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Abstract

We show it is possible to tile three-dimensional space using only tetrahedra with acute dihedral ang
present several constructions to achieve this, including one in which all dihedral angles are less than 74◦, and
another which tiles a slab in space.
 2004 Elsevier B.V. All rights reserved.
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1. Problem definition

Triangulations of two and three-dimensional domains find numerous applications in sci
computing, computer graphics, solid modeling and medical imaging. Most of these applications
a quality constraint on the elements of the triangulation. Among the most popular quality crite
elements [5] are the aspect ratio (circumradius over inradius), the minimum dihedral angle, a
radius-edge ratio (circumradius over shortest edge). However, many other quality criteria hav
considered, including maximum dihedral angle. Bern et al. for instance, studied nonobtuse triang
[3,6], where domains are meshed with simplices having no obtuse angles. In this paper, we co
slightly stronger quality constraint: all the dihedral angles in the mesh are forced to be acute (stric
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than 90◦). Although acuteness seems only slightly stronger than nonobtuseness, this problem turns out
to be considerably harder than the nonobtuse triangulation problem, as we observe below in Section 3.
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Definition. An angle isacute if it is strictly less than a right angle (π2 = 90◦). A simplex isacute if all its
(interior) dihedral angles are acute. A triangulation isacute if all of its simplices are acute.

Problem 1. Given a domainΩ , compute an acute triangulation ofΩ .

There has been extensive work on the two-dimensional version of this problem, for the specia
where the domainΩ is a triangle, square, quadrilateral, or a finite point set [6,11,26,33,34,36]. We r
those results in Section 3. In three-dimensional space, however, although the problem was posed
as 1991 [40] almost nothing has been known about acute triangulations before now. To the bes
knowledge, even the following relaxed form of the problem, where the input domain is the entire
had not been addressed in the literature.

Problem 2. Is it possible to tile three-dimensional Euclidean space using acute tetrahedra?

We present an affirmative answer to this question, by several different constructions. Th
dimensional analog of this problem has a trivial positive answer: congruent copies of any single t
will tile the plane. However, this idea does not extend to three dimensions, as the regular tetrahed
instance) cannot tile space. All tetrahedra known to tile space have right angles, as further disc
Section 3.

We started this research on acute triangulations because of a method developed for space-time
which required an acute base mesh. This and our other motivations are discussed in Section 2. S
surveys previous research in acute triangulations. Section 4 investigates what acuteness means f
dimensional simplex and gives a comparison of acute and Delaunay triangulations. Construction
three-dimensional space, and hence solving Problem 2, are given in Section 5. The paper conc
Section 6 with a quality assessment of these constructions and directions for future research.

2. Motivation

We were originally motivated to study acute triangulations by the space-time meshing algori
Üngör and Sheffer [46]. Thistent-pitcher algorithm was designed to discretize space-time domains
meshes that obey a certain cone constraint, which requires all faces in the mesh to have small
than the cones that define the domain of influence imposed by the numerical (engineering) p
(For instance, we might require simply that all faces make at most a 45◦ angle with the horizontal.
Because there is then a well-defined direction of information flow across element boundarie
meshes enable the use of very efficient element-by-element methods (including space-time disco
Galerkin methods) to solve a wide variety of numerical problems, for instance in elastodynamic
tent-pitching algorithm starts with a space mesh of the two- or three-dimensional input doma
constructs the space-time mesh using an advancing front approach. The algorithm is known to g
a valid space-time mesh if the initial space mesh is an acute triangulation [46], but may fail if ther
obtuse angle or even a right angle.
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Fig. 1. An almost regular triangulation of a cube with a hole (A. Fuchs); (a) the point set of a body-centered cubic (BCC
overlaid with the domain; (b) the adjusted point set; (c) the conforming Delaunay triangulation.

Later, Erickson et al. [17] proposed an improved version of the tent-pitching algorithm. By rem
the acute angle requirement, the new space-time algorithm works over arbitrary spatial do
However, there is a loss of efficiency (more elements are required) whenever there is a nonacute

Thus the study of Problem 1 is motivated by current space-time meshing algorithms. But
solution to Problem 2 is useful, since it leads to a better understanding of the acute triangulation p
for more general input domains, and it also finds some direct applications in mesh generation.

Spatial tilings of high quality have been used for designing meshing algorithms: Fuchs [24],
and Smith [18,20], Naylor [38] and Molino et al. [37] built meshes by overlaying standard tilings
the given polyhedral domain. They used tilings known at the time, such as Sommerville constr
(Fig. 5) and subdivided cubes (Fig. 7), which we discuss in Section 3.2. Their approach has thre
illustrated in Fig. 1:

(a) Overlay the chosen tiling with the given domain. The main challenge in this step is finding th
scaling, location and orientation for the tiling so that it matches the domain boundary as clo
possible.

(b) Adjust the points to get a better fit. For this purpose, one of the standard smoothing tech
[10,19,23] can be used. Alternatively, Fuchs [24] suggested minimizing a function which pen
configurations that produce irregular vertices.

(c) Construct the mesh by computing the conforming Delaunay triangulation of the adjusted po
and the domain boundary.

Fuchs [24] reports good performance of his experiments when he used the second Som
construction (Fig. 5(b)) as the space tiling. (This tiling is the Delaunay triangulation of the body-ce
cubic lattice.) The dihedral angles of his mesh in Fig. 1(c) range between 7.6◦ and 168.2◦. However,
most of the angles (here and also in his meshes of similar geometric domains) cluster arou◦
and 90◦, which are exactly the dihedral angles of the BCC tetrahedron in the input tiling. Some
constructions we propose in Section 5 are considerably better in terms of dihedral angles and a
quality measures. Our new constructions can find immediate use to improve the results of this p
research [18,20,24,37,38] on tiling-based meshing.
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3. Background

3.1. Acute and nonobtuse triangulations
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There has been considerable research [1,3,5,7,15] on the nonobtuse triangulation problem
imposes a slightly weaker constraint than the acute triangulation problem. Angles in a non
triangulation are less than or equal to 90◦. Bern et al. [3] showed that anyd-dimensional point se
of sizen can be triangulated with O(n�d/2�) simplices, none of which has any obtuse dihedral ang
However, they also proved that a similar bound depending only onn andd, and not on the geometry o
the input points, is not possible if all angles are required to be at most 90◦−ε. This indicates that th
acute triangulation problem is much more challenging than nonobtuse triangulation. To appreci
difference, consider the two problems for a square domain in two dimensions. A single diagona
square into two nonobtuse triangles, as in Fig. 2(a). Finding an acute triangulation, however, c
challenging recreational math problem.

Lindgren [33] showed that at least eight triangles, as in Fig. 2(b), are needed. Later, Cass
Lord [11] showed that for anyn � 10 (but not forn = 9) there is an acute triangulation with exactlyn
triangles. Fig. 2(c) shows the solution with ten triangles. We can use the maximum angle in a triang
as a quality measure. The triangulations in Fig. 2(b), (c) can be realized with maximum angles ab◦
and 80.3◦, respectively. Eppstein [16] improved this angle to 72◦ using fourteen acute triangles, as sho
in Fig. 2(d). Using Euler’s formula, Eppstein also showed that any acute triangulation of a squar
have an interior vertex of valence five, implying that 72◦ is the best possible. It is unknown whether th
is a triangulation achieving this with fewer than fourteen triangles.

The acute triangulation problem has been studied for other simple polygons as well. Gardn
asked the question for triangles. Manheimer proved that seven acute triangles are necessary and
to subdivide a nonobtuse triangle [36]. Recently, Maehara [34] showed that an arbitrary quadr
can be tiled by 10 (but perhaps not by any fewer) acute triangles. Gerver [27] considered the p
of finding triangulations with a stricter upper bound (between 72◦ and 60◦) on their angles, and gav
necessary conditions for a polygonal domain to have such a triangulation. If we restrict ourse
two-dimensional point sets, a solution to the acute triangulation problem is given by Bern et al. [6]
approach starts with a quadtree, and replaces the squares by tiles with protrusions and indentatio
shows sample tiles together with an acute triangulation resulting from their algorithm.

Fig. 2. (a) Nonobtuse triangulation of a square; (b) a square meshed with eight acute triangles; (c) a square meshe
acute triangles; (d) triangulation where maximum angle is 72◦.
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Fig. 3. Acute triangulation gadgets and their use on a point set (M. Bern and D. Eppstein [6]).

Fig. 4. The regular tetrahedron does not tile space.

Krotov and Ǩrížek [31] studied refinement methods to subdivide a nonobtuse tetrahedral partitio
another finer one. Unfortunately, they called the resulting triangulationsacute type instead ofnonobtuse
even though 90◦ dihedral angles were ubiquitous in them. Another related work is by Hangan, Ito
Zamfirescu [29,30] who studied acute surface triangulations of certain special shapes such as
sphere and icosahedron.

3.2. Acute and nonobtuse tilings

Aristotle claimed that regular tetrahedra could meet five-to-an-edge to tile space, and this cla
repeated over the centuries (see [39]). This of course is false, because the dihedral angle of a
tetrahedron is not 72◦ but arccos13 ≈ 70.53◦. Fig. 4 shows the small gap left when five tetrahedra
placed around an edge.

There are, however, tetrahedral shapes which can tile space. Sommerville [42] found fou
tetrahedra, shown in Fig. 5. Four decades later, Davies [13] and Baumgartner [2] indepe
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Fig. 5. Sommerville tetrahedra. The first tetrahedron is half of the third. The fourth tetrahedron is one fourth of the se

Fig. 6. Family of space tilings. The edges with lengthc have valence four. Hence some of the dihedral angles along these
must be nonacute.

rediscovered three of the Sommerville tetrahedra; Baumgartner also found a new example. Goldb
surveyed the list of all known space-tiling tetrahedra, and found three infinite families, including th
shown in Fig. 6(a).

The construction of this family is based on a tiling of the plane by equilateral triangles of side-
e. The infinite prism over each triangle is filled with tetrahedra whose sides are 3a, b, b, b, c, c, where
b2 = a2 + e2 andc2 = 4a2 + e2, as shown in Fig. 6. Since the ratioa/e is arbitrary, there is a continuou
family of tetrahedral space-fillers of this type. Goldberg’s two other families can be derived sim
cutting these tetrahedra into two congruent pieces, either by the triangleCDMAB , or by the triangle
ABMCD , whereMAB andMCD are the midpoints of the segmentsAB andCD, respectively. Notice tha
the second type of cut (throughABMCD) results in nonconforming triangulations. Whether the lis
space-tiling tetrahedra is complete or not is still an open problem [14,39]. None of the known spac
tetrahedra is acute (although several are nonobtuse). In fact, the tilings all contain edges of valen
(In Goldberg’s family, these are the edges of lengthc.)
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Fig. 7. Cube subdivided into (a) 5 or (b) 6 tetrahedra.

Fig. 8. Low-quality tetrahedra that can be acute: spire, splinter and wedge.

Since it seems likely that there is no tiling of space by congruent acute tetrahedra, we will now co
tilings with several shapes of tetrahedra. There are now many more ways to fill space, for insta
subdividing the cube into five or six tetrahedra as in Fig. 7. These tilings also, of course, have 90◦ dihedral
angles, and so are nonobtuse but not acute.

There are many results (like minmax and maxmin angle results) known about optimality of De
triangulations in the plane. But these do not extend to three dimensions, and little is yet known
optimum triangulations in space. Thus it is not surprising that the constructions of acute triangu
do not easily extend from two to three dimensions. It is remarkable that acute triangulations of sp
be constructed at all.

4. Acute tetrahedra

An acute tetrahedron does not necessarily have high quality in terms of either aspect ratio or
edge ratio. Low-quality tetrahedra have been classified into nine types [12], and three of these (th
splinter and wedge in Fig. 8) can have all their dihedral angles acute. However, fortuitously, the tet
in our constructions are mostly quite close to regular, and are high-quality for use in mesh genera
numerical simulations.

4.1. Acuteness test

By definition, a tetrahedron is acute if each of its six dihedral angles is less than 90◦.
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Lemma 1. Consider an edge ab of a tetrahedron abcd , and let Π denote projection to a plane normal to
ab. The dihedral angle along ab is acute if and only if Π(a) = Π(b) lies strictly outside the circle with
diameter Π(c)Π(d).
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Proof. The dihedral angle alongab is by definition the angle	 Π(c)Π(a)Π(d); the lemma follows from
standard plane geometry (Thales’ theorem, see Fig. 9(c)).✷

This lemma can be applied to each of the edges of a tetrahedron. We now examine some a
criteria for acuteness.

Lemma 2. A tetrahedron is acute if and only if the orthogonal projection of each vertex onto the plane
of the opposite facet lies strictly inside that facet. An acute tetrahedron has acute facets, but not every
tetrahedron with acute facets is itself acute.

Proof. Suppose the projectionp of a vertexd is not inside the opposite triangle
abc. Thenp lies in
one of the six other regions of the plane determined by the edges of
abc, as depicted in Fig. 9(a). The
the dihedral angle along Any extended edge of
abc that separates this region from the triangle m
then be an edge whose dihedral angle in the original tetrahedron is nonacute. (If the projection
extended edge, then the corresponding dihedral angle is exactly 90◦.) Conversely, if the dihedral ang
along edgeab is nonacute, thend projects outside
abc, as in Fig. 9(b).

Fig. 9. Acuteness tests: (a) if vertexd projects outside
abc, the label shows which edges have obtuse dihedral angles;
the dihedral angle alongab is obtuse, bothc andd project outside their opposite triangles; (c) Thales’ theorem says tha
angle atab is acute exactly when it lies outside the circle with diametercd; (d) if the vertexd projects inside the triangleabc
then the face angle	 bac is smaller than the dihedral angle onad.
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We prove the second statement in contrapositive form, while noting that nonacute sliver tetrahedra
can have acute face angles. Suppose tetrahedronabcd has a nonacute face angle	 bac; we will show the
tetrahedron is nonacute. If the projection ofd onto
abc is not in the interior we are done by the first part
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of the lemma. Otherwise, we claim the dihedral angle alongad is larger than	 bac and thus is nonacute
To check the claim, remember the spherical dual law of cosines (see [45]):

cosd ′ = −cosb′ cosc′ + sinb′ sinc′ cos	 bac,
whereb′, c′ andd ′ are the dihedral angles along the edgesab, ac andad, respectively. (See Fig. 9(d)
Assumingb′, c′ < π

2 , this gives cosd ′ < cos	 bac as desired. ✷
4.2. Acuteness of Delaunay triangulations

Given a set of vertices, the Delaunay triangulation is optimal in many ways. However, a De
triangulation in any dimension can have obtuse angles. In this section, we investigate the co
whether an acute triangulation is necessarily the Delaunay triangulation for its vertices. The
is positive in the plane, but negative in three-space. The following appears to be folklore; it was a
without proof by Bern et al. [6].

Lemma 3. Any acute two-dimensional triangulation T is Delaunay.

Proof. SinceT is acute, the diametral circle of each edge is empty of other vertices. By defin
this means the edge is in the Gabriel graph [25] of the vertex set, which is a subgraph of the De
triangulation. But since the edges ofT form a triangulation, it must be the entire Delaunay triangulat
See also Fig. 10(a).✷
Corollary. If an acute triangulation of a two-dimensional vertex set exists then it is unique.

Lemma 4. There is an acute triangulation T in three dimensions which is not Delaunay.

Proof. Consider a “cube corner” tetrahedron, and glue it to a copy of itself across the equi
face. Then move the two corner vertices away from each other a tiny amount to make the tet

Fig. 10. (a) Acute triangles in the plane are Delaunay. An alternate proof uses the fact that the circumcircle is contain
union of the three diametral circles around the edges. (b) An example of an acute triangulation in space which is not D
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acute. In coordinates, take a suitable smallε > 0, and leta = (−ε,−ε,−ε), b = (1,0,0), c = (0,1,0),
d = (0,0,1) and e = (2/3 + ε,2/3 + ε,2/3 + ε). The two tetrahedraabcd and bcde are acute, but
the Delaunay triangulation of these five points consists of three tetrahedra:abce, acde andabde, as in
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Fig. 10(b), becausee is inside the circumsphere ofabcd. Note that the three Delaunay tetrahedra
obtuse, having 120◦ dihedral angles along edgeae. The acute triangulation we started with is obtain
by performing a 3-to-2 flip on the Delaunay triangulation.✷

In two dimensions, a triangle is acute if and only if its circumcenter lies inside the triangle. G
an acute (Delaunay) triangulation, the dual Voronoi tessellation thus provides an orthogonal du
whose nodes are inside the corresponding triangles. For this reason, Bossavit has sugges
that acute triangulations are useful in computational electromagnetics. In three dimensions, a
tetrahedron can fail to contain its own circumcenter (as with the example in the lemma abov
conversely a tetrahedron that contains its circumcenter can fail to be acute (as with a symmetric
Many of the triangulations we construct below are built from tetrahedra containing their circumce
but we have not investigated this problem in detail.

5. Constructions for acute tilings

5.1. TCP triangulations

Our first set of acute triangulations basically come from the crystallography literature. Here we
some known results and refer the reader to [43,44] for more details. Chemists studying alloys
transition metals have often found that since the two types of atoms are similar (but slightly diff
in size, the Delaunay triangulation of their positions is built of nearly regular tetrahedra. Thes
(tetrahedrally close packed) structures were first described by Frank and Kasper [21,22] and ha
studied extensively by the Shoemakers [41] among others.

A combinatorial definition of the TCP class was given by Sullivan [43]: A triangulation is called
if every edge has valence 5 or 6, and no triangle has two 6-valent edges. This definition includes
chemically known TCP structures, but also allows some new structures [44] not yet seen in natur

It is not hard to check that the definition allows exactly four types of vertex star in a TCP triangu
Dually, the Voronoi cell around any vertex has one of the four combinatorial types shown in Fig. 11
are the polyhedra with pentagonal and hexagonal faces but no adjacent hexagons. (It is interes
these dual structures are seen in some other crystal structures: in some zeolites, silicon dioxide
the Voronoi edges, while in clathrates, water cages along the Voronoi skeleton trap large gas mo

Fig. 11. Foam cells with pentagonal and hexagonal faces.
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Fig. 12. The Voronoi cells for the three basic TCP structures, A15, Z and C15.

Fig. 13. The vertices of the C15 triangulation are at the centers of these balls.

All known TCP structures can be viewed as convex combinations of the three basic ones (calle
Z and C15) shown in Fig. 12. There are many ways to understand these structures [43]. To constr
we can start with a BCC lattice. Its Delaunay triangulation is the Sommerville tiling shown in Fig.
since the edges have even valence the tetrahedra can be colored alternately black and white. I
the BCC lattice together with the circumcenters of all black tetrahedra, we have the vertices o
their Delaunay tetrahedra are all now nearly regular. Similarly, the C15 structure arises from the d
lattice by adding selected circumcenters, and the Z structure can be obtained similarly startin
hexagonal prisms.

The C15 structure (also known as the cubic Friauf–Laves phase) is shown in Fig. 13, where
spheres are centered on a diamond lattice (FCC together with a certain translate) and the blue sp
at selected circumcenters.

In any triangulation of space, the average dihedral angle multiplied by the average edge va
exactly 360◦. If a tiling could be made of regular tetrahedra, the average edge valence would t
n0 := 360◦/arccos(1

3) ≈ 5.1043. But by symmetry, the regular tetrahedron is a critical point for ave
dihedral angle, so any tiling made of nearly regular tetrahedra should have average valence qu
to n0. Indeed, all known TCP structures have average valence between 51

10 and� 51
9, the values for C15

and A15.
Sullivan [44] has formalized a construction suggested by Frank and Kaspar for mixing the bas

structures. Start with any tiling of the plane by copies of an equilateral triangle and a square, li
of the four shown in Fig. 14. Suppose the side length of the square and triangle is 4. Mark bla
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Fig. 14. Four simple periodic square/triangle tilings of the plane which lead to the TCP structures named (a) Z; (b) A1σ ;
and (d) H.

white dots on the tilings as shown. (The dots are at edge midpoints, at triangle centers, and at di
from the sides of the squares.) Then the vertices of the corresponding TCP structure are at heighk − 1
above the black dots, at heights 4k + 1 above the white dots, and at heights 4k and 4k + 2 above the
vertices of the square/triangle tiling. (Herek ranges over all integers.)

Again, in each case the TCP triangulation is simply the Delaunay triangulation of this pe
point set. See Fig. 16. The triangulations constructed in this way are all combinations of the A
Z structures. A more complicated variant of this construction [44] builds combinations of the
C15 structures, again starting from an arbitrary square/triangle tiling.

Especially in the mixed structures likeσ and H, the particular geometry we have described here
differ slightly from that found in the actual crystals with the same combinatorics. Presumably, these
adjustments do not affect the shapes of the tetrahedra very much. The quality figures we prese
are measured using the exact geometry we have just described.

Sullivan’s original interest in these structures was for the mathematical study of foam geomet
Kelvin problem asks for the most efficient partition of space into unit-volume cells, that is, fo
partition with least surface area. Lord Kelvin’s suggested solution was a slightly relaxed form
BCC Voronoi cells (truncated octahedra). But in 1994, Weaire and Phelan [47] discovered that a
form of the Voronoi cells for the TCP structure A15 is more efficient than the Kelvin foam [32].

It is perhaps not surprising that TCP structures are related to foams: Plateau’s rules for singula
soap films minimizing their surface area imply that a foam is combinatorially dual to some triangu
preferably one with nearly regular tetrahedra. It is an interesting question whether any triang
meeting the combinatorial definition of TCP can be built with tetrahedra close to regular, but ce
for the known TCP structures this seems always to be the case. Thus our acute triangulations aris
this construction have high quality by almost all measures.

5.2. Icosahedral construction of the Z structure

An alternate construction for the TCP Z structure is inspired by the work of Field [18]. His ti
involved right-angled tetrahedra, but by selectively adjusting the point set, we obtain a tiling with
acute tetrahedra. A regular icosahedron can be subdivided into 20 acute (and nearly regular) te
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Fig. 15. Icosahedron construction.

simply by coning to the center point. We place icosahedra in a hexagonal lattice in the plane, eac
same orientation, touching edge to edge, as in Fig. 15.

This layer then gets repeated vertically, with each icosahedron sharing a horizontal face with t
just above and below it. Our point set is then the vertices and centers of all the icosahedra. Its D
triangulation, shown in Fig. 16(d), is combinatorially the TCP Z structure, but with slightly diffe
geometry than that constructed before. The horizontal faces (seen head-on as equilateral tria
Fig. 15) are shared by two icosahedra. Each other face separates an icosahedron from one o
types of Delaunay tetrahedra that fill the gaps. There are two types of gaps. The deeper gaps ar
by the pointsa, b, c, d, e, f, g andg′ (the mirror image ofg with respect to the plane throughb, d andf );
they are filled with two types of tetrahedra, e.g.,bdfg andabfg. The shallower gaps are defined by t
pointsd,f,h, i, j, k, e ande′ (the mirror image ofe with respect to the plane throughf , k andi); they
are filled with two types of tetrahedra, e.g.,ee′df andee′f h.

Notice that in our triangulation we use only the vertices of the icosahedra. This differs from F
construction [18] which introduces additional points to triangulate the shallower gaps.

5.3. An acute triangulation of a single slab

The acute triangulations we have described so far, though periodic, do not have any planar bo
within them. Here we describe an acute triangulation of a slab (which can of course be repeate
all of space). We view this as partial progress towards the problem of triangulating an arbitrary d
although it seems much harder to find an acute triangulation of a cube or even an infinite squar
We triangulate the bottom half of the slab in the following eight steps. Leth be the height of the slab an
γ = h/14.2.

1. Start with a grid of equilateral triangles of side length 6γ on the base plane, as in Fig. 17(a).
2. Place a nearly regular tetrahedron (with height 4γ ) over each triangle, as in Fig. 17(b).
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Fig. 16. Acute triangulations filling space. (a) The TCP structure Z (from a triangle tiling). (b) The TCP structure A15 (
square tiling). (c) The TCP structureσ , a mixture of A15 and Z. (d) Icosahedron construction of Fig. 15.

3. Add a tetrahedron in the gap between each pair of adjacent tetrahedra, as in Fig. 17(c). The
surface has deep hexagonal dimples at the original vertices in the base plane.

4. Add six tetrahedra in each dimple, each with one vertex on the starting plane, two vertices a
4γ , and one new vertex at height 4.6γ over the starting vertex, as in Fig. 17(d). Now we hav
surface with shallow hexagonal bumps.

5. Place a vertex at height at 7.1γ over the midpoint of the edge between each pair of adjacent bu
Each such vertex and edge form a vertical triangle; let this separate two new tetrahedra
fourth vertices are the two nearby bump vertices, as in Fig. 17(e). The surface is now cove
tall diamond-shaped bumps.

6. Place a tetrahedron between each adjacent pair of bumps, as in Fig. 17(f). We now h
alternating grid of medium-depth six-sided holes (over each of the shallow hexagonal bump
deep tetrahedral holes (over the points where three of the shallow hexagonal bumps meet).

7. Fill each tetrahedral hole, to form a surface alternating between six-sided holes and flat trian
in Fig. 17(g).
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yers above

-height
ight of
Fig. 17. Eight steps in filling a slab with acute tetrahedra. The nodes in the base plane are colored white; successive la
that plane are then colored yellow, red, blue and black, in order.

8. Place six tetrahedra into each medium-height hexagonal hole to turn it into a medium
hexagonal bump, as in Fig. 17(h). In order to make the bumps equal to the holes, the he
the new vertices is chosen as[2(7.1− 4.6)+ 4.6]γ = 9.6γ .

To complete the triangulation of the slab, we now repeat the first seven steps in reverse order.
Any of the constructions given in this section serves to prove our main result:

Theorem 1. It is possible to tile three-dimensional Euclidean space with acute tetrahedra.
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6. Conclusions

6.1. Evaluation of the constructions
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We report in Table 1 the quality of the tetrahedra used in our constructions in comparis
the Sommerville tetrahedra, the cube subdivision tetrahedra and the regular tetrahedron. F
construction we list the radius-edge ratio of the best and the worst quality tetrahedra as
the extreme dihedral angles. The radius-edge ratio of a tetrahedron is the ratio of its circum
to the length of its shortest edge. Tetrahedra with smaller radius-edge ratio are preferable i
of the applications discussed in Section 1. Also, the smaller the largest dihedral angle a
larger the smallest dihedral angle, the better a construction is. A study of Table 1 indicates t
constructions are superior in quality to three of the four Sommerville tetrahedra and competitiv
Sommerville II and with the cube subdivisions. Thus our constructions are quite suitable for
generation.

As far as the bounds on dihedral angles, the TCP structure C15 is the best of our construction
that given any vertexv in any triangulation, there must be some edges of valence less than six in
to v. (Otherwise the cell aroundv in the dual complex would be a polyhedron whose faces all hav
least six sides, contradicting Euler’s formula.) Thus every triangulation must have some dihedral
at least 72◦; our C15 structure comes close to this limit. Conversely, any acute triangulation of flat
must have some edge of valence at least six. (Otherwise each edge has valence exactly five
triangulation would be spherical. We expect in fact that the acuteness hypothesis here is unne
Thus there is some dihedral angle less than or equal to 60◦; our C15 structure exactly achieves th
bound.

Table 1
The quality of the tetrahedra in our constructions (and of the regular tetrahedron) can be measured in terms of the ra
ratio and the extreme dihedral angles

Construction Radius-edge Smallest Largest
ratio dihedral angle dihedral angle

min max min max min max

TCP Z from triangle tiling .651 .737 53.13 67.37 73.89 77.07
TCP A15 from square tiling .645 .707 53.13 67.79 73.39 78.46
TCPσ .645 .737 53.13 67.79 73.39 78.46
TCP C15 .612 .711 60 70.53 70.53 74.20
TCP Z from icosahedra .629 1.000 41.81 69.09 71.99 83.62
Slab .636 .938 46.83 67.88 74.39 87.70

Sommerville I (Fig. 5(a)) 1.118 1.118 45 45 90 90
Sommerville II (Fig. 5(b)) .645 .645 60 60 90 90
Sommerville III (Fig. 5(c)) .866 .866 45 45 120 120
Sommerville IV (Fig. 5(d)) 1.581 1.581 30 30 131.81 131.81
Cube V (Fig. 7(a)) .612 .866 54.73 70.53 70.53 90
Cube VI (Fig. 7(b)) .866 .866 45 45 90 90

Regular tetrahedron .612 .612 70.53 70.53 70.53 70.53
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6.2. Future research

There are still some challenges left to make use of these tilings in real-life meshing techniques.
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A strategy is required to fit the tilings into a planar projection of the spatial domain. Malkevitch s
this problem in [35]. He describes the conditions for a polygon to be tiled by squares and equ
triangles. Also, even though one of our constructions fits between two parallel planes in a slab
them have dimples (cavities on the surface) in most directions, making them not very suitable for m
domains with flat surfaces.

Open problems related to this work include the following:

1. How efficiently can we test whether a three-dimensional point set forms the vertices of an
triangulation, and find such a triangulation if it exists? The planar version of this problem is s
by Delaunay triangulation, but Lemma 4 provides a counter-example to this approach in
dimensions. Alternatively, one could use a triangulation algorithm that minimizes the max
angle [4]. However, such an algorithm is yet to be developed for three-dimensional domains.

2. Are these constructions the best possible? For instance, which tiling of space with tetr
minimizes the maximum dihedral angle?

3. Is it possible to tile the space with congruent copies of some single acute tetrahedron?
4. Is it possible to subdivide a cube (or even an acute tetrahedron) into acute tetrahedra?
5. Can the gadget-based acute triangulation methods of [6] be extended to an algorithm for fi

strictly acute triangulation of any three-dimensional point set?
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