L

View metadata, citation and similar papers at core.ac.uk brought to you byf\‘: CORE

provided by Elsevier - Publisher Connector

Avallable onllne at www.sciencedirect.com

Fournal gof

"2:*"ScienceDirect MATHEMATICAL
ANALYSIS AND

APPLICATIONS

www.elsevier.com/locate/jmaa

ELSEVIER J. Math. Anal. Appl. 332 (2007) 279-291

Zeros of solutions of certain second order linear
differential equation ™

Jin Tu**, Zong-Xuan Chen®

4 School of Mathematical Sciences, Beijing Normal University, Beijing 100875, PR China
b School of Mathematical Sciences, South China Normal University, Guangzhou 510631, PR China

Received 13 January 2006
Available online 17 November 2006
Submitted by E.J. Straube

Abstract

In this paper, we investigate the exponent of convergence of the zero-sequence of solutions of the differ-
ential equation

£+ (211 1 02e7@ 1 03M9) =0, (13)

where P|(z), P»(z), P3(z) are polynomials of degree n > 1, Q1, Q», Q3 are entire functions of order less
than n.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction and results

We shall assume that reader is familiar with the fundamental results and the standard notations
of the Nevanlinna’s value distribution theory of meromorphic functions (e.g., see [1,2]). We will
use the notation o (f) to denote the order of growth of meromorphic function f(z), A(f) to
denote the exponent of convergence of the zero-sequence of f(z).
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For second order linear differential equation
f 4 (M@ 4+ P29 1+ 04(2)) f =0, (1.1)
where P;(z), P>(z) are non-constant polynomials
Pl =0z"+, P@)=0"+, L #0(m meN),

and Q(z) is an entire function of order less than max{n, m}. If /1) and ¢2®) are linearly
independent, K. Ishizaki and K. Tohge have studied the exponent of convergence of the zero-
sequence of solutions of (1.1) and obtain the following results in [3,4].

Theorem A. [3] Suppose that n = m, and that {1 # ¢ in (1.1). If% is non-real, then for any
solution f #£0 of (1.1), we have A(f) =00

Theorem B. [4] Suppose that n = m, and that % =p>0in(1.1).If0<p < % or Qo(z) =0,
% < p < 1, then for any solution f %0 of (1.1), we have A(f) > n

Thus a natural question is: what condition on Q¢ when o(Qp) = n can we get the same
results as Theorems A and B? In this paper, we investigate the exponent of convergence of the
zero-sequence of solutions of the equation

F+(01P1@ 4 026720 1 03P f =0, (1.2)

Furthermore, we assume that e¢f1@) ¢2@ and 3@ are linearly independent and obtain the
following results which improve the results of K. Ishizaki and K. Tohge.

Theorem 1. Let Q1(z2), 02(z), Q3(z) be entire functions of order less than n, and P1(z), P>(z),
P3(z) be polynomials of degree n > 1,

Pix)=4z7"+--, Py(2) =07+, P32 =0G"+ -,
where {1, £2, {3 are complex numbers.

@) Ifgl is non- real O<i= §3 < 2, then for any solution f #0 of (1.2), we have A(f) =
(i) If0 < Q < 4, O<A= 53 < 1, then for any solution f # 0 of (1.2), we have L(f) > n.

Corollary 1. Let Q(z) be entire function of order less than n, suppose that P1(z), P2(z), P3(2),
L1, &2, &3 satisfy the hypotheses of Theorem 1.

@) If §' is non-real, 0 < A = §3 < 2, then for any solution f # 0 of the equation

7+ (ePl(Z) +eP2(Z) + Qel’s(Z))f =0, (1.3)

we have A(f)
@G) If0< l ,0< X— C’ < 1, then for any solution f %0 of (1.3), we have A(f) >

2. Notations and some lemmas

To prove the theorem, we need some notations and a series of lemmas. Let P;(z) (j =1,2,3)
be polynomials of degree n > 1, Pj(z) = (aj +iB;)z" +---, aj, B;j € R. Define



J. Tu, Z.-X. Chen / J. Math. Anal. Appl. 332 (2007) 279-291 281

8(Pj,0)=08;(0) =ajcosnd — B;sinnd, 0<c[0,27) (j=1,2,3),
SJJT = {9 [8;(6) > O}, S; = {0 [8;(6) < 0} (j=1,2,3).

Let f(z), a(z) be meromorphic functions in the plane and satisfy
T(r,a):o{T(r, f)},

except possibly for a set of  having finite linear measure, we call that a(z) is a small function to

f(2) (see [1]).

Lemma 1. [1] Suppose that f(z) is meromorphic and transcendental in the plane and that

f"(@)P(z)=0(), 2.1)

where P(z), Q(z) are differential polynomials in f(z) with small coefficients and the degree of
Q(z) is at most n, then

m{r, P(2)} =S, f), asr— +oo. (2.2)

Lemma 2. [5] Let f(z) be a transcendental meromorphic function with o (f) =0 < oo, I' =
{(k1, j1)y ..., (km, Jm)} be a finite set of distinct pairs of integers which satisfy k; > j; > 0 for
i=1,...,m. And let ¢ > 0 be a given constant, then there exists a set E C [0, 2m) which has
linear measure zero, such that if ¢ € [0,2m) \ E, there is a constant Ry = R1(¢) > 1, such that
for all 7 satisfying argz = ¢ and |z| =r > Ry and for all (k, j) € I', we have

P

: < |z|*—Do—1+e) 2.3
| <K (23)

Lemma 3. [6] Suppose that P(z) = (a + Bi)z" + - -+ («, B are real numbers, |«| + |8] # 0)
is a polynomial with degree n > 1, that A(z) (£ 0) is an entire function with ¢ (A) < n. Set
g(z) = A(z)eP(Z), z=re'?, 8(P,0) =acosnd — Bsinn6. Then for any given & > 0, there exists
a set Hy C [0, 2rr) that has the linear measure zero, such that for any 6 € [0,2r) \ (H1 U H>),
there is R > 0 such that for |z| =r > R, we have:

() If8(P,0) >0, then
exp{(1 —&)8(P,0)r"} < |g(re’?)| <exp{(1+e)8(P,0)r"}; (2.4)
(i) If8(P,6) <O, then
exp{(1 +&)8(P,0)r"} < |g(re’?)| <exp{(1 —e)8(P,0)r"}, (2.5)
where Hy = {6 € [0,27); §(P, 0) = 0} is a finite set.

Remark. The lemma also holds when A(z) is a meromorphic function with o (A) < n.

Lemma 4. [7] Let f(z) be an entire function of order o(f) = o < 400. Then for any given
& > 0, there is a set E C [1,00) that has finite linear measure and finite logarithmic measure
such that for all z satisfying |z| =r ¢ [0, 11U E, we have

exp{—r®T} < | f(2)] <exp{r*tc}. (2.6)
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Lemma 5. Let Pj(z) (j = 1,2, 3) be polynomials of degree n > 1,
P1(z) =¢7" + B1(2), Py(z) = p1¢7" + Ba(2), P3(z) = p2¢7" + B3(2),

where { =a + i, a,BER, || +181#0, 0<p1 <1, 0< p2 <1, B1(2), B2(z), B3(2) are
polynomials of degree at most n — 1. Let Q1(z) #0, 02(z), Q3(2) be entire functions of order
less than n, then for any given ¢ > 0, there exist a set E with finite linear measure and a constant
& (n—1 <& <n) such that

m(r, Qe + 022 + 03e™) > (1 —e)ym(r, ) + O(r*), r—oo(r¢ E). (27)

Proof. By definition, for sufficiently large r, we have

2
. . n
m(re") = - [10g*e" 0| do = o [1ogten 0 |do = £ 1 0 ).
0 SI*'

2.8)
If 6 e S, then 6(P;,0) <0 (j =1,2,3), by Lemmas 3 and 4, for any given ¢ > 0 and for
sufficiently large r, we have
i0 i0 i0 3
101717 + 0P 4 03D <Y exp{(1 — 26)8(P;. O)r"} < 1. 2.9)
j=1

Ifo e Sl+, since 0 < p; < 1, 0 < po < 1, by Lemmas 3 and 4, there exists a set E with finite
linear measure, for any given ¢ > 0 and for sufficiently large r, we have

|01 + QzePz(re“’)—Pl (re'®) 4 Q3€P3(rei9)—P| (reig)‘
> 101] — | QaeP2 e NPT | | gyePsre ) =PiGeh)
1
> Sexp{—r7 @V} Sexp{—rf} (¢ B), (2.10)

where 0 (Q1) < & <n.
By (2.8)—(2.10), we have

m(r, Q1" + Q2¢"™ + 03¢™)

2
1 i i i
— 5/10g+|Q1€P1(M€) + QzePz(ref?) + Q3eP3(re9)|d9
0
_1 lo +(|6P1(rei9)||Q ) ehare)=Pi(re'”) | 0 6P3(rei9)—P1(rei9)|)d9
= g 1 2 3
S{
d-—olr"

=2 _0(%) e @11

By (2.8) and (2.11), we obtain (2.7). O
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3. Proof of Theorem 1

Since {3 = A&, A > 0, we have S;’ = S3+, S2_ = S3_. We see that S;.' and Sj_ have n compo-
nents Sj+k and S;k respectively (j =1,2,3;k=1,2,...,n). Hence we write

n n
+_ + -_ - i
st=Ushk s;=Usi (=123
k=1 k=1

Furthermore, we define

Dip={0eS NSS: 8100)>2r+2)5,0)}.

A

(i) Let f % 0 be a solution of (1.2). Suppose that A(f) < co. Write f = me’, where 7 is the
canonical product from zeros of f, and 4 is an entire function. From our hypothesis, we have
o(m) = A(mw) < oco. From (1.2), we get

A+ 1
Dy = {QGSTFOS;: 5(0) > ha 31(9)}~

T[/ 7.[//

W) =-n"— Z;h’ -—- 01ef1 — 022 — 03e™. (3.1)
Eliminating et from (3.1), set % + Pl/ = R, we have

2UIW = —h" + R—zn—/ R +2 Rn—/— ™ / h’+Rn—”— i /

T T T T T
+(RO2 — Q5 — Q2P3)e™ + (RQ3 — Q5 — Q3P5)e™, (3.2)
where
1
Ui =h"—=-RNW. (3.3)

2

Eliminating e from (3.1), set % + P, =T, we obtain

/ / / / Vi 1 /
2k = —h" + (T - 2”—)}/’ + 2<T”— - (”—) )h/ Tl <”—>
T T T T T

+(TQ1— Q) — Q1 P))e™ + (T Q3 — Qs — Q3 P})e™, (3:4)
where
Uy=h" — %Th’. (3.5)
Set max{o (1), 0(Q2), 0(Q3)} <& < & <& < n. Then we get
T, Q) =m@r, Q) <r¥,  |Q(re")| <exp{r®}

for sufficiently large  and for any 6 € [0, 2r).
We apply Lemma 1 to (3.1), for any given ¢ > 0

T(r,h"y=m(r,h")
7_[// 7_[/
gm(r, ;) +m<r, ;) +m(r, 011D 4 0@ 4 Q3€P3(Z)) +S@r, k)

SO(r"™) + 8,1,
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which implies o (h") < n. It follows from (3.3) and (3.5) that o (U;) < n and o (U3) < n respec-
tively.
First we show that there exists a set Eg C [0, 27), m(Eo) = 0 such thatif 6 € S, \ Eo, then

U\ (rei9)| < O(eréz), as r — 00. (3.6)

In the case |h’(rei0)| < 1, from (3.3) we have

; n'(re'?y| 1 ;
0 0
|U1(re’ )|< W —|—§|R(re’ )| (37)
If |1 (ret?)| > 1, then from (3.2), we get
. h///(rei(?) . T[/(reie) h//(reié)
20, (ré'?)| < |——= R(re'?)| +2 : :
} 1(re )| h/(,eze) + (| (re )| + ﬂ(,,eze) ) h/(reze)
1o 00 "o i6 700N 12
: (re'?) 7" (re'?) 7’ (re'?)
2 |R(re®)| |22 . .
+ <‘ (re )’ n(reze) n(reze) n(,eze) >
N iR(rei9)| 71’//(}”8;9) n,///(nj,;'()) n//(reiG)Jj[/(;eiG)
m(ret?) w(re'?) 7 (rei?)

F(R(?)02(re) |+ 03(re™) | | @2(re) PY(re) e 2"
. . . . - i0
(R 05(re) |+ 03(re?) | | @3(re) Pi(re) ) e
< O(ersz), as r — 00. (3.8)
Since Q and /' are of finite order, by Lemma 2, (3.7) and (3.8), we obtain (3.6). _

We note that there exist 8; (j =1, 2, 3) satisfying 6;(f) = 0 on the rays argz =6, + %,
where ¢ =0, ..., 2n — 1, which form 2n sectors of opening 7 respectively, thus we may assume
that éj € [0, %). Since ¢, = AZ3, A > 0, we have 0, = 63. Write §jq = 51- + %, j =1,2,if there
are some integers g1 and g3 such that 614, = 02,, then 61 — 62 + (g1 — q2)= =0, we have that
tannéj = Z—’ j =1, 2. Which gives

J

= = a1fr — azpi
0=tan(nby —nbr+ (g1 —q)7) = —————.
( ) ajo + B1p2
This contradicts the assumption that % is non-real. Hence we see that each component of Sl+

and S2+ contains a component of Sf' n S;‘ . The boundaries of the components of SiF N S; are
some of the rays argz =6 jq> we fix a component of S 1+ N S;’ , say S*. We may write

S*={0eS NS 07 <0 <05, 8(07) =52(05) =0}
or
S*={0eS NS 05 <0 <0f, §1(07) =62(05) =0}.
Since every component of Sf“ and S;r is of opening 7., the rays argz = 6" and argz = 65 are

contained in S;’ and S r respectively. We treat the first case, the proof of the second case can be
obtained similarly. Hence there exist ; > 0, 2 > 0 such that

[0: 0f <0 <0 +m} C Dy,  {0:05—m<60<6;5}CDp.
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Hence there exists a 6 € (S;{ﬂDlg)\Eo forany k =1,2,...,n.Set 0 < QA +2)§ <02 <
o1 <81,0< ¢ <1—‘;—11,0<82<2%—1,0<83<ﬁ—gz—l.ByLemmaS,wehave

> 6(1—81)51r”(1 _ 0(1))
=

" (1—-o0(1)), asr— oo. (3.9)

|QleP1(rei9) + QzePz(reie) + Q3eP3(rei9)|

_ |93 pyret)-Pi(re)

z ’Qlepl(reie)’ 01

- ‘%ePz(re”)—Pnre”)
01

We assume that there exists an unbounded sequence {r,} such that 0 < |h'(r,e'?)| < 1.
From (3.1), (3.9) and Lemma 2, we get for an N| € N

. e ®)| |7 rme®) | | | 7" me)
o rm —
e?n(1—o(l)) <1+ b (rmet?) 7 (rmel?) 7w (rme’?)
<Nt asm — oo,

which is absurd. Hence we may assume that |h'(re!?)| > 1 for sufficiently large r. It follows
from (3.1) and Lemma 2, foran N, € N

|Q16P1(rei9) + Qzepz(reff?) + Q3eP3(rei'9)|

. ion 12 h//(reié) n,/(rei(v‘) n//(reib‘)
< |h (re )| <1 + h/(reig) n(reie) 7T(r€i0)
< W (ré®) P (14 0(M2)),  asr — oo. (3.10)
Thus, we obtain for sufficiently large r
W (re?)| = 20" G.11)
From Lemma 2, (3.2) and (3.11), we get
) h///(reie) ) n/(reie) h//(reie)
|2U1 (rele)| < m + <|R(rele)| +2 JT(reig) ) h/(reia)
0 n,/(reiﬂ) n//(reiﬂ) n/(reie) 2)
+2<|R(re )| JT(rem) JT(rem) JT(reig)
N |R(rei9)| n,//(re.iQ) ﬂ///(r?ie) n//(reie)j'.[/(reie)
n(rel?) n(re'?) 7 (rei®)?
i0 i0 (00 i0\ p/(,. i eP2tre™
1 1 1 1 1
+(R(e) 0a(re”) | +]Q5(re)| + | Qa(re) Ph(re ™)) o
eP30re®)

+ (IR(re'®) Q3(re™) [ + | Q3(re™) | + | Q3(re™) Pi(re) )

< 0(rN2) + (1 + 0(1)) exp{ (62(1 + 82) - %)r”}

o
+ (1 + 0(1)) exp{ (Aéz(l +e3) — 7>r"}, asr — oQ. 3.12)
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Since 8(1 +&2) — % <0, A82(1 + £3) — F < 0, it gives that for an N3 € N and sufficiently
large r,

U (re®)| <™. (3.13)

Now we fix a y(= yx) € (S5, N D12) \ Eo, k =1,2,...,n. Then we find y1,y € S; \ Eq,
y1 <y < yz such that y — y; < % Y-y < % We first show that for any 6, y; <0 < y, we
have

U1 (re®)| < O(¢"?),  asr— oc. (3.14)

nj-[_rl’ 71 > 0, since o(U;) < n, we have that |U;(re'?)| < 0 <

+r1 .

7o < 11 for sufficiently large r. Set g(z) = U (z)/exp((ze_y;ll)“), then g(z) is regular
T

in the region {z: y; < argz < y}. Since yy <argz=0<y, ¥y —y1 < T, owe infer that

Write y — y1 =

71
cos(arg((zef%’)ﬁ)) > K for some K > 0. In fact,

b4 &3 Y=Y
< ——
2

< —
) m X 53
Hence for y; <6 <y,

U (re'?)
Kr83

<ang((ee P < S < TE

oS

<o(@"™?), asr—oc.

e <
e

It follows from (3.6) and (3.13) that for some M > 0, as r — 00

&
0(™?)
N GE

|g(re™)| <

and
; o)
sre)l < s <
By the Phragmen-Lindelof theorem, we obtain (3.14). Similarly we see that (3.14) holds for
y < 60 < y». Hence we conclude that (3.14) holds for any 0 € [0, 27).
In the following, we need to proof for any 6 € [0, 27)

|U2(rei0)| < O(e’SS), asr — 0o. (3.15)

By recalling the previous reasoning, we can also obtain that there exists a set E; C [0, 2m),
m(E1) =0 such thatif 6 € S| NS, \ Eq, then

‘Ug(reie)‘ < O(erfz), as r — 00. (3.16)

By the similar proof in front, there exists a 6 € (Sﬁ N Dyy) \ E| forany k =1,2,...,n. Set
0< (2r+2)8; <2)L82<0’4<O’3<52,0<84<1—;—;,0<85<%—1,0<86<2i—g2—1.
By Lemma 3, we have

i0 i0 i0
‘QlePl(re )+Q26P2(re )+Q36P3(re )‘

_ |93 ey —Pre®)

> |Q2€P2(rei6)} 0

- ’&em (rei®)— Pa(rei®)
0>

e1E0%2 (1 — (1))

>
> %" (1—o(l)), asr— oo. (3.17)
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We assume that there exists an unbounded sequence {r,} such that 0 < |h'(r,e'?)| < 1.
From (3.1), (3.17) and Lemma 2, we get for an Ny € N

h// (rm ei@)
B (rmei?)

<r,1,;’4, as m — 00.

n,//(rmeie)

ﬂ(rmeie)

7' (rme'?)

e (1—o()) <1+

n(rmeie)

This is absurd. Hence we may assume that |4’ (re’?)| > 1 for sufficiently large r. It follows
from (3.1) and Lemma 2, for an Ns € N

|Q18P1(rei9) + QzePz(reie) + Q3eP3(rei9)|

. ion 12 h//(reie) n/(reie) n//(reie) )
< |h (re )| (1 + h/(reig) n(reie) n(reie)
< ’h/(rem)’z(l +0(rN5)), as r — 0o. (3.18)
Combining (3.17) and (3.18), we obtain for sufficiently large r
‘h’(rei9)| > e%mr". (3.19)
It follows from (3.4) and (3.19) that
; h”/(reig) ; n,/(reie) h”(reie)
|2U2(re 6)| < m + (|T(I’e 9)} +2 n(reie) ) h’(reie)
o 7' (re'?) 7" (rei®) 7' (ret®) 2)
+2<’T(re )| n(reie) n.(reie) n(reie)
0 7_L,//(reie) n///(reif)) n”(rem)n’(rem)
+ T (re")] 7(rei®) 7(reif) T(rei®)?
i0 i0 I (e i0 i0\ p/ (.. i0 ePre?)
(T Qi) +]21re) |+ 01 (e ) P e ) )| £
i0 i0 1 (00 i prr oy | €207
+([7(re®) 03(re™) [ +[Q5(re"”) | + [ Qs(re™) P5(re)]) W (rei®)
< O(rNS) + (1 + o(l)) exp{ (81(1 +e5) — %)y”}
+(1+ 0(1))exp{ (,\52(1 +e6) — %)ﬂ’}, as r — . (3.20)

Since 81(1 +&5) — 5 <0, A82(1 + 86) — 5 < 0, it gives that for an Ng € N and sufficiently
large r,

|Ua(re'®)] < rMe. 3.21)

Now we fixa y'(=y;;) € (S;;{ﬂDlg)\El,k: 1,2,....n.Thenwe find y3, y4 € S| NS, \ E,
ys <y’ <yssuchthat y’ —y3 < %, 4 — ¥’ < 7. By the same reasoning as in proof of (3.14),
for any y3 < 0 < y4, we have

|U2(rei0)‘ < O(er%), as r — 00. (3.22)
Hence we conclude that (3.15) holds for any 6 € [0, 27).



288 J. Tu, Z.-X. Chen / J. Math. Anal. Appl. 332 (2007) 279-291

By (3.3) and (3.5), we have
1
U —U;= Eh/(T —R). (3.23)

Since 0(Q ) < & < &3 (j =1,2,3) and the theorem on the logarithmic derivatives, by (3.1),
(3.23)

m(r, 016" + 0y 1 Q3e®)
<2m(r,h') + O(logr)
L2m(r, Uy — Up) + O(logr) < O(r&), asr — oQ. (3.24)

Since Cl is non-real, SJr N S, contains an interval I = [¢1, 2] satisfying minge; §1(6) =5 > 0.
By Lemma 3, there ex1sts an R(I) (> 0) such that forany 6 € I and r > R(I),

017D > exp((1 = £)811"),

| 026720 | <exp((1 — £)62r™).
and

|Q3¢P37¢)| < exp((1 — £)182r").

Hence, we have

m(n Qlepl(Z) + Q2€P2(Z) + Q;eP3(Z))

»
g / logt[ Q1117 4 0y 1 0370 ap
@1
»
> /(1 —o(1)) log*| Q1”1 | do
@1
»
> /(1 — 0(1))(1 —¢&)sr'do
o1
> (1 — o(l))(l —&)sr' (g — 1), asr — oo. (3.25)

Combining (3.24) and (3.25) and recalling that £&3 < n, we get a contradiction. Hence, A(f) =
(ii) Let f = 0 be a solution of (1.2). Write f = me”, suppose that A(f) < n. From our hy-
pothesis, we have o () = A(rr) < n. Eliminating ¢ from (3.1), we have

7_[/ 7t/ 7.[/ / 7'[// 7.[// /
2K =" + (R _2_)h~+2(R_ - <_> )m_ - (_)
T T T T T

+ (RQ2 — Q5 — Q2P3)e™> + (RQ3 — Q5 — 03 P})e™, (3.26)
where
1
=n" - ERh’. (3.27)

From (3.26) and (3.27), we get
Ci(2)h" = Co(2),
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where

jT// 7_[/// JT//T[/

1 /
Co)=-U'+-RU-—2ZU+RT - 4
2 7 T 7 2

+(RQ2— Q5 — Q2P))e™ + (RQ3 — 0 — Q3 P5)e™,

1 1 / " N\ 2
Ci()=2U+-R —-R*—R= +2° —2(Z ).
2 4 T T T

If Co(z) #£0, C1(z) #£ 0, by Nevanlinna’s first fundamental theorem, we obtain
T(r,h") <T(r,Co)+T(r,C1)+o(1).
Set max{o (Q1),0(02),0(03),A(f)} <& <& <n, from (3.1), we obtain
T(r, 01e71@ + 02672 4 03e7@) <2T(r, 1) + O(logr).
By Lemma 5, we have
m(r, 01e"1® 4 0,e72@ 4 030F51)
> (1 —e)m(r,e™)+0(r®), r—oo(r¢E),

where E has finite linear measure. From (3.30) and (3.31), we obtain
1—
T h) > TET(r, )+ 0(F8), r— o0 (r¢E).

Slnce0<p=Q<4,§3 AL, 0< A <1, we get

8(P3,0) = ps(Py,0), Sh=8h=58 Sp=Sp=S; k=1,...

By the same reasoning as in (3.7) and (3.8), we have

|U(rei0)| < O(eréz), as r — 00

forany 6 € S|\ Eo, m(Ep) = 0. Also by the same reasoning as in (3.9)—~(3.13), we have

U(re'® ng3, asr — oo
u(
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(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

for any 6 € S;“ \ Eg, m(Ep) =0. Since o (U) < n, by the Phragmen—Lindel6f theorem, we have

|U(rei9)| < O(erés), asr — 00

for any 6 € [0, 2r). In the following, we estimate 7 (r, Cp) and T (r, Cy).

, ] 7_[/ 7.[// 7{/// 7.[//7.[/
T(.Co)<T(rU' = SRU+2_U ) +T(rR——"—+
T T

T w2
+T(r,RQ> — Q5 — Q2P3) + T (r, ™)
+T(r,RQ3 — Q3 — Q3P5) + T (r, ™).
Since max{o (Q1),0(Q3),0(Q03),0(R),o0 ()} < n, we have
T(r,Co) <T(r,e™)+T(r,e™)+0(r®)=U+1T(r,e™)+ 0(r®)
< (I +1)pT(r, eP‘) + O(r&), as r — 00.

(3.35)

(3.36)
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From (3.29) and (3.35), we have
T(r,C)) < O(r®), asr— oo. (3.37)

From (3.30), (3.32), (3.36) and (3.37), we get

1—
?ET(r, Y+ O(F8) ST h) < (L +0pT (reP) + 0(%), r— o0 (r ¢ E).
(3.38)
Thus (3.38) implies
1—¢ P
T—(1+A)p—0(l) T(r,e 1)gO, r—o0 (r¢kE).
Since 0 < p = g_? < 4—1‘, 0 < A < 1, we get a contradiction. Hence Cy(z) = Ci(z) = 0. From
(3.28), we obtain
(RQ2— Q5 — 0Q2P3)e™ + (RQ3 — Q — Q3P;)e™
1 / 1 " "/
—v-—-ru4+2Z Uy R4 T (3.39)
2 b1 14 b4 w2

We assume that (RQ2 — Q5 — Q2Py)e” + (RQ3 — Q5 — Q3P)e™ #£0, if (RQ, — Q) —
02P))e’? + (RQ3 — 0 — Q3P))e’ =0, we have
PP — Q% + Q3P3£ - RQ3.
RQ>»— Q) — 02 P,
Since {3 = A2, 0 < A < 1, by a simple order consideration, this is a contradiction.
From (3.39), by Lemma 5, we obtain

(1—e)T(r,e™2) + 0(r®)
<T(r,RQ2— Q5 — 02P3)ef? + (RQ3 — 0y — Q3 P5)e™
< T(r, U — %RU) +T(r,U)+T(r,R)+ T(r, 71_’) + T(r, i)

b1 b1
7_[///
+ T(r, —> +o(1)
b1

<O(r®), r—oo(r¢E). (3.40)

From (3.40), we have a(ePZ) < &3 < n, we get a contradiction. Hence L(f) > n.
Proof of Corollary 1. By the same reasoning as in Theorem 1, we can complete the proof. O
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