
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Advances in Applied Mathematics 37 (2006) 249–267

www.elsevier.com/locate/yaama

The number of monotone triangles with prescribed
bottom row

Ilse Fischer

Fakultät für Mathematik, Universität Wien, Nordbergstrasse 15, A-1090 Wien, Austria

Received 3 February 2005; accepted 28 March 2005

Available online 2 May 2006

Dedicated to Amitai Regev on his 65th birthday

Abstract

We show that the number of monotone triangles with prescribed bottom row (k1, . . . , kn) ∈ Zn, k1 <

k2 < · · · < kn, is given by a simple product formula which remarkably involves (shift) operators. Monotone
triangles with bottom row (1,2, . . . , n) are in bijection with n × n alternating sign matrices.
© 2006 Elsevier Inc. All rights reserved.

1. Introduction

An alternating sign matrix is a square matrix of 0s, 1s and −1s for which the sum of entries
in each row and in each column is 1 and the non-zero entries of each row and of each column
alternate in sign. For instance,

⎛
⎜⎜⎜⎝

0 0 0 1 0
0 1 0 −1 1
1 −1 1 0 0
0 1 −1 1 0
0 0 1 0 0

⎞
⎟⎟⎟⎠

is an alternating sign matrix. In the early 1980s, Robbins and Rumsey [7] introduced alternating
sign matrices in the course of generalizing a determinant evaluation algorithm. Out of curiosity
they posed the question for the number of alternating sign matrices of fixed size and, together
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with Mills, they came up with the appealing conjecture [6] that the number of n × n alternating
sign matrices is

n∏
j=1

(3j − 2)!
(n + j − 1)! . (1.1)

This turned out to be one of the hardest problems in enumerative combinatorics within the last
decades. In 1996 Zeilberger [9] finally succeeded in proving their conjecture. Then, some months
later, Kuperberg [4] realized that alternating sign matrices are equivalent to a model in statistical
physics for two-dimensional square ice. Using a determinantal expression for the partition func-
tion of this model discovered earlier by physicists, he was able to provide a shorter proof of the
formula. For a nice exposition on this topic see [1].

Alternating sign matrices can be translated into certain triangular arrays of positive integers,
called monotone triangles. Monotone triangles are probably the right guise of alternating sign
matrices for a recursive treatment [1, Section 2.3]. In order to obtain the monotone triangle
corresponding to a given alternating sign matrix, replace every entry in the matrix by the sum of
elements in the same column above, the entry itself included. In our running example we obtain⎛

⎜⎜⎜⎝
0 0 0 1 0
0 1 0 0 1
1 0 1 0 1
1 1 0 1 1
1 1 1 1 1

⎞
⎟⎟⎟⎠ .

Row by row we record the columns that contain a 1 and obtain the following triangular array.

4
2 5

1 3 5
1 2 4 5

1 2 3 4 5

This is the monotone triangle corresponding to the alternating sign matrix above. Observe
that it is weakly increasing in northeast direction and in southeast direction. Moreover, it is
strictly increasing along rows. In general, a monotone triangle with n rows is a triangular array
(ai,j )1�j�i�n of integers such that ai,j � ai−1,j � ai,j+1 and ai,j < ai,j+1 for all i, j . It is not
too hard to see that monotone triangles with n rows and bottom row (1,2, . . . , n), i.e. an,j = j ,
are in bijection with n × n alternating sign matrices. Our main theorem provides a formula for
the number of monotone triangles with prescribed bottom row (k1, k2, . . . , kn) ∈ Zn.

Theorem 1. The number of monotone triangles with n rows and prescribed bottom row
(k1, k2, . . . , kn) is given by( ∏

1�p<q�n

(id + EkpΔkq )

) ∏
1�i<j�n

kj − ki

j − i
,

where Ex denotes the shift operator, defined by Ex p(x) = p(x + 1), and Δx := Ex − id denotes
the difference operator.
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In order to understand this formula, there are a few things to remark. The product of operators
is understood as the composition. Moreover, note that the shift operators commute, and conse-
quently, it does not matter in which order the operators in the product

∏
1�p<q�n(id + EkpΔkq )

are applied. In order to use this formula to compute the number of monotone triangles with
bottom row (k1, . . . , kn), one first has to apply the operator

∏
1�p<q�n(id + ExpΔxq ) to the

polynomial
∏

1�i<j�n

xj −xi

j−i
and then set xi = ki . Thus, at this time, we do not know how to

derive (1.1) from this formula.
Next we discuss the significance of the formula. In the last decades, the enumeration of plane

partitions, alternating sign matrices and related objects subject to a variety of different constraints
has attracted a lot of interest. This attraction stems from the fact that now and then these enumer-
ations lead to an appealing product formula or hypergeometric series, which is, in spite of their
simplicity, pretty hard to prove. Clearly, the search for these simple product formulas gets more
and more exhausted. Therefore, a new challenge is the search for possibilities to give enumeration
formulas for the vast majority of enumeration problems for which there exists no closed formula
in a traditional sense. The formula in Theorem 1 contributes to this issue. At this point it is in-
teresting to note that Zeilberger [9, Subsublemma 1.2.1] provides a constant term expression for
the number of monotone triangles with prescribed rightmost southeast diagonal. (In fact, in his
lemma, he considers more general objects, called n × k—Gog trapezoids, which are monotone
triangles with the n − k rightmost northeast diagonals cut off.)

Also note that the second product in the formula in Theorem 1, i.e.
∏

1�i<j�n

kj −ki

j−i
, is the

number of semistandard tableaux of shape (kn−n, kn−1 −n+1, . . . , k1 −1) and, equivalently, the
number of columnstrict plane partitions of this shape [8, p. 375, in (7.105) q → 1]. In fact, these
objects are in bijection with monotone triangles with prescribed bottom row (k1, k2, . . . , kn) that
are strictly increasing in southeast direction [2, Section 5]. Thus, our formula once more gives an
indication of the relation between plane partitions and alternating sign matrices manifested by a
number of enumeration formulas which show up in both fields, a phenomenon which is not yet
well (i.e. bijectively) understood.

At this point it is also worth mentioning that we can easily rewrite the formula in Theorem 1
such that the second product is the number of semistandard tableaux of shape (kn, . . . , k1).

α(n; k1, . . . , kn) =
( ∏

1�p<q�n

(
E−1

kq
+ E−1

kq
EkpΔkq

) n∏
q=1

E
q−1
kq

) ∏
1�i<j�n

kj − ki

j − i

=
( ∏

1�p<q�n

(
id + E−1

kq
ΔkpΔkq

)) ∏
1�i<j�n

kj − ki + j − i

j − i
.

The method for proving our main theorem can roughly be described as follows. In the first
step, we introduce a recursion, which relates monotone triangles with n rows to monotone tri-
angles with n − 1 rows. This recursion immediately implies that the enumeration formula is a
polynomial in k1, k2, . . . , kn. In the next step, we compute the degree of the polynomial. Finally,
we deduce enough properties of the polynomial in order to compute it, where the polynomial’s
degree determines how much information is in fact needed. This method is related to the method
for proving polynomial enumeration formulas we have introduced in [2] and extended in [3]. In
the final section we mention some further projects around Theorem 1 we plan to consider next.
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2. The recursion

In the following let α(n; k1, . . . , kn), n � 1, denote the number of monotone triangles with
(k1, . . . , kn) as bottom row. If we delete the last row of such a monotone triangle we obtain a
monotone triangle with n − 1 rows and bottom row, say, (l1, l2, . . . , ln−1). By the definition of a
monotone triangle we have k1 � l1 � k2 � l2 � · · · � kn−1 � ln−1 � kn and li �= li+1. Thus

α(n; k1, . . . , kn) =
∑

(l1,...,ln−1)∈Z
n−1,

k1�l1�k2�···�kn−1�ln−1�kn, li �=li+1

α(n − 1; l1, . . . , ln−1). (2.1)

We introduce the following abbreviation

∑
(l1,...,ln−1)∈Z

n−1,
k1�l1�k2�···�kn−1�ln−1�kn, li �=li+1

=:
(k1,...,kn)∑
(l1,...,ln−1)

for n � 2. This summation operator is well-defined for all (k1, . . . , kn) ∈ Zn with k1 < k2 <

· · · < kn. We extend the definition to arbitrary (k1, . . . , kn) ∈ Zn by induction with respect to n.
If n = 2 then

(k1,k2)∑
(l1)

A(l1) :=
k2∑

l1=k1

A(l1),

where here and in the following we use the extended definition of the summation over an interval,
namely,

b∑
i=a

f (i) =
{

f (a) + f (a + 1) + · · · + f (b) if a � b,

0 if b = a − 1,

−f (b + 1) − f (b + 2) − · · · − f (a − 1) if b + 1 � a − 1.

(2.2)

This assures that for any polynomial p(X) over an arbitrary integral domain I containing Q

there exists a unique polynomial q(X) over I such that
∑y

x=0 p(x) = q(y) for all integers y. We
usually write

∑y

x=0 p(x) for q(y). (We also use the analog extended definition for the product
symbol.) If n > 2 then

(k1,...,kn)∑
(l1,...,ln−1)

A(l1, . . . , ln−1)

:=
(k1,...,kn−1)∑
(l1,...,ln−2)

kn∑
ln−1=kn−1+1

A(l1, . . . , ln−2, ln−1) +
(k1,...,kn−1−1)∑

(l1,...,ln−2)

A(l1, . . . , ln−2, kn−1).

We renew the definition of α(n; k1, . . . , kn) after this extension by setting α(1; k1) = 1 and

α(n; k1, . . . , kn) =
(k1,...,kn)∑
(l ,...,l )

α(n − 1; l1, . . . , ln−1).
1 n−1
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This extends the original function α(n; k1, . . . , kn) to arbitrary (k1, . . . , kn) ∈ Zn. The recursion
implies that α(n; k1, . . . , kn) is a polynomial in k1, . . . , kn. We have used this recursion (and a
computer) to compute α(n; k1, . . . , kn) for n = 1,2,3,4 and obtain the following:

1,1 − k1 + k2,
1

2

(−3k1 + k2
1 + 2k1k2 − k2

1k2 − 2k2
2 + k1k

2
2 + 3k3 − 4k1k3 + k2

1k3 + 2k2k3

− k2
2k3 + k2

3 − k1k
2
3 + k2k

2
3

)
,

1

12

(
20k2 + 11k1k2 − 16k2

1k2 + 3k3
1k2 + 4k1k

2
2 + 3k2

1k2
2 − k3

1k2
2

+ 4k3
2 − 5k1k

3
2 + k2

1k3
2 − 20k3 + 16k1k3 − 4k2

1k3 − 27k2k3 + 9k2
1k2k3 − 2k3

1k2k3 − 3k2
1k2

2k3

+ k3
1k2

2k3 − 3k3
2k3 + 4k1k

3
2k3 − k2

1k3
2k3 + 16k1k

2
3 − 12k2

1k2
3 + 2k3

1k2
3 − 9k1k2k

2
3 + 6k2

1k2k
2
3

− k3
1k2k

2
3 + 9k2

2k2
3 − 3k1k

2
2k2

3 − 3k3
2k2

3 + k1k
3
2k2

3 − 4k3
3 + 8k1k

3
3 − 2k2

1k3
3 − 3k2k

3
3 − 2k1k2k

3
3

+ k2
1k2k

3
3 + 3k2

2k3
3 − k1k

2
2k3

3 − 27k1k4 + 20k2
1k4 − 3k3

1k4 + 16k2k4 + 24k1k2k4 − 24k2
1k2k4

+ 4k3
1k2k4 − 16k2

2k4 + 9k1k
2
2k4 + 3k2

1k2
2k4 − k3

1k2
2k4 + 8k3

2k4 − 6k1k
3
2k4 + k2

1k3
2k4 + 11k3k4

− 24k1k3k4 + 15k2
1k3k4 − 2k3

1k3k4 − 9k2
2k3k4 + 2k3

2k3k4 − 4k2
3k4 + 9k1k

2
3k4 − 6k2

1k2
3k4

+ k3
1k2

3k4 + 3k2
2k2

3k4 − k3
2k2

3k4 − 5k3
3k4 + 6k1k

3
3k4 − k2

1k3
3k4 − 4k2k

3
3k4 + k2

2k3
3k4 − 20k1k

2
4

+ 9k2
1k2

4 − k3
1k2

4 + 4k2k
2
4 + 15k1k2k

2
4 − 9k2

1k2k
2
4 + k3

1k2k
2
4 − 12k2

2k2
4 + 6k1k

2
2k2

4 + 2k3
2k2

4

− k1k
3
2k2

4 + 16k3k
2
4 − 24k1k3k

2
4 + 9k2

1k3k
2
4 − k3

1k3k
2
4 + 9k2k3k

2
4 − 6k2

2k3k
2
4 + k3

2k3k
2
4 + 3k2

3k2
4

− 3k1k
2
3k2

4 + 3k2k
2
3k2

4 − k3
3k2

4 + k1k
3
3k2

4 − k2k
3
3k2

4 − 3k1k
3
4 + k2

1k3
4 + 2k1k2k

3
4 − k2

1k2k
3
4

− 2k2
2k3

4 + k1k
2
2k3

4 + 3k3k
3
4 − 4k1k3k

3
4 + k2

1k3k
3
4 + 2k2k3k

3
4 − k2

2k3k
3
4 + k2

3k3
4 − k1k

2
3k3

4

+ k2k
2
3k3

4

)
.

From this data it is obviously hard to guess a general formula for α(n; k1, . . . , kn). However, it
seems plausible that the degree of α(n; k1, . . . , kn) in ki is n − 1. In the following two sections
we prove that this is indeed true. Note that at first glance the linear growth of the degree is quite
surprising: suppose A(l1, . . . , ln−1) is a polynomial of degree no greater than R in each of li−1

and li . Then

degki

(
(k1,...,kn)∑
(l1,...,ln−1)

A(l1, . . . , ln−1)

)

= degki

(
ki∑

li−1=ki−1

ki+1∑
li=ki

A(l1, . . . , ln−1) − A(l1, . . . , li−2, ki, ki, li+1, . . . , ln−1)

)
� 2R + 2

and there exist polynomials A(l1, . . . , ln−1) such that the upper bound 2R + 2 is attained. Con-
sequently, α(n; k1, . . . , kn) must be of a very specific shape.
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3. Operators related to the recursion

In this section we define some operators that are fundamental for the study of the recursion
defined in the previous section. The theory is developed in a bit more generality than is actually
needed in order to investigate α(n; k1, . . . , kn). Recall that the shift operator, denoted by Ex , is
defined as Exp(x) = p(x + 1). Clearly Ex is invertible in the algebra of operators of C[x] and
we denote its inverse by E−1

x . Observe that the shift operators with respect to different variables
commute, i.e. ExEy = EyEx. The difference operator Δx is defined as Δx = Ex − id. However,
the difference operator Δx is not invertible since it decreases the degree of a polynomial. If we
apply the shift operator or the delta operator to the ith variable of a function, we sometimes write
Ei or Δi , respectively, i.e. Δki

f (k1, . . . , kn) = Δif (k1, . . . , kn). Moreover, Δ2f (k3, k3, k3), for
instance, is shorthand for (

Δl2f (l1, l2, l3)
)∣∣

l1=k3,l2=k3,l3=k3
.

The swapping operator Sx,y is applicable to functions in (at least) two variables and defined as
Sx,yf (x, y) = f (y, x). If we apply Sx,y to the ith and j th variable of a function we sometimes
write Si,j .

In the following we consider rational functions in shift operators. In order to guarantee that
the inverse of the denominator always exists, we need the following lemma.

Lemma 1. Let p(x1, . . . , xn) be a polynomial in x1, x
−1
1 , x2, x

−1
2 , . . . , xn, x

−1
n over C, and fix an

integer i, 1 � i � n. Consider the operator

id + Δki
p(Ek1,Ek2, . . . ,Ekn) =: Op

on C[k1, . . . , kn]. Then Op is invertible and the inverse is

Op−1 =
∞∑
l=0

(−1)lΔl
ki

p(Ek1,Ek2 , . . . ,Ekn)
l,

where Δ0
ki

p(Ek1,Ek2, . . . ,Ekn)
0 = id. Moreover,

degki
G(k1, . . . , kn) = degki

OpG(k1, . . . , kn) = degki
Op−1 G(k1, . . . , kn).

Proof. Let G(k1, . . . , kn) ∈ C[k1, . . . , kn]. First observe that

degki
G(k1, . . . , kn) = degki

OpG(k1, . . . , kn), (3.1)

since Δki
decreases the degree in ki and p(Ek1,Ek2, . . . ,Ekn) does not increase the degree. It is

easy to see that

F(k1, . . . , kn) =
∞∑
l=0

(−1)lΔl
ki

p(Ek1,Ek2 , . . . ,Ekn)
lG(k1, . . . , kn)

is a polynomial with the property that OpF = G. (Observe that the sum is finite since
Δl G(k1, . . . , kn) = 0 if l > degk G.) Assume there is another polynomial F ′ ∈ C[k1, . . . , kn]
ki i
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with the property that OpF ′ = G. Then OpH = 0 with H = F − F ′. Thus, by (3.1),
degki

H = degki
0 = −∞, a contradiction. We obtain degki

Op−1 G = degki
G if we apply (3.1)

to Op−1 G. �
Next we define two operators applicable to polynomials G(k1, . . . , kn) ∈ C[k1, . . . , kn]. We

set

Vki ,kj
= id + E−1

ki
Δki

Δkj
= E−1

ki
(id + Ekj

Δki
)

and

Tki ,ki+1 = (
id + Eki+1E

−1
ki

Ski ,ki+1

) Vki ,ki+1

Vki,ki+1 + Vki+1,ki

.

By Lemma 1, the inverse (Vki ,ki+1 + Vki+1,ki
)−1 is well-defined. The following lemma explains

the significance of Tki ,ki+1 for the recursion (2.1).

Lemma 2. Let A(l1, l2) be a polynomial in l1 and l2 which is of degree at most R in each of l1
and l2. Moreover, assume that Tl1,l2A(l1, l2) is of degree at most R as a polynomial in l1 and l2,
i.e. a linear combination of monomials lm1 ln2 with m + n � R. Then

(k1,k2,k3)∑
(l1,l2)

A(l1, l2) =
k2∑

l1=k1

k3∑
l2=k2

A(l1, l2) − A(k2, k2)

is of degree at most R + 2 in k2. Moreover, if Tl1,l2A(l1, l2) = 0 then
∑(k1,k2,k3)

(l1,l2)
A(l1, l2) is of

degree at most R + 1 in k2.

Proof. We decompose A(l1, l2) = Tl1,l2A(l1, l2)+ (id−Tl1,l2)A(l1, l2). If we define A∗(l1, l2) =
(id − Tl1,l2)((l1)p(l2)q/(p!q!)), it suffices to show that the degree of

k2∑
l1=k1

k3∑
l2=k2

A∗(l1, l2) − A∗(k2, k2) (3.2)

in k2 is no greater than max(p, q) + 1, where (x)p = ∏p−1
i=0 (x + i). Observe that

id − Tl1,l2 = Vl2,l1

Vl1,l2 + Vl2,l1

(
id − El2E

−1
l1

Sl1,l2

)
,

where we use the fact that Sl1,l2R(El1,El2) = R(El2,El1)Sl1,l2 if R(x, y) is a rational function
in x, x−1, y, y−1. Lemma 1 implies that

A∗(l1, l2) = 1

2

∞∑ i∑(
−1

2

)i(
i

j

)

i=0 j=0
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×
(

(l1 + i − j)p−i (l2 + j)q−i

(p − i)!(q − i)! − (l2 + j + 1)p−i (l1 + i − j − 1)q−i

(p − i)!(q − i)!
+ (l1 + i − j + 1)p−i−1(l2 + j)q−i−1

(p − i − 1)!(q − i − 1)! − (l2 + j + 1)p−i−1(l1 + i − j)q−i−1

(p − i − 1)!(q − i − 1)!
)

.

Using the summation formula

b∑
z=a

(z + w)n = 1

n + 1

(
(b + w)n+1 − (a − 1 + w)n+1

)
(3.3)

we observe that (3.2) is equal to

1

2

∞∑
i=0

i∑
j=0

(
−1

2

)i(
i

j

)

×
(

−
(

k2 + p − j

p − i + 1

)(
k2 + q + j − i − 1

q − i + 1

)
+

(
k2 + q − j − 1

q − i + 1

)(
k2 + p + j − i

p − i + 1

)

−
(

k2 + p − j

p − i

)(
k2 + q + j − i − 2

q − i

)
+

(
k2 + q − j − 1

q − i

)(
k2 + p + j − i − 1

p − i

)

−
(

k2 + p − j − 1

p − i

)(
k2 + q + j − i − 1

q − i

)
+

(
k2 + q − j − 2

q − i

)(
k2 + p + j − i

p − i

)

−
(

k2 + p − j − 1

p − i − 1

)(
k2 + q + j − i − 2

q − i − 1

)
+

(
k2 + q − j − 2

q − i − 1

)(
k2 + p + j − i − 1

p − i − 1

))
+ R(k1, k2, k3),

where R(k1, k2, k3) is a polynomial in k1, k2, k3 of degree no greater than max(p, q) + 1 in k2.
If we replace j by i − j in every other product of two binomial coefficients we see that this
expression simplifies to R(k1, k2, k3) and the lemma is proved. �

In order to use Lemma 2 to compute the degree of
∑(k1,k2,k3)

(l1,l2)
A(l1, l2) in k2, one has to

compute the degree of Tl1,l2A(l1, l2) in l1 and l2. However, the operator Tl1,l2 is complicated, and
thus it is convenient to consider a simplified version of Tl1,l2 for this purpose, which is obtained
by multiplication with an operator that preserves the degree.

T ′
ki ,ki+1

:= Eki
(Vki ,ki+1 + Vki+1,ki

)Tki ,ki+1

= (id + Ski ,ki+1)Eki
Vki ,ki+1 = (id + Ski ,ki+1)(id + Eki+1Δki

).

Observe that degki ,ki+1
Tki ,ki+1G(k1, . . . , kn) = degki ,ki+1

T ′
ki ,ki+1

G(k1, . . . , kn), since

Vki,ki+1 + Vki+1,ki
= 2id + (

E−1
ki

+ E−1
ki+1

)
Δki

Δki+1

and Δki
Δki+1 decreases the degree of a polynomial in ki and ki+1. In particular, Tki ,ki+1G(k1, . . . ,

kn) = 0 if and only if T ′ G(k1, . . . , kn) = 0.
ki ,ki+1
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4. The fundamental lemma

Suppose A(l1, . . . , ln) is a function on Zn. In this section we prove a lemma that expresses

T ′
ki ,ki+1

(
(k1,...,kn+1)∑

(l1,...,ln)

A(l1, . . . , ln)

)
(k1, . . . , kn+1)

in terms of T ′
li−1,li

A(l1, . . . , ln) and T ′
li ,li+1

A(l1, . . . , ln). In particular, this shows that if
T ′

li ,li+1
A(l1, . . . , ln) = 0 for all i = 1, . . . , n − 1 then

T ′
ki ,ki+1

(
(k1,...,kn+1)∑

(l1,...,ln)

A(l1, . . . , ln)

)
(k1, . . . , kn+1) = 0

for all i = 1, . . . , n.

Lemma 3. Let f (k1, k2, k3) be a function from Z3 to C and define

g(k1, k2, k3, k4) :=
(k1,k2,k3,k4)∑

(l1,l2,l3)

f (l1, l2, l3).

Then

T ′
2,3g(k1, k2, k3, k4)

= −1

2

(
k3∑

l1=k2+1

k3∑
l2=k2+1

k4∑
l3=k2

T ′
1,2 f (l1, l2, l3) +

k2+1∑
l1=k1

k3−1∑
l2=k2

k3−1∑
l3=k2

T ′
2,3f (l1, l2, l3)

)

+ 1

2

(
k3−1∑
l1=k2

k3−1∑
l2=k2

Δ2(id + E1)T
′
1,2f (l1, l2, k2) −

k3−1∑
l2=k2

k3−1∑
l3=k2

Δ2(id + E3)T
′
2,3f (k2 + 1, l2, l3)

)

+ 1

2

(
T ′

1,2f (k2, k2, k2 + 1) − T ′
1,2f (k2, k2, k3 + 1) + T ′

2,3 f (k2, k2, k2) − T ′
2,3f (k3, k2, k2)

)
− T ′

1,2f (k2, k3, k2 + 1) − T ′
2,3f (k2, k2, k3).

Moreover, for a function h(l1, l2) on Z2,

T ′
1,2

(
(k1,k2,k3)∑

(l1,l2)

h(l1, l2)

)
(k1, k2, k3) = −1

2

k2−1∑
l1=k1

k2−1∑
l2=k1

T ′
1,2 h(l1, l2).

Proof. We only sketch the proof of the first formula since the proof of the second formula is
easy. Observe that in this formula T ′

1,2f (k2, k2, k2 + 1), for instance, is shorthand for

T ′
l ,l f (l1, l2, k2 + 1)|l1=k2,l2=k2 .
1 2
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By definition

g(k1, k2, k3, k4) =
k2∑

l1=k1

k3∑
l2=k2

k4∑
l3=k3

f (l1, l2, l3) −
k4∑

l3=k3

f (k2, k2, l3) −
k2∑

l1=k1

f (l1, k3, k3).

It is easy to see that

Δ2g(k1, k2, k3, k4)

= −
k2−1∑
l1=k1

k4∑
l3=k3

f (l1, k2, l3) +
k3∑

l2=k2+2

k4∑
l3=k3

f (k2 + 1, l2, l3) − f (k2 + 1, k3, k3).

This implies that

(id + Δ2E3)g(k1, k2, k3, k4)

=
k2∑

l1=k1

k3∑
l2=k2

k4∑
l3=k3

f (l1, l2, l3) −
k4∑

l3=k3

f (k2, k2, l3)

−
k2∑

l1=k1

f (l1, k3, k3) − f (k2 + 1, k3 + 1, k3 + 1) −
k2−1∑
l1=k1

k4∑
l3=k3+1

f (l1, k2, l3)

+
k3+1∑

l2=k2+2

k4∑
l3=k3+1

f (k2 + 1, l2, l3).

Next we want to apply the operator (id + S2,3). Observe that

(id + S2,3)

(
k2∑

l1=k1

k3∑
l2=k2

k4∑
l3=k3

f (l1, l2, l3)

)
(k1, k2, k3, k4)

=
k2∑

l1=k1

k3∑
l2=k2

k4∑
l3=k3

f (l1, l2, l3) −
k3∑

l1=k1

k3∑
l2=k2

k4∑
l3=k2

f (l1, l2, l3)

= −
k3∑

l1=k2+1

k3∑
l2=k2+1

k4∑
l3=k2

f (l1, l2, l3) −
k2∑

l1=k1

k3−1∑
l2=k2

k3−1∑
l3=k2

f (l1, l2, l3)

+
k2∑

l1=k1

k4∑
l3=k2

f (l1, k2, l3) +
k3∑

l1=k1

k4∑
l3=k3

f (l1, k3, l3) +
k3∑

l1=k2+1

k3−1∑
l3=k2

f (l1, k3, l3)

= −1

2

(
k3∑ k3∑ k4∑

(id + S1,2)f (l1, l2, l3) +
k2∑ k3−1∑ k3−1∑

(id + S2,3)f (l1, l2, l3)

)

l1=k2+1 l2=k2+1 l3=k2 l1=k1 l2=k2 l3=k2
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+
k2∑

l1=k1

k4∑
l3=k2

f (l1, k2, l3) +
k3∑

l1=k1

k4∑
l3=k3

f (l1, k3, l3) +
k3∑

l1=k2+1

k3−1∑
l3=k2

f (l1, k3, l3).

Therefore, we have

(id + S2,3)(id + Δ2E3)g(k1, k2, k3, k4)

= −1

2

(
k3∑

l1=k2+1

k3∑
l2=k2+1

k4∑
l3=k2

T ′
1,2 f (l1, l2, l3) +

k2+1∑
l1=k1

k3−1∑
l2=k2

k3−1∑
l3=k2

T ′
2,3f (l1, l2, l3)

)

+
k3∑

l3=k2

f (k2 + 1, k2 + 1, l3) −
k3+1∑
l3=k2

f (k2 + 1, k3 + 1, l3) −
k3−1∑
l2=k2

f (k2 + 1, l2, k3)

+
k3+1∑

l2=k2+2

f (k3 + 1, l2, k2) +
k3−1∑

l1=k2+2

f (l1, k3, k2) −
k3∑

l1=k2+2

f (l1, k2, k2)

− f (k2, k2, k3) − f (k3 + 1, k2 + 1, k2 + 1).

Finally check that the right-hand side of this equation is equal to the right-hand side in the
statement of the lemma. �

This proves the statement preceding the lemma for n = 2,3. It can easily be extended to
general n by deriving a merging rule for the recursion (2.1). For this purpose we need another
operator. Let f (x, z) be a function on Z2. Then the operator I

y
x,z transforms f (x, z) into a func-

tion on Z by

I
y
x,zf (x, z) := f (y − 1, y) + f (y, y + 1) − f (y − 1, y + 1) = Vx,zf (x, z)

∣∣
x=y,z=y

.

With this definition we have

(k1,...,kn)∑
(l1,...,ln−1)

A(l1, . . . , ln−1) = I
ki

k′
i ,k

′′
i

(k1,...,ki−1,k
′
i )∑

(l1,...,li−1)

(k′′
i ,ki+1,...,kn)∑
(li ,...,ln−1)

A(l1, . . . , ln). (4.1)

Fix a function A(l1, . . . , ln) on Zn and an i with 2 � i � n − 1. Let

A′
x,y(l1, . . . , li−2, ki, ki+1, li+2, . . . , ln) =

(x,ki ,ki+1,y)∑
(li−1,li ,li+1)

A(l1, . . . , ln)

and

A′′
w,x,y,z(k1, . . . , ki−2, ki, ki+1, ki+3, . . . , kn+1) =

(k1,...,ki−2,w)∑
(l ,...,l )

(z,ki+3,...,kn+1)∑
(l ,...,l )

A′
x,y(l1, . . . , ln).
1 i−2 i+2 n
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Then, by (4.1),

(k1,...,kn+1)∑
(l1,...,ln)

A(l1, . . . , ln) = I
ki−1
w,x I

ki+2
y,z A′′

w,x,y,z(k1, . . . , ki−2, ki, ki+1, ki+3, . . . , kn+1).

Define

A∗
x,y(l1, . . . , li−2, ki, ki+1, li+2, . . . , ln)

= −1

2

(
ki+1∑

li−1=ki+1

ki+1∑
li=ki+1

y∑
li+1=ki

T ′
i−1,iA(l1, . . . , ln) +

ki+1∑
li−1=x

ki+1−1∑
li=ki

ki+1−1∑
li+1=ki

T ′
i,i+1A(l1, . . . , ln)

)

+ 1

2

(
ki+1−1∑
li−1=ki

ki+1−1∑
li=ki

Δi(id + Ei−1)T
′
i−1,iA(l1, . . . , li , ki, li+2, . . . , ln)

−
ki+1−1∑
li=ki

ki+1−1∑
li+1=ki

Δi(id + Ei+1)T
′
i,i+1A(l1, . . . , li−2, ki + 1, li , . . . , ln)

)

= 1

2

(
T ′

i−1,iA(. . . , li−2, ki, ki, ki + 1, li+2, . . .) − T ′
i−1,iA(. . . , li−2, ki, ki, ki+1 + 1, li+2, . . .)

+ T ′
i,i+1A(. . . , li−2, ki, ki, ki, li+2, . . .) − T ′

i,i+1A(. . . , li−2, ki+1, ki, ki, li+2, . . .)
)

− T ′
i−1,iA(. . . , li−2, ki, ki+1, ki + 1, li+2, . . .) − T ′

i,i+1A(. . . , li−2, ki, ki, ki+1, li+2, . . .)

and

A∗∗
w,x,y,z(k1, . . . , ki−2, ki, ki+1, ki+3, . . . , kn+1) =

(k1,...,ki−2,w)∑
(l1,...,li−2)

(z,ki+3,...,kn+1)∑
(li+2,...,ln)

A∗
x,y(l1, . . . , ln).

Then, by the first formula in Lemma 3, we have

T ′
ki ,ki+1

(
(k1,...,kn+1)∑

(l1,...,ln)

A(l1, . . . , ln)

)
(k1, . . . , kn+1)

= I
ki−1
w,x I

ki+2
y,z A∗∗

w,x,y,z(k1, . . . , ki−2, ki, ki+1, ki+3, . . . , kn+1). (4.2)

If we use the second formula in Lemma 3, we obtain a similar formula for the case i = 1. By
symmetry an analog formula follows for i = n. These formulas imply the following corollary.

Corollary 1. Suppose A(l1, . . . , ln) is a function on Zn with T ′
li ,li+1

A(l1, . . . , ln) = 0 for all i,
1 � i < n. Then

T ′
ki ,ki+1

(
(k1,...,kn+1)∑

A(l1, . . . , ln)

)
(k1, . . . , kn+1) = 0
(l1,...,ln)
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for all i, 1 � i � n.

We come back to α(n; k1, . . . , kn). By induction with respect to n we conclude that
T ′

ki ,ki+1
α(n; k1, . . . , kn) = 0 for all i, 1 � i < n, if n � 2. (Note that α(2; k1, k2) = k2 − k1 + 1.)

Thus Tki ,ki+1α(n; k1, . . . , kn) = 0 for all i. Therefore, by Lemma 2 and by induction with respect
to n, the polynomial α(n; k1, . . . , kn) is of degree no greater than n − 1 in every ki .

5. Proof of the theorem

In the previous two sections we have seen that the fact that T ′
ki ,ki+1

α(n; k1, . . . , kn) = 0
for all i is fundamental for the computation of the polynomial’s degree. In this section,
however, we demonstrate that this property already determines α(n; k1, . . . , kn) up to a mul-
tiplicative constant. Observe that T ′

ki ,ki+1
A(k1, . . . , kn) = 0 is equivalent with the fact that

(id + Eki+1Δki
)A(k1, . . . , kn) is antisymmetric in ki and ki+1. In the following lemma we char-

acterize functions A(k1, . . . , kn) with the property that

(id + Eki+1Δki
)A(k1, . . . , kn)

is antisymmetric in ki and ki+1 for all i.

Lemma 4. Let A(k1, . . . , kn) be a polynomial in (k1, . . . , kn). Then

(id + Eki+1Δki
)A(k1, . . . , kn)

is antisymmetric in ki and ki+1 for all i, 1 � i � n − 1, if and only if

( ∏
1�p<q�n

(id + Ekq Δkp)

)
A(k1, . . . , kn)

is antisymmetric in k1, . . . , kn.

Proof. First assume that (id + Eki+1Δki
)A(k1, . . . , kn) is antisymmetric in ki and ki+1 for all i.

We have to show that

(id + Ski,ki+1)

( ∏
1�p<q�n

(id + Ekq Δkp)

)
A(k1, . . . , kn) = 0

for all i. For this purpose observe that

(id + Ski ,ki+1)

( ∏
1�p<q�n,(p,q) �=(i,i+1)

(id + Ekq Δkp )

)
(id + Eki+1Δki

)A(k1, . . . , kn)

=
( ∏

1�p<q�n,(p,q) �=(i,i+1)

(id + Ekq Δkp)

)
(id + Ski ,ki+1)(id + Eki+1Δki

)A(k1, . . . , kn) = 0,

because
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∏
1�p<q�n, (p,q) �=(i,i+1)

(id + Ekq Δkp )

=
( ∏

1�p<q�n,
p,q /∈{i,i+1}

(id + Ekq Δkp )

)( ∏
i+1<q�n

(id + Ekq Δki
)

)( ∏
i+1<q�n

(id + Ekq Δki+1)

)

×
( ∏

1�p<i

(id + Eki
Δkp)

)( ∏
1�p<i

(id + Eki+1Δkp)

)

is symmetric in ki and ki+1. Conversely, assume that

( ∏
1�p<q�n

(id + Ekq Δkp )

)
A(k1, . . . , kn)

is antisymmetric in k1, . . . , kn. Consequently,

( ∏
1�p<q�n, (p,q) �=(i,i+1)

(id + Ekq Δkp)

)
(id + Ski ,ki+1)(id + Eki+1Δki

)A(k1, . . . , kn) = 0,

for all i, 1 � i � n − 1. By Lemma 1 the operator
∏

1�p<q�n,(p,q) �=(i,i+1)(id + Ekq Δkp) is
invertible, and therefore (id + Ski,ki+1)(id + Eki+1Δki

)A(k1, . . . , kn) = 0. �
Using this lemma we see that

( ∏
1�p<q�n

(id + Ekq Δkp )

)
α(k1, . . . , kn) (5.1)

is an antisymmetric polynomial in k1, . . . , kn. A product of shift operators does not increase a
polynomial’s degree, and thus the degree of (5.1) in every ki is no greater than n − 1. Every
antisymmetric function in k1, . . . , kn is a multiple of

∏
1�i<j�n(kj − ki), and since this product

is of degree n − 1 in every ki , the expression in (5.1) is equal to C
∏

1�i<j�n(kj − ki), where C

is a rational constant. By Lemma 1,
∏

1�p<q�n(id + Ekq Δkp ) is invertible, and therefore

α(n; k1, . . . , kn) =
( ∏

1�p<q�n

1

id + Ekq Δkp

)
C

∏
1�i<j�n

(kj − ki).

We compute the constant C. We expand α(n; k1, . . . , kn) with respect to the basis
∏n

i=1(ki)mi

and consider the (non-zero) coefficient of the basis element with maximal (mn,mn−1, . . . ,m1) in
lexicographic order. We show by induction with respect to n that (mn,mn−1, . . . ,m1) = (n − 1,

n − 2, . . . ,1,0) and that the coefficient is
∏n

i=1
1 . Assume that the assertion is true for
(i−1)!
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n−1. A careful analysis of the definition of
∑(k1,...,kn)

(l1,...,ln−1)
shows that the “maximal” basis element

of α(n; k1, . . . , kn) with respect to the lexicographic order is the “maximal” basis element of

k2∑
l1=k1

k3∑
l2=k2+1

. . .

kn∑
ln−1=kn−1+1

n−1∏
i=1

(li)i−1

(i − 1)! .

The assertion follows and thus

C =
n∏

i=1

1

(i − 1)! =
∏

1�i<j�n

1

j − i
.

We obtain the following theorem.

Theorem 2. The number of monotone triangles with n rows and prescribed bottom row
(k1, k2, . . . , kn) is equal to( ∏

1�p<q�n

1

id + Ekq Δkp

) ∏
1�i<j�n

kj − ki

j − i
.

By the formula for the geometric series, the inverse of the operator id + Ekq Δkp appearing in
this formula is equal to

∞∑
l=0

(−1)lEl
kq

Δl
kp

.

This follows from the proof of Lemma 1. However, it is also possible to give a similar formula
for α(n; k1, . . . , kn) which does not involve inverses of operators. In order to derive it, we need
the following lemma.

Lemma 5. Let P(X1, . . . ,Xn) be a polynomial in (X1, . . . ,Xn) over C which is symmetric in
(X1, . . . ,Xn). Then

P(Ek1 , . . . ,Ekn)
∏

1�i<j�n

kj − ki

j − i
= P(1, . . . ,1) ·

∏
1�i<j�n

kj − ki

j − i
.

Proof. Let (m1, . . . ,mn) ∈ Zn be with mi � 0 for all i and mi �= 0 for at least one i. It suffices
to show that

∑
π∈Sn

Δ
mπ(1)

k1
Δ

mπ(2)

k2
· · ·Δmπ(n)

kn

∏
1�i<j�n

kj − ki

j − i
= 0.

By the Vandermonde determinant evaluation, we have

∏ kj − ki

j − i
= det

1�i,j�n

((
ki

j − 1

))
.

1�i<j�n
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Therefore, it suffices to show that

∑
π,σ∈Sn

sgnσ

(
k1

σ(1) − mπ(1) − 1

)(
k2

σ(2) − mπ(2) − 1

)
· · ·

(
kn

σ (n) − mπ(n) − 1

)
= 0.

If, for fixed π,σ ∈ Sn, there exists an i with σ(i) − mπ(i) − 1 < 0 then the correspond-
ing summand vanishes. We define a sign reversing involution on the set of non-zero sum-
mands. Fix π,σ ∈ Sn such that the summand corresponding to π and σ does not vanish.
Consequently, {σ(1) − mπ(1) − 1, σ (2) − mπ(2) − 1, . . . , σ (n) − mπ(n) − 1} ⊆ {0,1, . . . , n − 1}
and since (m1, . . . ,mn) �= (0, . . . ,0) there are i, j , 1 � i < j � n, with σ(i) − mπ(i) − 1 =
σ(j) − mπ(j) − 1. Among all pairs (i, j) with this property, let (i′, j ′) be the pair which is mini-
mal with respect to the lexicographic order. Then the summand corresponding to π ◦ (i′, j ′) and
σ ◦ (i′, j ′) is the negative of the summand corresponding to π and σ . �

Observe that
∏

1�p,q�n(1 + Xq(Xp − 1)) is symmetric in (X1, . . . ,Xn). Thus, by Lemma 5,

∏
1�p,q�n

(id + Ekq Δkp)
∏

1�i<j�n

kj − ki

j − i
=

∏
1�i<j�n

kj − ki

j − i
.

Therefore, by Theorem 2,

α(n; k1, . . . , kn) =
( ∏

1�p<q�n

1

id + Ekq Δkp

) ∏
1�i<j�n

kj − ki

j − i

=
( ∏

1�p<q�n

1

id + Ekq Δkp

)( ∏
1�p,q�n

(id + Ekq Δkp)

) ∏
1�i<j�n

kj − ki

j − i

=
( ∏

1�p<q�n

(id + EkpΔkq )

) ∏
1�i<j�n

kj − ki

j − i

and this completes the proof of Theorem 1. �
6. Some further projects

In this section we list some further projects around the formula given in Theorem 1 we plan
to pursue.

(1) A natural question to ask is whether it is possible to derive the formula for the number of
n × n alternating sign matrices (1.1) from Theorem 1, i.e. to show that

[( ∏
(id + EkpΔkq )

) ∏ kj − ki

j − i

]∣∣∣∣
(k1,k2,...,kn)=(1,2,...,n)

=
n∏ (3j − 2)!

(n + j − 1)! .

1�p<q�n 1�i<j�n j=1
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More generally, one could try to reprove the refined alternating sign matrix theorem [10],
which states that the number of n × n alternating sign matrices in which the unique 1 in the
top row is in the kth column is given by

(k)n−1(1 + n − k)n−1

(n − 1)!
n−1∏
j=1

(3j − 2)!
(n + j − 1)! . (6.1)

An analysis of the correspondence between alternating sign matrices and monotone triangles
shows that α(n − 1;1,2, . . . , k − 1, k + 1, . . . , n) is the number of n × n alternating sign
matrices in which the unique 1 in the bottom row is in the kth column and this is by symmetry
equal to (6.1). This could be a consequence of an even more general theorem: computer
experiments suggest that there are other (k1, k2, . . . , kn) ∈ Zn “near” (1,2, . . . , n) for which
α(n; k1, . . . , kn) has only small prime factors. Small prime factors are an indication for a
simple product formula. A similar phenomenon can be observed for some (k1, k2, . . . , kn) ∈
Zn “near” (1,3, . . . ,2n−1). It is not too hard to see that α(n;1,3, . . . ,2n−1) is the number
of (2n + 1) × (2n + 1) alternating sign matrices, which are symmetric with respect to the
reflection along the vertical axis. Kuperberg [5] showed that the number of these objects is

n!
(2n)!2n

n∏
j=1

(6j − 2)!
(2n + 2j − 1)! .

(2) Let β(n; k1, . . . , kn) denote the number of monotone triangles with prescribed bottom row
(k1, . . . , kn) that are strictly increasing in southeast direction. With this notation, Theorem 1
states that

α(n; k1, . . . , kn) =
( ∏

1�p<q�n

(id + EkpΔkq )

)
β(n; k1, . . . , kn). (6.2)

It would be interesting to find a bijective proof of this formula in the following sense: if we
expand the product of operators on the left hand side we obtain a sum of expressions of the
form

E
a1
k1

E
a2
k2

· · ·Ean

kn
Δ

b1
k1

Δ
b2
k2

· · ·Δbn

kn
β(n; k1, . . . , kn)

with ai, bi ∈ {0,1,2, . . .}. We can interpret these expressions as sums and differences of
cardinalities of certain subsets of monotone triangles with n rows. For instance,

Δkq β(n; k1, . . . , kn)

is the number of monotone triangles that are strictly increasing in southeast direction and
with bottom row (k1, . . . , kq + 1, . . . , kn) such that the (q − 1)-st part of the (n− 1)-st row is
equal to kq minus the number of monotone triangles that are strictly increasing in southeast
direction and with bottom row (k1, . . . , kn) such that the qth part of the (n−1)-st row is equal
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to kq . In order to prove (6.2), one has to show that these cardinalities add up to the number
of monotone triangles. Equivalently, one could follow a similar strategy for the identity

( ∏
1�p<q�n

(id + Ekq Δkp )

)
α(n; k1, . . . , kn) = β(n; k1, . . . , kn)

which is equivalent to Theorem 2.
(3) This is more a remark than another project: to prove Theorem 1 I have more or less carried

out an analysis of the recursion (2.1). I originally started this analysis when considering a
somehow reversed situation: let an (r, n) monotone trapezoid be a monotone triangle with
the top n − r rows cut off and bottom row (1,2, . . . , n). Let γ (r, n; k1, . . . , kn−r+1) denote
the number of (r, n) monotone trapezoids with prescribed top row (k1, . . . , kn−r+1). In par-
ticular, γ (n,n; k) is the number of monotone triangles with n rows, bottom row (1,2, . . . , n)

and k as entry in the top row. In the bijection between alternating sign matrices and monotone
triangles, the entry in the top row of the monotone triangle corresponds to the column
of the unique 1 in the first row of the alternating sign matrix. Thus, γ (n,n; k) must be
equal to (6.1). On the other hand, we can also use (2.1) to compute γ (r, n; k1, . . . , kn−r+1):
γ (1, n; k1, . . . , kn) = 1 and

γ (r, n; k1, . . . , kn−r+1) =
(1,k1,...,kn−r+1,n)∑

(l1,...,ln−r+2)

γ (r − 1, n; l1, . . . , ln−r+2).

With this extended definition, γ (n,n; k) is a polynomial in k. In the following we list it for
n = 1,2, . . . ,6.

γ (1,1; k) = 1,

γ (2,2; k) = −1 + 3k − k2,

γ (3,3; k) = 1

12

(
48 − 92k + 103k2 − 40k3 + 5k4),

γ (4,4; k) = 1

72

(−2160 + 5910k − 5407k2 + 2940k3 − 919k4 + 150k5 − 10k6),
γ (5,5; k) = 1

1440

(
584640 − 1644072k + 1970008k2 − 1211172k3 + 456863k4

− 111708k5 + 17462k6 − 1608k7 + 67k8),
γ (6,6; k) = 1

7560

(−73316880 + 225502200k − 284097336k2 + 204504097k3

− 91897169k4 + 27466950k5 − 5651016k6 + 805518k7 − 77646k8

+ 4655k9 − 133k10).
Unfortunately, these polynomials are not equal to (6.1). (For instance, they do not factor
over Z.) They only coincide on the combinatorial range {1,2, . . . , n} of k. However, it might
still be possible to compute γ (n,n; k) for general n.
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Strikingly the degree of γ (n,n; k) in k is 2n − 2 as the degree of (6.1). This linear growth
is again unexpected because the application of (2.1) can more than double a polynomial’s
degree, see Section 2. However, one can use Lemma 2 and an extension of Lemma 3 to show
that, more generally, the degree of γ (r, n; k1, . . . , kn−r+1) is 2r − 2 in every ki .

(4) Finally we have started to investigate a q-version of the formula in Theorem 1, i.e. a weighted
enumeration of monotone triangles with prescribed bottom row (k1, . . . , kn) which reduces
to our formula as q tends to 1.

References

[1] D.M. Bressoud, Proofs and Confirmations, The Story of the Alternating Sign Matrix Conjecture, Cambridge Univ.
Press, Cambridge, 1999.

[2] I. Fischer, A method for proving polynomial enumeration formulas, J. Combin. Theory Ser. A 111 (2005) 37–58.
[3] I. Fischer, Another refinement of the Bender–Knuth (ex-)conjecture, European J. Combin 27 (2006) 290–321.
[4] G. Kuperberg, Another proof of the alternating sign matrix conjecture, Int. Math. Res. Not. 1996 (1996) 139–150.
[5] G. Kuperberg, Symmetry classes of alternating sign matrices under one roof, Ann. of Math. (2) 156 (2002) 835–866.
[6] W.H. Mills, D.P. Robbins, H. Rumsey, Alternating sign matrices and descending plane partitions, J. Combin. Theory

Ser. A 34 (3) (1983) 340–359.
[7] D.P. Robbins, H. Rumsey, Determinants and alternating sign matrices, Adv. Math. 62 (2) (1986) 169–184.
[8] R.P. Stanley, Enumerative Combinatorics, vol. 2, Cambridge Univ. Press, 1999.
[9] D. Zeilberger, Proof of the alternating sign matrix conjecture, The Foata Festschrift, Electron. J. Combin. 3 (2)

(1996) R13, 84 pp. (electronic).
[10] D. Zeilberger, Proof of the refined alternating sign matrix conjecture, New York J. Math. 2 (1996) 59–68 (electronic).


