatial

representations of their environment, locate objects, and

perform fine-grain texture discrimination. Somatosensory

whisker-related processing is highly organized into ste-

reotypical maps, which occupy a large portion of the ro-

dent brain. During exploration and palpation of objects,

the whiskers are under motor control, often executing

rapid large-amplitude rhythmic sweeping movements,

and this sensory system is therefore an attractive model

for investigating active sensory processing and sensori-

motor integration.

Since mice and rats are nocturnal animals living in tun-

nels, the whisker system is likely to have evolved to com-

pensate for the poverty of visual information during much

of a rodent’s life. Perhaps the most remarkable specializa-

tion of this sensory system is the primary somatosensory

‘‘barrel’’ cortex, where each whisker is represented by

a discrete and well-defined structure in layer 4 (Woolsey

and Van der Loos, 1970). These layer 4 barrels are soma-

totopically arranged in an almost identical fashion to the

layout of the whiskers on the snout. This barrel map is in

large part genetically specified and forms early in develop-

ment. Within a few days of birth, the map is fixed, so that

even dramatic interventions such as peripheral lesions

have little effect upon the somatotopic layout of the bar-

rels. The functional organization, postnatal development,

and experience-dependent plasticity of the primary so-

matosensory whisker cortex can therefore be examined

in the context of an invariant anatomical somatotopic

map. In addition to long-term plasticity, it is also becoming

increasingly clear that the functional operation of cortical

circuits in behaving animals is under rapid and strong

top-down control, generating highly flexible adaptive

sensory processing within the same hard-wired neuronal

networks (Gilbert and Sigman, 2007). It is therefore of

great importance to examine the dynamic function of the
barrel cortex in the context of specific whisker-related

behaviors.

From Whisker to Cortex
The most important synaptic pathways signaling whisker-

related sensory information to the neocortex have begun

to be characterized (Figure 1A). Deflection of a whisker

is thought to open mechanogated ion channels in nerve

endings of sensory neurons innervating the hair follicle

(although the molecular signaling machinery remains to

be identified). The resulting depolarization evokes action

potential firing in the sensory neurons of the infraorbital

branch of the trigeminal nerve. A single sensory neuron

only fires action potentials to deflection of one specific

whisker. The innervation of the hair follicle shows a diver-

sity of nerve endings (Ebara et al., 2002), which may be

specialized for detecting different types of sensory input

(Szwed et al., 2003). The sensory neurons make excitatory

glutamatergic synapses in the trigeminal nuclei of the

brain stem. Trigeminothalamic neurons in the principal tri-

geminal nucleus are organized into somatotopically ar-

ranged ‘‘barrelettes,’’ each receiving strong input from

a single whisker (Veinante and Deschenes, 1999). The

principal trigeminal neurons project to the ventral poste-

rior medial (VPM) nucleus of the thalamus, which is also

somatotopically laid out into anatomical units termed

‘‘barreloids.’’ VPM neurons respond rapidly and precisely

to whisker deflection, with one ‘‘principal’’ whisker evok-

ing stronger responses than all others (Simons and Car-

vell, 1989; Friedberg et al., 1999; Brecht and Sakmann,

2002). The axons of VPM neurons within individual barre-

loids project to the primary somatosensory neocortex

forming discrete clusters in layer 4, which form the basis

of the ‘‘barrel’’ map. The layer 4 barrel map is arranged

almost identically to the layout of the whiskers on the

snout of the rodent (Woolsey and Van der Loos, 1970;

Figure 1B), and the barrels can be easily visualized in

both living and stained brain slices (Finnerty et al., 1999;

Petersen and Sakmann, 2000). Although the primary
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Figure 1. Synaptic Pathways for
Processing Whisker-Related Sensory
Information in the Rodent Barrel Cortex
(A) Deflection of a whisker evokes action po-
tentials in sensory neurons of the trigeminal
nerve, which release glutamate at a first syn-
apse in the brain stem (1). The brain stem neu-
rons send sensory information to the thalamus
(2), where a second glutamatergic synapse ex-
cites thalamocortical neurons projecting to the
primary somatosensory barrel cortex (3).
(B) The layout of whisker follicles (left, only C-
row whiskers shown) on the snout of the rodent
is highly conserved and is identical between
rats and mice. There are obvious anatomical
structures termed ‘‘barrels’’ in layer 4 of the pri-
mary somatosensory neocortex (right), which
are laid out in a near identical pattern to the
whiskers. The standard nomenclature for
both whiskers and barrels consists of the
rows A–E and the arcs 1, 2, 3, etc. The C2 whis-
ker follicle and the C2 barrel are highlighted in
yellow.
(C) There are at least two important parallel
thalamocortical pathways for signaling whis-
ker-related sensory information to the barrel
cortex. Neurons in the ventral posterior medial
(VPM) nucleus (labeled red, left) are glutama-

tergic and signal information relating primarily to deflections of a single whisker. The axons of VPM neurons terminate predominantly in individual
layer 4 barrels, with a minor innervation in upper layer 6 (right). Corticothalamic layer 6 neurons provide reciprocal feedback to the VPM (not shown).
Neurons of the posterior medial (POM) thalamic nucleus (labeled green, left) have broader receptive fields and are tightly regulated by state-depen-
dent control imposed by zona incerta and the cortex. The axons of POM neurons avoid the layer 4 barrels and target primarily layer 1 and 5A (right).
Corticothalamic neurons in layer 5 provide a strong input to POM (not shown).
(D) Neurons in the barrel cortex are reciprocally connected to other cortical areas through long-range glutamatergic corticocortical synapses. The
most important pathways connect the primary somatosensory (S1) barrel cortex with secondary somatosensory cortex (S2) and primary motor cortex
(M1) on the same hemisphere. Callosal projections are also present but less prominent.
(A) is modified and reproduced from Neuron, Knott et al. (2002), Copyright (2002), with kind permission from Cell Press, Elsevier.
target of VPM axons is layer 4, there is also a weaker inner-

vation of upper layer 6 (Figure 1C). The clear anatomical

maps segregating neighboring whisker representations

in this ‘‘lemniscal’’ pathway strongly suggest a labeled-

line single-whisker signaling pathway from the periphery

to the barrel cortex. However, there are two striking differ-

ences in the whisker-related sensory processing compar-

ing the periphery to the barrel cortex. First, whereas sen-

sory information in the trigeminal ganglion at the

periphery encodes whisker stimuli with remarkable reli-

ability (Jones et al., 2004; Arabzadeh et al., 2005), the neo-

cortex instead responds with enormous trial-to-trial vari-

ability to identical well-controlled stimuli (Petersen et al.,

2003b; Sachdev et al., 2004; Arabzadeh et al., 2005).

This variability is driven predominantly by interactions with

ongoing spontaneous cortical activity (Petersen et al.,

2003b; Sachdev et al., 2004). Second, the single-whisker

receptive fields found in the trigeminal ganglion contrast

with the broad receptive fields in the neocortex (Simons,

1978; Moore and Nelson, 1998; Zhu and Connors, 1999;

Brecht et al., 2003; Higley and Contreras, 2003). These

observations suggest that a primary function of the neo-

cortex is to generate associations of different sensory

inputs which are processed in a highly context-dependent

manner.

The increasing complexity of sensory processing in

higher brain areas is likely to be mediated, in part, through

interactions of parallel ascending pathways for processing
340 Neuron 56, October 25, 2007 ª2007 Elsevier Inc.
whisker-related information. Although the lemniscal path-

way is likely to be a major sensory pathway for whisker-re-

lated information, it is by no means the only one (Yu et al.,

2006). In addition to the synapses formed in the principal

trigeminal nucleus, the axons of the trigeminal sensory

neurons also provide excitatory input to spinal trigeminal

brainstem nuclei. The trigeminal spinal interpolaris nu-

cleus is also somatotopically organized into barrelettes

and responds well to whisker deflections. The interpolaris

nucleus can be subdivided into two anatomically and

functionally distinct regions (Furuta et al., 2006). The cau-

dal part forms the recently discovered ‘‘extralemniscal’’

pathway signaling through a ventrolateral strip of the

VPM to the secondary somatosensory cortex and the

‘‘septal’’ regions of S1 (Pierret et al., 2000). In the rat there

can be large gaps, called ‘‘septa,’’ between individual

layer four barrels, which have different microcircuits to

the barrel columns (Kim and Ebner, 1999). Although these

septal regions may play an important role in the rat whisker

sensorimotor system, they are not obvious in the mouse,

where neighboring barrels are tightly apposed to each

other. For the sake of simplicity and presenting a unified

view of the rat and mouse barrel cortex, the septal system

will not be further discussed in this review. The rostral part

of the interpolaris nucleus forms the beginning of the im-

portant ‘‘paralemniscal’’ pathway, projecting to the poste-

rior medial (POM) nucleus of the thalamus, which in turn

primarily innervates layer 1 and 5A of the primary
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somatosensory cortex (Figure 1C), the secondary so-

matosensory cortex and the motor cortex. In anesthetized

animals, this paralemniscal pathway is unlikely to contrib-

ute strongly to sensory processing since a rapid GABAer-

gic inhibition from zona incerta silences the POM nucleus

(Lavallee et al., 2005). However, this inhibition depends

upon brain state (Trageser et al., 2006) and in addition

POM receives strong cortical excitatory input (Diamond

et al., 1992). The paralemniscal pathway may therefore

play important roles during active exploration, perhaps

contributing to sensorimotor coordination.

Following a whisker deflection, cortical sensory pro-

cessing might be further distributed to other cortical areas

through cortico-cortical synaptic connections from pri-

mary to secondary somatosensory cortex and from so-

matosensory to motor cortex (White and DeAmicis, 1977;

Welker et al., 1988; Chakrabarti and Alloway, 2006;

Figure 1D). Callosal connectivity between the barrel cor-

tices on opposite hemispheres appears to be limited to

the representation of the most medial A-row whiskers

(Petreanu et al., 2007).

Functional Mapping of the Barrel Cortex
Visualizing the Cortical Representation

of a Single Whisker

Classical methods of repeatedly introducing an extracel-

lular electrode into the somatosensory cortex to record

action potential firing have been used extensively to study

the suprathreshold receptive fields of individual neurons

(for example, Welker, 1971; Simons, 1978; Armstrong-

James et al., 1992; de Kock et al., 2007). These measure-

ments are time consuming since each electrode penetra-

tion provides information relating to a very small area of

the cortex and the number of penetrations will therefore

determine the accuracy of the resulting map. A number

of techniques have therefore been developed in order to

rapidly and reliably map the distribution of cortical sensory

processing evoked by whisker deflections.

The simplest extension of the classical extracellular re-

ceptive field-mapping strategy is to record from many

electrodes simultaneously. The most elegant solution is

to use a spatially ordered array of electrodes, such as

that shown in Figure 2A (Harris et al., 1999; Petersen

et al., 2001). The number of action potentials recorded on

each electrode can be color-coded and presented as an

image mapping the distribution of sensory-evoked activity.

Deflection of a single whisker evokes action potentials re-

corded on only a few neighboring electrodes, with a clear

somatotopic shift in activity when different whiskers are

stimulated (Figure 2A). However, the spatial resolution is

of course limited by the number of electrodes in the matrix.

Optical imaging techniques are the most obvious ap-

proaches to obtaining higher spatial resolution. One of

the simplest and least invasive mapping techniques is in-

trinsic optical imaging (Grinvald et al., 1986; Polley et al.,

1999). In the mouse, highly localized intrinsic signals

evoked by repetitive deflection of the C2 whisker can be

imaged through the intact skull without thinning
(Figure 2B). The physical basis of the intrinsic signals are

related to changes in blood flow and are therefore similar

to those underlying the blood oxygenation level-depen-

dent (BOLD) signal observed in functional magnetic reso-

nance imaging (fMRI). Indeed, with the increasing avail-

ability of the necessary equipment and new technical

developments, it should be possible to routinely map the

brain areas (both cortical and subcortical) activated by a

single-whisker stimulus in an entirely noninvasive manner

through fMRI (Yang et al., 1996). Intrinsic optical imaging

has the advantage of being cheap, rapid, and extremely

reliable. That it is an almost noninvasive technique makes

it ideal as a mapping tool before carrying out other exper-

imental manipulations such as for targeting whole-cell

recordings (Crochet and Petersen, 2006) or targeted viral

manipulations (Aronoff and Petersen, 2006). However,

intrinsic imaging inherently suffers from a poor time reso-

lution, since its physical basis is only indirectly related to

neuronal activity.

Direct mapping of the electrical activity of the cortex can

be obtained at millisecond temporal resolution and subco-

lumnar spatial resolution by voltage-sensitive dye (VSD)

imaging (recently reviewed by Grinvald and Hildesheim,

2004). Typically, the dye is applied directly to the cortical

surface after making a craniotomy. The VSD diffuses

into the superficial layers of the cortex and changes fluo-

rescence rapidly and linearly with respect to membrane

potential (Petersen et al., 2003a, 2003b; Ferezou et al.,

2006; Berger et al., 2007). In particular, VSD imaging

is very sensitive to subthreshold membrane potential

changes, which under anesthesia and during some awake

states dominates the electrical activity of cortical neurons.

A single brief deflection of the C2 whisker evokes a sen-

sory response with complex spatiotemporal dynamics

measured with VSD (Figure 2C). The earliest response oc-

curring �10 ms after whisker deflection is highly localized

to its corresponding C2 barrel column. However, in the fol-

lowing milliseconds the response increases in amplitude

and propagates horizontally to cover a large fraction of

the barrel cortex. The overall impression with VSD imaging

is therefore that although cortical columns are functionally

present, they only last a few milliseconds and then large

areas of the cortex become depolarized. The results ob-

tained by VSD imaging are in excellent agreement with

the broad subthreshold receptive fields of supragranular

neurons observed during whole-cell recordings (Moore

and Nelson, 1998; Zhu and Connors, 1999; Brecht et al.,

2003). The propagating VSD responses therefore indicate

that large numbers of neurons across the cortical map are

influenced by a single-whisker deflection. The dynamic

distributed processing of information is likely to be impor-

tant for integrating different sensory inputs in a context-

dependent manner necessary for perception and associ-

ational learning.

However, the spreading sensory responses observed

with VSD imaging contrast with the localized responses

observed with extracellular measures of action potentials

(Figure 2A) and intrinsic optical imaging (Figure 2B). The
Neuron 56, October 25, 2007 ª2007 Elsevier Inc. 341
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Figure 2. Functional Mapping of the
Barrel Cortex
(A) Cortical action potential activity can be
mapped using well-ordered arrays of elec-
trodes, for example the ‘‘Utah’’ array of 10 3
10 electrodes with a grid spacing of 400 mm
(far left). The array can be inserted into the rat
somatosensory barrel cortex (center left). De-
flection of a single whisker evokes a localized
increase in action potential activity under ure-
thane anesthesia, which can be color-coded
for each electrode to form an image of evoked
electrical activity. Responses evoked by de-
flection of the C2 whisker (center right) is so-
matotopically separated from evoked action
potentials resulting from D2 whisker deflection
(far right).
(B) Intrinsic optical imaging can be used to
noninvasively map sensory processing in the
mouse neocortex through the intact unthinned
skull. The cortical surface blood vessels can be
imaged with green light (far left). Repetitive 10
Hz deflection of the C2 whisker under urethane
anesthesia evokes a highly localized change in
reflected red light resulting from the coupling of
blood flow to neural activity (center left). A crys-
tal of DiI was subsequently placed in the loca-
tion of the functionally mapped C2 representa-
tion, by alignment of the blood vessels with the
intrinsic optical image. After allowing time for
DiI diffusion, the brain was sectioned horizon-
tally and stained with DAPI to reveal the loca-
tion of nuclei, which outline the layer 4 barrel

walls in the mouse somatosensory cortex. Red DiI fluorescence is located in the C2 barrel indicating a close match between functional mapping
by intrinsic optical imaging and the anatomical barrel map (center and far right).
(C) The spatiotemporal dynamics of supragranular membrane potential changes can be imaged with millisecond temporal resolution and subcolum-
nar spatial resolution using voltage-sensitive dye imaging. The voltage-sensitive dye RH1691, here applied to the mouse barrel cortex under urethane
anesthesia, increases fluorescence in response to depolarization. A brief deflection of the C2 whisker evokes an early localized depolarization limited
to the C2 cortical barrel column (12 ms). However, over the next milliseconds, the depolarization spreads across the barrel field. These data indicate
that even a single brief whisker deflection can inform a large area of the cortex.
(A) is modified and reproduced from Harris et al. (1999) with kind permission from Proceedings of the National Academy of Sciences of the United
States of America. Copyright (1999) National Academy of Sciences, USA.
(C) is modified and reproduced from Neuron, Ferezou et al. (2006), Copyright (2006), with kind permission from Cell Press, Elsevier.
most important reasons for the different spatial extents

of the sensory responses likely relates to the measure-

ment of suprathreshold versus subthreshold membrane

potential changes. Action potential activity correlates

closely with the extent of the intrinsic signal (Polley et al.,

1999, 2004), whereas subthreshold membrane potential

changes dominate the VSD signal. Since action potentials

are only evoked when membrane potential crosses a

threshold, the more localized suprathreshold activity could

simply reflect the ‘‘tip of the iceberg’’ visible above a large

and distributed subthreshold depolarization (Berger et al.,

2007). An additional factor regulating the cortical extent of

the single-whisker response is the frequency of whisker

stimulation, with higher frequency stimulation giving rise

to more focused cortical activity (recently reviewed by

Moore, 2004). The spreading VSD response (Figure 2C)

was evoked by single-whisker deflections with long inter-

stimulus intervals of many seconds, whereas the localized

intrinsic signals (Figure 2B) were evoked by repetitive

trains of 10 Hz stimuli each lasting 4 s.

These techniques for mapping the barrel cortex relate to

different aspects of cortical function, each with its own

advantages. Their common point is that they provide
342 Neuron 56, October 25, 2007 ª2007 Elsevier Inc.
strong functional evidence for somatotopic sensory pro-

cessing precisely aligned to the anatomical barrel map.

Information relating to deflections of an individual whisker

will therefore be primarily, although not exclusively, pro-

cessed in a well-defined cortical barrel column. During

whisker-guided exploration of an object, different whis-

kers will contact different parts of the object at different

times and this might lead to a dynamic pattern of activity

evoked across the barrel map giving rise to something

similar to an ‘‘imprint’’ of the object.

In addition to providing a spatial map, the different whis-

kers also exhibit different resonant frequencies (Hartmann

et al., 2003; Neimark et al., 2003). During texture discrim-

ination, the longer posterior whiskers might resonate to

lower frequency textures than the short anterior whiskers,

possibly leading to a ‘‘texture’’ map superimposed upon

the somatotopic map (Andermann et al., 2004).

Fine-Scale Mapping within a Barrel Column

In analogy with the visual system, where there are several

superimposed maps of different functional aspects re-

lating to retinotopy, ocular dominance, and orientation

selectivity, researchers have begun to search for further

organizing principles within a barrel column. Within layer 4,
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there is evidence for subdivisions within the larger rat bar-

rels, but not in mouse barrels (Land and Erickson, 2005).

These could relate to the observation of clusters of nearby

layer 4 neurons, which preferentially respond to similar di-

rections of whisker deflection (Bruno et al., 2003). Al-

though in layer 4 direction tuning does not appear to be or-

ganized into an obvious map (Bruno et al., 2003;

Andermann and Moore, 2006), tetrode recordings in layer

2/3 have provided evidence for a direction-preference

map within the supragranular layers of a barrel column

(Figure 3A). The proposed map places neurons respond-

ing to a given direction of a whisker deflection to be lo-

cated closer to the neighboring barrel in the direction of

the deflection. Thus, if the D3 whisker is deflected caudally

(i.e., toward the D2 whisker), then more neurons in the half

of the D3 barrel closer to the D2 barrel would respond than

in the half of the barrel closer to the D4 whisker (Ander-

mann and Moore, 2006). The proposed orientation map

is attractive and it encodes an important feature of the

whisker stimulus, which also has a clear mapping in the

VPM thalamus (Timofeeva et al., 2003). However, as dis-

cussed earlier, it is difficult to derive maps from electrode

penetrations, and clearly it would be of great interest to

image the functional organization of the barrel cortex

with cellular resolution.

Every action potential in a neuron is accompanied by

calcium influx primarily mediated by voltage-gated cal-

cium channels. Highly specific calcium-sensitive dyes

have been developed, and of particular interest are mem-

brane-permeable AM ester dyes, which are trapped intra-

cellularly following hydrolysis (Tsien, 1981). These dyes

can be applied extracellularly to brain slices (Peterlin

et al., 2000; Cossart et al., 2003; Berger et al., 2007) or

to intact brain (Stosiek et al., 2003; Kerr et al., 2005;

Ohki et al., 2005; Berger et al., 2007; Sato et al., 2007) in

order to image network activity reflected by intracellular

calcium changes associated with action potential firing.

In combination with two-photon microscopy (Denk et al.,

1990), it has been possible to image cortical activity in

the supragranular layers in vivo at cellular resolution (Sto-

siek et al., 2003; Kerr et al., 2005; Ohki et al. 2005; Sato

et al., 2007). Neurons in layer 2/3 responding to whisker

stimulation were already imaged in the first pioneering pa-

per developing this technique for in vivo calcium imaging

of network activity (Stosiek et al., 2003; Figure 3B). Further

work has shown that cells responding to stimulation of dif-

ferent whiskers are somatotopically arranged, although

neighboring neurons in layer 2/3 can respond preferen-

tially to different whiskers (Sato et al., 2007). Application

of this technique to the visual system has revealed that

orientation selectivity in the cat primary visual cortex is

exquisitely organized in maps on a scale of a few tens of

microns, whereas the rat visual cortex contains no orien-

tation map, but rather nearest neighbor cells can have op-

posite direction selectivity (Ohki et al. 2005). Future exper-

iments using this technique in the rodent somatosensory

cortex will undoubtedly shed further light on the functional

architecture of individual barrel columns with cellular
resolution, allowing more detailed investigations of the pu-

tative direction map for whisker deflection and perhaps

leading to the discovery of maps for other tactile features.

Cortical Synaptic Circuits for Processing Simple
Whisker-Related Sensory Information
The synaptic circuits in the barrel cortex that are likely to

underlie the most prominent aspects of the sensory re-

sponse to a simple stimulus in an anesthetized animal

have begun to be examined in detail. Sensory informa-

tion related to a single-whisker deflection arrives in the

primary somatosensory neocortex mainly via the dense

Figure 3. Fine Structure Mapping of a Barrel Column
(A) A map of direction tuning of whisker deflections within layer 2/3 of
a barrel column has been proposed based on multiple sequential tet-
rode recordings in the rat somatosensory cortex. According to this
map, a caudal deflection of the D3 whisker toward the D2 whisker
would preferentially evoke action potentials lying in the caudal part
of the D3 barrel column adjacent to the D2 column.
(B) Using two-photon imaging of calcium-sensitive dye loaded into
large populations of layer 2/3 neurons, it is possible to image the action
potential activity of individual neurons within a network. This technique
will likely provide detailed information relating to further functional
maps at cellular resolution.
(A) is modified and reproduced with kind permission from Macmillan
Publishers Ltd: Nature Neuroscience, Nature Publishing Group, An-
dermann and Moore (2006), copyright (2006).
(B) is modified and reproduced from Stosiek et al. (2003) with kind per-
mission from Proceedings of the National Academy of Sciences of the
United States of America. Copyright (2003) National Academy of Sci-
ences, USA.
Neuron 56, October 25, 2007 ª2007 Elsevier Inc. 343
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Figure 4. Synaptic Circuits Underlying
Simple Sensory Responses in Layer 2/3
(A) Superimposed reconstructions of dendrites
and axons of many excitatory neurons in layer
4 and layer 2/3 of the barrel cortex. The den-
drites (black) of the glutamatergic layer 4 spiny
stellate and pyramidal neurons are largely con-
fined to the home barrel. The axons (green) of
the excitatory layer 4 neurons are laterally re-
stricted to the width of the home barrel but pro-
ject strongly to both layer 4 and layer 2/3.
Therefore, the axons of layer 4 neurons ana-
tomically define a cortical column. The den-
drites (red) of layer 2/3 pyramidal neurons do
not extent far outside the barrel column, but
the layer 2/3 axons project long distances lat-
erally (blue). Action potentials in layer 2/3 pyra-
midal neurons are therefore likely to contribute
to the spreading sensory responses observed
in vivo.
(B) Voltage-sensitive dye imaging of barrel cor-
tex brain slices in vitro reveals functional evi-
dence for columnar organization of synaptic
circuits in the barrel cortex. An electrical stim-
ulus delivered to the central layer 4 barrel (out-
lined in cyan, far left) evokes an early depolar-
ization in the barrel (2.4 ms poststimulus,
center left) which subsequently propagates
into layer 2/3 defining a functional cortical col-
umn (4.8 ms poststimulus, center right). Under
control conditions the response does not prop-
agate further due to lack of evoked action po-

tential activity in layer 2/3. However, if GABAergic inhibition is blocked, then the evoked activity spreads laterally across both supragranular and in-
fragranular cortex (far right).
(C) An alternative approach to map the structure of synaptic connectivity in the barrel cortex is to record the membrane potential from a single post-
synaptic neuron and search for presynaptic partners by locally uncaging glutamate to evoke action potentials in neurons in different layers. Synaptic
input to barrel-related layer 2/3 pyramidal neurons in normal control rats was found to originate in a columnar fashion with strong input from layer 4
(center left). However, following whisker deprivation, input from layer 4 to layer 2/3 was reduced (center and far right). Sensory-experience therefore
plays an important role in determining the functional connectivity of the barrel cortex microcircuit.
(A) and (B) are modified and reproduced from Petersen and Sakmann (2001) with kind permission of Journal of Neuroscience, Society for Neurosci-
ence. Copyright 2001 by the Society for Neuroscience.
(C) is modified and reproduced from Neuron, Shepherd et al. (2003), Copyright (2003), with kind permission from Cell Press, Elsevier.
glutamatergic thalamocortical innervation of the neurons

located in the VPM. The axon of a VPM neuron primarily

innervates a single somatotopically aligned layer 4 barrel

(Jensen and Killackey, 1987). Strong GABAergic feedback

from the reticular nucleus to the thalamus prevents pro-

longed depolarization of the VPM neurons and sharpens

the timing of sensory input to the cortex (Brecht and Sak-

mann, 2002; Bruno and Sakmann, 2006). As a first-order

approximation, a single deflection of the C2 whisker there-

fore evokes a volley of near-synchronous thalamic input to

arrive within layer 4 of the C2 barrel column. Thalamic

axons make synapses on a diversity of dendrites in the

layer 4 barrel. The most important dendritic elements are

provided by the excitatory and inhibitory layer 4 neurons,

with an additional fraction coming from infragranular neu-

rons (e.g., the apical dendrites of some layer 5 neurons

and the apical tuft of some corticothalamic layer 6 neu-

rons). The excitatory layer 4 barrel neurons have dendritic

and axonal arbors laterally confined to a single layer 4 bar-

rel (Figure 4A; Feldmeyer et al., 1999; Petersen and Sak-

mann, 2000, 2001; Schubert et al., 2003), and the thalamic

input arriving in a single layer 4 barrel therefore largely

remains confined to that barrel for the initial step of cortical

processing. The excitatory layer 4 axons prominently in-
344 Neuron 56, October 25, 2007 ª2007 Elsevier Inc.
nervate layer 2/3 in the immediately overlying area, there-

fore structurally defining a cortical column delimited later-

ally by the width of the layer 4 barrel. Functionally, the

columnar propagation of activity from layer 4 to layer 2/3

has been examined by voltage-sensitive dye imaging

in vitro (Figure 4B; Petersen and Sakmann, 2001; Laaris

and Keller, 2002). A stimulus delivered to a layer 4 barrel

first causes depolarization within the layer 4 barrel, which

then in the subsequent milliseconds spreads to depolarize

neurons in layer 2/3 in a strictly columnar fashion. In the

converse experiment, the location of presynaptic neurons

synapsing onto a single layer 2/3 pyramidal neuron

mapped through glutamate uncaging reveals a strictly

columnar input from layer 4 (Figure 4C; Shepherd et al.,

2003). Both anatomically and functionally there is there-

fore strong evidence for cortical columns defined by the

horizontal extent of the layer 4 barrels.

The single-whisker deflection-evoked early sensory

response, which in VSD imaging is localized to a single

cortical column, is therefore likely to reflect the columnar

input from neurons in the layer 4 barrel to layer 2/3 neu-

rons. However, as noted above, the sensory response

subsequently propagates across the barrel map over the

next milliseconds. The axonal aborization of the layer 2/3
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pyramidal neurons extends well beyond the boundaries of

a barrel column, and since single-whisker deflections can

drive action potential firing in layer 2/3 pyramidal neurons,

the glutamatergic output of these neurons will depolarize

neurons widely distributed across the barrel cortex, likely

underlying the spreading VSD signal. In addition to con-

tacting other layer 2/3 neurons, the axons of the layer 2/

3 pyramidal neurons also form a prominent input to layer

5 (Reyes and Sakmann, 1999). Synaptic integration in layer

5 neurons is complex since they can also receive substan-

tial direct thalamic input (Bureau et al., 2006) along with

excitatory input both from layer 4 (Feldmeyer et al., 2005,

Schubert et al., 2006) and from other pyramidal neurons in

the infragranular layers (Markram et al., 1997).

In contrast to the propagating sensory responses ob-

served following single-whisker deflection in vivo, the VSD

response in vitro remains columnar throughout the dura-

tion of the evoked response under control conditions,

but when GABAergic inhibition is blocked by applying

bicuculline, the signal propagates extensively in both su-

pragranular and infragranular layers (Figure 4B). The neo-

cortex in vivo might therefore be more excitable than that

observed in vitro under most experimental conditions,

which might also be reflected in the prominent spontane-

ous activity recorded in vivo.

In addition to the canonical excitatory synaptic circuit

from VPM to layer 4 barrel to layer 2/3 to layer 5 (recently

reviewed by Lübke and Feldmeyer, 2007), there are a num-

ber of other important synaptic connections that are likely

to play prominent roles during information processing

in awake animals. Perhaps most important are the long-

range corticocortical inputs from secondary somatosen-

sory cortex and motor cortex and the likely influence of

POM thalamic input during certain behaviors. POM input

arrives predominantly in layer 1 and 5A, defining the start-

ing point of a paralemniscal cortical processing pathway.

Layer 5A in turn projects to layer 2 (Shepherd and

Svoboda, 2005; Bureau et al., 2006). It will be of great in-

terest to determine the functional interactions between

these different synaptic networks in vivo and how they

contribute to different aspects of whisker-related sensory

perception.

Development and Plasticity of the Barrel Cortex
Patterning of the Neocortex and Early Postnatal

Development

In common with the general patterning of the neocortex

(Molnar et al., 2002), the somatotopic organization of the

barrel cortex appears to be primarily determined by ge-

netic programs. For example, gradients of secreted FGF8

during embryonic development can determine both the

position and dimensions of the barrel field in the neocortex

(Fukuchi-Shimogori and Grove, 2001; Figure 5A). Intrigu-

ingly, ectopic posterior expression of FGF8 can also

induce formation of a secondary barrel field (Fukuchi-

Shimogori and Grove, 2001; Figure 5A).

Refinement of the somatotopic map, including the dif-

ferentiation of the layer 4 barrel structure is likely to be
guided by activity-dependent mechanisms. Barrels are

less clearly defined or absent in mice with genetic knock-

out of several genes relating to neuronal activity and syn-

aptic transmission: cortical NMDA receptors (Iwasato

et al., 2000), phospholipase C beta 1/metabotropic gluta-

mate receptors (Hannan et al., 2001), adenylyl cyclase 1/

‘‘barrelless’’ (Welker et al., 1996; Abdel-Majid et al., 1998),

and monoamine oxidase A (Cases et al., 1996).

The barrel map develops early being clearly visible within

a few days of birth. Lesioning of whisker follicles within the

first days after birth prevents formation of the correspond-

ing barrels (Van der Loos and Woolsey, 1973; Wong-Riley

and Welt, 1980; Iwasato et al., 2000; Figure 5B). Interest-

ingly, forebrain specific knockout of NMDA receptor func-

tion in the neocortex, does not affect this lesion-induced

plasticity (Figure 5B). Clearly, NMDA receptor-mediated

synaptic plasticity cannot play a major role in this early sen-

sitivity of the barrel map to sensory deprivation. The ability

to change the large-scale anatomical organization of the

barrel field only lasts a few days after birth, and by postna-

tal day 4 this is no longer possible. There is therefore an

early critical period for anatomical map formation, but a

great deal of plasticity remains in the barrel cortex through-

out life on a finer structural and functional scale. The next

critical period that has been defined relates to NMDA re-

ceptor-dependent plasticity at the thalamocortical syn-

apse. Long-term potentiation (LTP) can only be induced

during the first postnatal week in thalamocortical slices

(Crair and Malenka, 1995; Figure 5C) and the ability to

induce long-term depression (LTD) at thalamocortical syn-

apses disappears within the next days (Feldman et al.,

1998). These reductions in plasticity during development

are accompanied by a dramatic decrease in the relative

importance of NMDA receptors compared to AMPA recep-

tors in thalamocortical synaptic transmission (Crair and

Malenka, 1995). During the first two weeks of postnatal

cortical development there is also a dramatic increase in

axon and dendrite complexity accompanied by large in-

creases in synapse number. Presumably related to this

massive synapse formation, filopodia, and spine growth

(and retraction) are prevalent in the young neocortex

(Lendvai et al., 2000; Figure 5D). Filopodia/spine motility

decreases during development (Holtmaat et al., 2005;

Zuo et al., 2005), likely reflecting the reduced plasticity of

the adult barrel cortex.

These synaptic and structural changes are also reflected

by profound changes in sensory processing during the first

postnatal weeks. There is little spontaneous activity and

cortical sensory responses are weak and slow in young an-

imals (Bureau et al., 2004; Borgdorff et al., 2007; Figure 5E).

Interestingly, the sensory responses evoked by single-

whisker deflection and imaged with voltage-sensitive dye

are localized to individual cortical columns in young mice

in contrast to the spreading sensory responses in the

mature barrel cortex (Borgdorff et al., 2007; Figure 5E).

This likely reflects the reduced synaptic connectivity and

weak action-potential firing of pyramidal neurons in young

animals, which in the mature barrel cortex are thought to
Neuron 56, October 25, 2007 ª2007 Elsevier Inc. 345
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Figure 5. Early Development of the Barrel Cortex
(A) Cytochrome oxidase stained flattened cortices show the location
of the barrel field in control mice (left; ‘‘a’’ anterior, ‘‘l’’ lateral, ‘‘As’’ an-
terior snout, ‘‘Wp’’ whisker pad). Enhancement of the normal FGF8
gradient (high anteriorly) in the cortex shifts the barrel field posteriorly
and reduces the total extent of the barrel field (middle). An ectopic pos-
terior source of FGF8 can induce formation of a secondary barrel field
(arrow, right).
(B) Forebrain specific knockout of NMDA receptor function results in
a less clearly defined barrel field. Lesion of the C-row whiskers be-
tween P0-3 causes disruption of the C-row in the barrel cortex equally
in wild-type and NR1 knockout mice.
(C) Thalamocortical NMDA receptor-dependent LTP can be induced
by pairing synaptic stimulation and postsynaptic depolarization during
the first postnatal week, but not after P8.
(D) During early postnatal development filipodia and spines are highly
motile, here shown by two photon imaging of GFP expressing layer 2/3
pyramidal neurons at postnatal day 11. In the 10 min separating the
two images, a long filipodia appeared (red arrowhead).
(E) Sensory processing changes dramatically over the first postnatal
weeks. Whole-cell (WC) recordings (left) indicate that sensory re-
sponses become larger and more rapid in older mice (for each age there
are five overlaid traces from consecutive sweeps; note difference
in scale comparing P7 and P13 recordings). Voltage-sensitive dye
(VSD) imaging indicates that the extent of the sensory response evoked
by C2 whisker deflection increases strongly during development
(right).
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mediate the lateral spread of sensory information in layer 2/

3. These data suggest that barrel cortex neurons receive

information relating to their principal whisker early in devel-

opment and later become more broadly tuned perhaps re-

flecting the later development of more complex receptive

field properties relating to more diverse sensory experi-

ences and top-down influences.

Experience-Dependent Map Plasticity

in Mature Rodents

Although the anatomical barrel map is fixed early in devel-

opment, the physiological response properties of neurons

can be changed in an experience-dependent manner even

into adulthood. One of the first plastic events in the barrel

cortex driven by sensory deprivation is depression of

evoked responses to deflection of the trimmed whiskers

(Glazewski and Fox, 1996). There is strong evidence that

this depression of sensory processing in layer 2/3 neurons

is primarily caused by a reduction in the efficacy of the ex-

citatory synaptic connection between layer 4 to layer 2/3

(Allen et al., 2003; Shepherd et al., 2003). Quantitative

mapping of synaptic connectivity using glutamate uncag-

ing, shows that layer 2/3 pyramidal neurons no longer

receive a strong input from layer 4 following whisker trim-

ming (Figure 4C). Investigation of the molecular mecha-

nisms of this depression has revealed that it involves pre-

synaptic reduction in neurotransmitter release probability

(Bender et al., 2006). The observed depression is entirely

consistent with a Hebbian spike-timing-dependent plastic-

ity (Allen et al., 2003) since whisker trimming appears to re-

verse the relative timing of action-potential firing from the

normal reinforcing sequence of L4 followed by L2/3 (post-

synaptic spike in L2/3 following presynaptic L4 spike) to the

depressing sequence of L2/3 followed by L4 (postsynaptic

L2/3 spike preceding presynaptic L4 spike). Together with

similar observations in the primary visual cortex (Heynen

et al., 2003), these form the first synaptic explanations for

experience-dependent plasticity in the neocortex.

Although depression of responses evoked by sensory

deprivation is one of the most robust observations, it is

not the only type of plasticity in the rodent barrel cortex (re-

cently reviewed by Feldman and Brecht, 2005). Perhaps,

of greater importance than the reduction of responses to

the trimmed whiskers, is what happens to sensory pro-

cessing of the remaining intact whiskers. Extracellular

recordings of action potential activity have shown that

(A) is modified and reproduced from Fukuchi-Shimogori and Grove
(2001) with kind permission from Science, AAAS.
(B) is modified and reproduced with kind permission from Macmillan
Publishers Ltd: Nature, Nature Publishing Group, Iwasato et al. (2000),
copyright (2000).
(C) is modified and reproduced with kind permission from Macmillan
Publishers Ltd: Nature, Nature Publishing Group, Crair and Malenka
(1995), copyright (1995).
(D) is modified and reproduced with kind permission from Macmillan
Publishers Ltd: Nature, Nature Publishing Group, Lendvai et al. (2000),
copyright (2000).
(E) is modified and reproduced from Borgdorff et al. (2007) with kind
permission from Journal of Neurophysiology, American Physiological
Society.
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Figure 6. Experience-Dependent Map
Plasticity
(A) Intrinsic optical imaging was carried out
repeatedly in the same animal allowing a direct
comparison of the response to single whisker
stimulation under control conditions, following
28 days of single-whisker experience in the
home cage and after a further 28 days during
which the whiskers were allowed to regrow.
Single-whisker experience induced a profound
and reversible expansion of the spared whisker
representation.
(B) The same experiment was carried out in an-
other group of animals, with the only difference
being that during the 28 days of single-whisker
experience, the rats were put in a novel envi-
ronment for 2 min every 3–4 days to encourage
active whisker guided exploration. Surpris-
ingly, this leads to a striking and reversible con-
traction of the spared whisker representation.
(A) and (B) are modified and reproduced from
Neuron, Polley et al. (1999), Copyright (1999),
with kind permission from Cell Press, Elsevier.
neurons in the barrel cortex become more responsive to

deflection of spared whiskers (Fox, 1992; Diamond et al.,

1994). Some of the most elegant and convincing results

come from repeated intrinsic optical imaging of the same

animals during whisker deprivation paradigms where only

a single whisker is left intact (Figure 6; Polley et al., 1999).

The cortical area responding to stimulation of the spared

C2 whisker was much larger following 28 days of single

whisker experience in the home cage (Figure 6A). Allowing

all the whiskers to regrow reversed the plasticity. This re-

sult is in good agreement with the expectations from many

other plasticity experiments, including the results from

monocular visual deprivation where the remaining open

eye ‘‘takes over’’ the cortical territory normally occupied by

the deprived eye. However, the results from different ani-

mals were quite variable, which could have resulted from

different whisker use during the deprivation period. Polley

et al. (1999) therefore began to monitor whisker behavior

by placing the single-whisker animals in a novel environ-

ment every 3–4 days and measuring the time spent in

single whisker-guided exploration. Suprisingly, these brief

periods of exploration caused a complete inversion of the

plasticity. Single-whisker animals subjected to exploration

of novel environments had smaller cortical representations

of the spared whisker (Figure 6B), which was also revers-

ible upon whisker regrowth. Clearly, map plasticity is com-

plex and is strongly regulated by the behavior of the animal.

Experience-dependent plasticity is an adaptive process,

which is not uniquely driven by manipulation of the periph-

ery, but also strongly influenced by spontaneous activity

(Erchova and Diamond, 2004) and internal top-down pro-

cesses, likely to be of great importance for goal-directed

learning. In order to examine map plasticity and determi-

nants of experience-dependent reorganization of cortical

synaptic circuits in greater detail, it will therefore be impor-

tant to record in awake behaving animals investigating

brain function during alterations in sensory experience

and learning.
Cortical Correlates of Whisker Perception
in Awake Behaving Rodents
State-Dependent Processing

of Sensory Information

Considerable technical progress has been made over the

last years with respect to recording cortical activity in

awake behaving animals. Although extracellular record-

ings have been carried out extensively in behaving mon-

keys for several decades, much less is known about the

electrical activity of the rodent neocortex during quantified

behavior. With the growing realization of the power and

specificity of mouse genetics, this situation is changing,

and a great deal of attention is now being drawn to record-

ing and manipulating the mouse brain during trained be-

haviors. A variety of recording techniques, e.g., extracellu-

lar unit recordings (Krupa et al., 2004; Leiser and Moxon,

2007), whole-cell recordings (Crochet and Petersen, 2006;

Lee et al., 2006), voltage-sensitive dye imaging (Ferezou

et al., 2006), and two-photon microscopy (Helmchen

et al., 2001; Dombeck et al., 2007) have recently been

adapted for awake recordings in rodents.

Whole-cell recordings of layer 2/3 barrel cortex pyrami-

dal neurons show prominent changes in membrane-po-

tential dynamics during different whisker-related behav-

iors. During quiet wakefulness, when the whiskers are

not moving, there are slow large-amplitude membrane

potential changes (Crochet and Petersen, 2006), which

can be imaged with voltage-sensitive dye as propagating

waves of activity (Ferezou et al., 2006; Figure 7A). During

active whisking, the slow oscillation disappears, the mem-

brane-potential variance becomes smaller, and neurons

on average depolarize by a few millivolts (Crochet and

Petersen, 2006). These striking correlations of membrane

potential dynamics in cortical layer 2/3 with behavior are,

however, not obvious at the level of action potential firing,

which on average across cells is around 1 Hz during both

quiet wakefulness and active whisking (Crochet and

Petersen, 2006).
Neuron 56, October 25, 2007 ª2007 Elsevier Inc. 347
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Figure 7. State-Dependent Processing
of Sensory Information
(A) Whole-cell recordings from awake mice
during quantified spontaneous whisker-related
behavior reveal striking state-dependent
changes in membrane potential dynamics (up-
per panels). A layer 2/3 pyramidal neuron lo-
cated in the C2 barrel column (left) shows
slow large-amplitude membrane potential
changes (black trace, membrane potential,
Vm) when the C2 whisker is not moving (green
trace, whisker angle). During active whisking
the membrane potential depolarizes, and
the slow oscillations are replaced by higher-
frequency fluctuations. Voltage-sensitive dye
imaging of mouse barrel cortex during quiet
wakefulness reveals that the spontaneous
slow oscillations occur as propagating waves
of depolarization spreading across the neocor-
tex (lower panels). The images (left) show
a wave spreading from upper-left to lower-right
in the field of view, and the time-course of fluo-
rescence changes are quantified across a small
central region of interest (right, gray shading in-
dicates the time of the images).
(B) Passively applied brief deflections of the
C2 whisker evoke different cortical sensory
responses during different spontaneous whis-
ker-related behaviors. Whole-cell recordings
(upper panels, action potentials are truncated
to allow an expanded y axis) show that the
depolarizing sensory response is strongly re-
duced during active whisking (red) compared
to during quiet wakefulness (blue). This state-
dependent reduction in sensory processing
is not limited to individual neurons but is a net-
work property, which can also be imaged with
voltage-sensitive dye (lower panels). Passively
evoked sensory responses during quiet wake-
fulness have large amplitude and spread
across large cortical areas, whereas the re-
sponse is smaller and more localized during
whisking. The red square on the images at
0 ms indicates the region of interest centered
on the C2 barrel column from which voltage-
sensitive dye fluorescence changes are quan-
tified in the adjacent traces (lower right).
The upper parts of (A) and (B) are modified and
reproduced with kind permission from Macmil-
lan Publishers Ltd: Nature Neuroscience, Na-
ture Publishing Group, Crochet and Petersen
(2006), copyright (2006).
The lower parts of (A) and (B) are modified and
reproduced from Neuron, Ferezou et al. (2006),
Copyright (2006), with kind permission from
Cell Press, Elsevier.
Processing of sensory information in the barrel cortex

also differs strongly between quiet wakefulness and active

whisking (Figure 7B). Controlled deflection of a whisker

by the experimenter (a passive whisker deflection for the

animal) results in a strong cortical sensory response dur-

ing quiet wakefulness, but only a weak response during

active whisking as measured with extracellular recordings

(Hentschke et al., 2006), whole-cell recordings (Crochet

and Petersen, 2006), or voltage-sensitive dye imaging

(Ferezou et al., 2006). The large-amplitude sensory re-

sponses observed during quiet wakefulness evoked prop-

agating waves of activity that spread across the barrel

cortex (Figure 7B). Thus, the spreading sensory responses
348 Neuron 56, October 25, 2007 ª2007 Elsevier Inc.
observed under anesthesia (Figure 2C) are not an artifact of

the anesthetized brain but are of physiological relevance

and may be an important integrative property of cortical

function. The behavioral modulation of cortical sensory

processing appears to be downstream of the mechano-

sensitive receptors in the whisker follicle, since similar ef-

fects are observed in the barrel cortex following electrical

stimulation of the trigeminal nerve (Fanselow and Nicolelis,

1999; Castro-Alamancos, 2004). Further experiments are

needed to investigate the different contributions of thala-

mus and neocortex in governing the state-dependent con-

trol of sensory processing. It is already clear, however, that

thalamic responses can be altered by behavioral state
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Figure 8. Actively Acquired Sensory
Information
(A) The primary sensory trigeminal ganglion
neurons do not fire action potentials during pe-
riods of quiet wakefulness when the whiskers
are not moving (labeled as ‘‘rest’’). They fire
at low rates during free whisking (labeled as
‘‘whisking in air’’). The sensory neurons fire at
high rates during active touch when the whis-
kers contact an object (labeled as ‘‘Contact’’).
(B) Fiber-optic imaging using voltage-sensitive
dye in freely moving mice (schematic left)
shows that large-amplitude spreading sensory
responses can be evoked in the barrel cortex in
response to whisker-object contact. The upper
image sequence shows the C2 whisker (high-
lighted in red) making contact with a Plexiglas
object and the lower image sequence shows
the simultaneously recorded voltage-sensitive
dye response.
(C) Sensory neurons of the infraorbital branch
(ION) of the trigeminal (TG) nerve excite neu-
rons in the trigeminal nuclei (TN) of the brain-
stem (principal, PrV; spinal interpolar, SpVi;
spinal caudal, SpVc). These brain stem neu-
rons in turn project centrally, but some also
make excitatory synapses onto motorneurons
of the facial nucleus (FN), driving the whiskers
forward causing further deflection of the whis-
ker contacting an object. Stimulation of the
sensory infraorbital nerve (right) rapidly evokes
electrical activity in the intrinsic muscles of the
whisker pad measured by the electromyogram
(EMG). Sensory responses to whisker-object
contacts may therefore be amplified by posi-
tive feedback in this brain sensorimotor loop.
(A) is modified and reproduced from Neuron,
Leiser and Moxon (2007), Copyright (2007),
with kind permission from Cell Press, Elsevier.
(B) is modified and reproduced from Neuron,
Ferezou et al. (2006), Copyright (2006), with
kind permission from Cell Press, Elsevier.
(C) is modified and reproduced from Neuron,
Nguyen and Kleinfeld (2005), Copyright (2005),
with kind permission from Cell Press, Elsevier.
(Fanselow and Nicolelis, 1999; Castro-Alamancos and

Oldford, 2002) and that synaptic depression at thalamo-

cortical synapses could contribute significantly (Chung

et al., 2002; Castro-Alamancos and Oldford, 2002) along

with more direct state-dependent effects of activity and

neuromodulators on the neocortical network.

Actively Acquired Sensory Information

Mice and rats actively move their whiskers during explora-

tion, and the weak sensory responses evoked by passive

stimuli during whisking are therefore surprising since this

is when one might expect whisker-related sensory pro-

cessing to be most important for the animal. The passively

applied stimuli are of course quite different from natural

sensory input during whisking, which would primarily be

expected to occur during whisker contact with real objects.

Recordings from the first-order sensory neurons in the

trigeminal ganglion of awake rodents have revealed three

important facts (Leiser and Moxon, 2007; Figure 8A). First,

in the absence of whisker movement, there is no sponta-

neous action potential firing in the trigeminal ganglion.

Second, during whisking without object contact, also
called ‘‘whisking in air,’’ there is only a low level of spiking

activity in the sensory neurons. This free-whisking activity

can be phase-locked to the whisking cycle (Szwed et al.,

2003) and similar phase-locked signals have also been

found in the somatosensory cortex (Fee et al., 1997; Cro-

chet and Petersen, 2006). Such phase-locked signals

could form the basis of a map of positional information

(Kleinfeld et al., 2006). Third and most importantly, many

action potentials in the sensory neurons were evoked

when the whiskers contacted objects (Leiser and Moxon,

2007). Whisker-related trigeminal ganglion neurons are

therefore sensitive object detectors, showing much less

activity at other times.

This activity at the periphery is robustly transmitted to

the cortex, since whisker-object contact evokes strong

sensory responses in the barrel cortex during active touch

(Crochet and Petersen, 2006; Ferezou et al., 2006; Fig-

ure 8B). Voltage-sensitive dye imaging demonstrates

that single-whisker active touch responses can also prop-

agate across the barrel map, similar to the passively

evoked responses during quiet wakefulness, but unlike
Neuron 56, October 25, 2007 ª2007 Elsevier Inc. 349
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the responses to passive stimulation during whisking. It is

currently unclear what underlies this difference in sensory

processing during whisking. One possibility is that the pas-

sive stimulus during whisking is weak and the evoked re-

sponse might then be obscured by the increased back-

ground action-potential firing at the periphery and by the

different cortical state during whisking. Real whisker-ob-

ject contacts, but not remotely applied passive stimuli,

might be specifically amplified by a rapid low-level senso-

rimotor loop (Figure 8C; Nguyen and Kleinfeld, 2005).

Axons of the sensory neurons in the trigeminal nerve

make direct monosynaptic excitatory input onto the facial

nucleus motorneurons responsible for generating whisker

movement. The net result is that sensory input evokes a

whisker protraction. If the whisker contacts a real object,

the whisker will be accelerated into the object, resulting

in a positive-feedback loop generating a strong contact re-

sponse. This brainstem sensorimotor loop is the first point

of interaction between sensory input and motor output, but

there are several higher-order sensorimotor loops includ-

ing anatomical evidence for cortical connectivity between

barrel cortex and primary motor cortex (White and DeAmi-

cis, 1977; Welker et al., 1988; Chakrabarti and Alloway,

2006). Sensory processing in motor cortex is likely to be

of profound importance in active sensation. In the same

way that we change our finger movements when we touch

objects to explore their shape and texture, it is likely that

rodents will change their whisker movements to enhance

the extraction of sensory information. Further exploration

of the control of whisker movements (Carvell et al., 1996;

Hattox et al., 2003; Brecht et al., 2004; Haiss and Schwarz,

2005; Cramer et al., 2007) and sensorimotor integration

(Kleinfeld et al., 2002) will be crucial in our understanding

of active sensory processing.

Sensory Information Processing

during Learned Behaviors

The state-dependent active processing and acquisition of

sensory information observed during different spontane-

ous behaviors (Figures 7 and 8) leads naturally to curiosity

regarding learned whisker-dependent behaviors. In the

primate visual system, there is clear evidence that the ac-

tivity of individual neurons evoked by the same visual stim-

ulus can be strongly regulated in a task-specific manner

(Gilbert and Sigman, 2007). Active selection of relevant

sensory input might therefore also occur during process-

ing of whisker-related information in rodents. Indeed, one

might already argue that the differential sensory process-

ing observed during quiet wakefulness and active whisking

perform a useful role. When the animal is quiet and the

whiskers are not moving, then only passive whisker deflec-

tions can occur, and these evoke large cortical responses.

On the other hand, during active whisking, when the animal

is actively exploring its environment, it is indeed highly sen-

sitive to touch of real objects. It is likely that there are many

more subtle context- and experience-dependent alter-

ations in cortical processing of whisker-related informa-

tion. For example, rewarding large-amplitude whisking

causes enhanced phase-locking of cortex to the whisker
350 Neuron 56, October 25, 2007 ª2007 Elsevier Inc.
cycle (Ganguly and Kleinfeld, 2004), and the association

of whisker deflection with reward leads to enhanced deox-

yglucose uptake in the stimulated barrels (Siucinska and

Kossut, 2004).

An important further reason to investigate sensory pro-

cessing in animals performing well-defined tasks is to gain

insight into the perceptual basis of decisions. Ultimately,

sensory information serves to guide behavior and sensory

processing can therefore be viewed as a starting point for

motor control and the planning of future actions. In the lab-

oratory, rodents can learn to use their whiskers to perform

various behavioral tasks, which can be roughly divided

into two broad categories: the detection of edge locations

and the discrimination of textures (Figure 9A).

The landmark study of Hutson and Masterton (1986)

showed that a rodent perched on one elevated platform

can reach across with its whiskers to touch and locate an-

other platform to where it jumps in order to receive a re-

ward (see Movie S1 in the Supplemental Data available

with this article online). Importantly, for the experimental-

ist, this behavior can be performed with a single whisker

(Movie S2) and depends upon an intact somatosensory

barrel cortex (Hutson and Masterton, 1986). Some of the

sensory learning underlying the gap-crossing task may

take place in the local sensory maps of the barrel cortex

(Harris et al., 1999).

In a simpler behavior, it has also been shown that ro-

dents with a single whisker can be trained to discriminate

the position of a vertical bar, with one position rewarded

and another not (Knutsen et al., 2006; Mehta et al., 2007).

These results suggest that even a single whisker provides

sufficient information not just for detection of a deflection

evoked by whisker-object contact during active whisking,

but also that the position of the whisker-object contact is

encoded. Action-potential firing and membrane-potential

oscillations in the barrel cortex phase locked to the whisk-

ing cycle could contribute to encoding the position of

whisker object touch (Fee et al., 1997; Szwed et al., 2003;

Crochet and Petersen, 2006; Kleinfeld et al., 2006).

In order to explore the psychophysical properties of

whisker detection, Stuttgen et al. (2006) trained head-fixed

rats to respond by licking upon detection of precisely con-

trolled single-whisker stimuli. Interestingly, they found

evidence for two separate psychophysical channels, one

specialized for small-amplitude high-velocity whisker de-

flections and another for low-velocity large-amplitude de-

flections. These psychophysical channels correlated well

with the response properties of rapidly adapting (low am-

plitude threshold) and slowly adapting (low velocity thresh-

old) trigeminal sensory neurons (Stuttgen et al., 2006). The

ability to train head-fixed rodents to respond to sensory

input originating from a single whisker may turn out to be

of considerable importance for investigating the synaptic

basis of learned whisker-dependent behaviors.

The first extracellular recordings of cortical activity dur-

ing trained whisker-dependent behaviors were carried out

in freely moving rats and generated interesting results

(Figure 9B; Krupa et al., 2004). The behavioral paradigm
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Figure 9. Learned Whisker-Dependent
Behaviors
(A) The rodent whisker sensorimotor system
performs two classes of behavioral tasks: loca-
tion of edges and discrimination of textures.
Edge detection and location forms the basis
of the gap-crossing task (left) where the rodent
must reach across a gap with its whiskers to
locate a target platform where a reward is
placed. Rodents are also able to discriminate
textures using their whiskers (right), and quan-
titative behavioral measurements suggest that
texture discrimination by the whiskers equals
the performance of the human finger tip.
(B) The first recordings of neuronal activity dur-
ing learned whisker-dependent behaviors have
provided interesting results. Rats were trained
to perform a bilateral edge-location task, where
the animal must determine the width of an ap-
erture to receive a reward (left). Recording of
cortical action potential activity during execu-
tion of this learned behavior showed that action
potential firing rates changed during different
phases of the task. Most surprisingly, infragra-
nular neurons often showed elevated firing
rates before the rat entered the aperture, sug-
gesting interesting top-down input to somato-
sensory cortex.
(B) is modified and reproduced from Krupa
et al. (2004) with kind permission from Science,
AAAS.
involved the detection of two edges forming an aperture

(Krupa et al., 2001). The rat was trained to poke into the

aperture with its nose, and depending upon the width of

the aperture, it would receive a reward to the left or to

the right. Such aperture discrimination is interesting since

it involves bilateral sensory integration and is likely of etho-

logical importance since rodents live in tunnels and need

to know if a hole is of a suitable size to enter. Recordings

from trained animals entering the aperture showed differ-

ent action-potential activities in different cortical layers.

One of the most striking observations is that many infra-

granular neurons fired action potentials before the rat

entered the aperture, suggesting a prominent top-down

input. Further study of this behavior with quantitative anal-

ysis of whisker deflections and more detailed character-

ization of the location of recording electrodes would be

of great interest.

In addition to the detection of pulsatile whisker deflec-

tions encountered during such edge detection tasks, the

rodent whisker system has been shown to be able to dis-

criminate between different textures. Indeed, Carvell and

Simons (1990) showed that rats can discriminate textural

differences using their whiskers to a comparable degree

of accuracy as humans using their finger tips. Whisker de-

flections similar to the vibrations evoked by sweeping a

whisker across a rough surface result in robust sequences

of action-potential firing in sensory neurons of the trigem-
inal ganglion (Jones et al., 2004; Arabzadeh et al., 2005).

The faithful encoding of sensory input at the periphery

likely leads to different percepts and behavioral choices,

which could result from differential cortical activity as

demonstrated in the monkey somatosensory system (de

Lafuente and Romo, 2006).

Future Perspectives
The rodent whisker-related sensorimotor system offers

unique opportunities for studying sensory processing in

well-defined synaptic pathways. Recent studies directly

correlating neuronal activity with whisker-related behavior

shed light on active versus passive sensory processing,

sensorimotor integration, and the differential sensory pro-

cessing during different brain states. The growing body of

work relating to trained whisker-dependent behaviors is

likely to allow an in-depth analysis of the mechanisms un-

derlying associative learning of sensory perception with

the execution of a specific motor program. In combination

with the increasing sophistication of molecular biology and

genetics, it seems likely that significant progress can be

expected in the next years providing a quantitative analy-

sis of sensory processing within the anatomically defined

somatotopic barrel maps.
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