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A b s t r a c t - - T h i s  paper discusses the application of the multizone decomposition technique with 
multiquadric scheme for the numerical solutions of a time-dependent problem. The construction of 
the multizone algorithm is based on a domain decomposition technique to subdivide the global region 
into a number of finite subdornains. The reduction of ill-conditioning and the improvement of the 
computational efficiency can be achieved with a smaller resulting matrix on each subdomain. The 
proposed scheme is applied to a hypothetical linear two-dimensional hydrodynamic model as well 
as a real-life nonlinear two-dimensional hydrodynamic model in the Tolo Harbour of Hong Kong to 
simulate the water flow circulation patterns. To illustrate the computational efficiency and accu- 
racy of the technique, the numerical results are compared with those solutions obtained from the 
same problem using a single domain multiquadric scheme. The computational efficiency of the mul- 
tizone technique is improved substantially with faster convergence without significant degradation in 
accuracy. © 1999 Elsevier Science Ltd. All rights reserved. 
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1. I N T R O D U C T I O N  

In  this  paper ,  we set up an  efficient a lgor i thm applicable to the  Mul t iquadr ic  me thod  (MQ) for 

solving large scale t ime-dependen t  problems. This  scheme uses a s imilar  compu ta t i ona l  procedure 
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in each zone that can be readily paxallelized. The efficiency of the computation is improved 
significantly without sacrificing accuracy since the size of each resulting coefficient matrix is 
much smaller. The multiquadric method is employed for the spatial approximation together with 
an explicit forward finite difference scheme for the time-dependent integration. 

The multiquadric method was developed by Hardy [I] in 1970 to interpolate two-dimensional 
geographical surfaces. Hardy's multiquadric basis function had been reviewed and modified by 
Kansa [2,3] and Hon et al. [4,5] for solving physical equations with ordinary and partial differential 
equations. A number of experiments of the method had been carried out and tested by Kansa and 
other researchers in various scientific and engineering disciplines. The application results were 
found to be significantly better with other well-established methods, such as finite difference and 
finite element schemes. It has been successfully applied to our previous study of a water quality 
model [6]. 

The ease of implementation and good computational performance of the method make it a very 
attractive alternative to other traditional methods. In addition, the method has the advantage of 
mesh free implementation. The high flexibility of the method makes it very suitable for domains 
with highly irregular boundaries. However, the multiquadric method has a drawback which is 
the requirement of the solution of a full global coefficient matrix which could be computationally 
intensive and may cause instability if the matrix is ill-conditioned. Computational efficiency is 
a major factor to be considered in solving large-scale problems with large number of collocation 
points. 

The multizone decomposition scheme is a combination of the domain decomposition and the 
MQ method. In this scheme, the region under study is divided into a number of nonoverlapping 
finite zones. The number of interpolation points in each zone is a subset of the entire domain. 
To maintain the continuity across the zones, points adjacent to the zone boundaries, as well as 
an additional set of sparse data points from other zones and from the natural boundaries are 
included to form a set of computational data points, where MQ computation of each zone is 
applied to this set of data in a similar manner as the global MQ simulation. The resulting matrix 
for the computation of each set of data points is much smaller than that using a single global 
multiquadric matrix. Justification for not using iterative corrections to remedy smoothness across 
boundaries will be described in Section 4. 

Section 2 discusses the basic theory of the underlying hydrodynamic equations. Section 3 intro- 
duces the application of the multiquadric method. The concept of the multizone decomposition 
technique applied to the multiquadric interpolation scheme as well as the computational com- 
plexity analysis are described in Section 4. Numerical results are presented in Section 5. Finally, 
the paper ends with a conclusion in Section 6. 

2. G O V E R N I N G  E Q U A T I O N S  

In this paper, we introduce a multizone decomposition algorithm to solve a set of time- 
dependent nonlinear partial differential equations using the multiquadric method. For the sake of 
comparison, we employ the same set of hydrodynamic equations which was used in a water quality 
model in a previous study [6]. The governing equations are the two-dimensional depth-integrated 
version of three differential equations, namely the continuity equation and the momentum con- 
servation equations in the x and y directions, respectively, in a region f~. These equations are 
expressed in vector notation as 

@~ @G @F 
+ + + E = o, in a c R 2, (2.1) 

a y  

where ~, G, F, E are column vectors given as 
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where u, v are the depth-averaged advective velocities in x, y directions, respectively; ~ is the sea 
water surface elevation; h is the mean depth of sea level; H is the total depth of sea level, such 
that  H = h + ~; Wx, Wu are the wind velocity components in x, y directions, respectively, and 

W~ is the wind speed given as Ws = v / W ~  + W 2. Cb is the Chezy bed roughness coefficient; 

f is the coriolis force parameter; g is the gravitational acceleration; Pa is the density of air; Pw is 
density of water, and C8 is the surface friction coefficient. The water-water boundary condition 
is defined as 

~ ( x , y , t )  = ( * ( x , y , t ) ,  (2.2) 

where ¢*(x, y, t) is the specific sea surface elevation level on the water-water boundary. The 
water-land boundary condition is defined as 

Q . N  = 0, (2.3) 

where Q represents the velocity vector (u, v), N is the direction of the outward normal vector on 
the land boundary. At the n th time step, the current velocities (u n, v n) on the land boundary 
are derived from this condition as 

u n (xi, Yi) = fin (xi, Yi) sin 2 (Oi) - ~n (xi, yi) sin (0i) cos (0i), 

v n (xi, Yi) = ~n (xi, Yi) cos 2 (Oi) - fin (xi,  Yi) sin (0~) cos (8i), 
(2.4) 

where ~n(xi ,  yi) and ~n(xi ,  Yi) are the values computed at data  point (xi, yi) on the land boundary 
from the multiquadric interpolant, 0i is the outward normal angles at the water-land boundary 
points which are computed by taking the average of the vectors joining the neighbouring points. 
The initial conditions are 

q (x~, y~, 0) = o, (2.5) 
( x .  y~, 0) = 0, 

for all x~, Yi E Ft. We solve the numerical time discretization for equation (2.1) using a forward 
finite difference method and the corresponding partial derivatives by multiquadric scheme. The 
numerical solution on the boundaries are updated at each time step by the corresponding condi- 
tions. The surfaces elevation ~n on the open sea boundary is specified by the boundary condition 
given in equation (2.2). Similarly, we updated the flow velocities u n, v n on the land boundaries 
at each time step using equation (2.4). 

In this report, a simple Euler forward difference time discretization scheme is chosen to solve 
the time-dependent problem. The main purpose of the project is to investigate the applicability 
and efficiency of the multizone MQ scheme in comparison with the global MQ scheme. Hence, 
for the sake of comparison, a simple time discretization scheme is chosen to avoid any complexity 
arising if a more sophisticated time discretization scheme is chosen. Furthermore, owing to the 
requirement of updating information on both land and water boundaries in each time step to 
fulfill the open sea and land boundaries conditions, the use of large time-step may not be a 
adequate choice to do the computation. This is because the error propagation and smoothing 
effect could be increased due to the rare information input from the open sea boundary. 
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To maintain the stability, the time-step size is restricted by the Courant number which is 
chosen to satisfy the following condition: 

dmin < (2.6) 

where dmi n is the minimum distance between any two adjacent collocation points and h is the 
average water depth between the two points. This condition will ensure that the time truncation 
errors in the interior will not be propagated. 

3. APPLICATION OF MULTIQUADRIC METHOD 

The basic concept of the multiquadric method is to interpolate an unknown function M(P) 
using a finite series of radial basis functions at N given distinct points Pj. The MQ radial 
functions are written as 

N 
U(P)  ~- Z a j  ( l i P -  Pj[[ + r2) 1/2 , (3.7) 

j----1 

where Pj E R 2, j = 1, 2 . . . .  , N and ~js are the unknown coefficients to be calculated. ]IP - Pill 
is the Euclidean distance. The shape of the basis functions is entirely controlled by varying 
the magnitude of the shape parameter r > 0. When r is small, the basis function fits a spiky 
surface to the data points. As r increases, the spikes at the data points spread out to form a 
smooth surface. When r is too large and reaches a critical value, the resultant matrix becomes 
extremely ill-conditioned and the numerical error increases dramatically. In [7], the authors used 
a constant value of r and found a heuristic recipe for its value for different functions. Kansa et al. 
have reported their investigation on the effect of the shape parameter as regards to multiquadric 
interpolation function in [2,8]. They found that the computational accuracy of the interpolant can 
be improved by varying the shape parameter with the basis function. They employed numerical 
experiments to resolve the optimal shape factor r 2 given by 

~r2max ~ (~,-I/N-1) 
2 ---- rLin ~ (3.8) ri 

~k r m i n /  

2 and r2max are preset parameters. Lately Golberg et al. [9] used statistical method of cross rmin 
validation to determine the optimal shape parameter and the method has been successfully im- 
plemented with satisfactory results. 

Currently some theoretical studies on the choice of the optimal shape parameter are still in 
progress by other researchers. The lack of the mathematical theory makes it very difficult to 
choose a suitable r 2 for the current study. For the sake of simplicity, we adopt the suggested 
value from the original Hardy's scheme [1] by letting r be 0.815 drain, where dmi n is the minimum 
distance between any two interpolation points in the study region. The sensitivity of the numerical 
results to the shape parameter have been examined with a linear hydrodynamic equation. The 
results are computed for a range of shape parameter starting from r = 0.1 drain until the solution 
diverges. The analysis shows that a near-optimal approximation of the model can be achieved 
by using the proposed value 0.815 dmin. 

To solve the time-dependent differential equations, the governing equation (2.1) are integrated 
in time using explicit forward difference scheme given as 

n (0G  0F? ) 
~ ? + x = ~ i  - A t \  Oz + ~  + E ~  (3.9) 

~n+l is the solution vector at the points (xi, yi) in time nAt. The where At is the time step, --i 
numerical values for the corresponding spatial derivatives are obtained by the multiquadric in- 
terpolation scheme. 
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The values of the multiquadric interpolant ~n are given by the following radial basis function: 

N 
~]~n(x,y) ~. ~-~0~ [(X -- Xj) 2 + (y -- yj)2 ..]_ r2 ] 1/2 (3.10) 

j----1 

The unknown coefficients vector [c~2] are determined by collocating with a set of data points 
N (Xi, Yi)i=l over the domain f~ given as 

N 
~n (xi, y , ) =  ~-"~ a2 [ ( x i -  xj) 2 + (Yi-  yj)2 +r2] 1/2 , (3.11) 

j----1 

which forms a system of N linear equations in N unknowns 

\ , 1 ~ /  \ q l ( x n , y N )  q2(xN,y~r) ... qN(xN,yN) \ ~ r  

where 
qj (Xi, Yi) = ~/(Xi -- X3) 2 + (Yi -- y j )2  _~_ r2" 

For simplicity, we express the system of equation by matrix form 

A6 = ~,  (3.13) 

where A = [qj(xi, y,)] is an Y x g coefficient matrix; ~ = [~ ]  and ~ = [@~] are N x 1 
matrices. The unknown coefficients vector [a~] can be determined using Gaussian elimination. 
Micchelli [10] has shown that multiquadric interpolation function is a type of conditionally positive 
definite functions, and therefore, the coefficient matrix for the N linear equations in (3.12) is 
invertible for distinct points (x~, y~). Powell [11] has shown that the guaranteed invertibility of 
the coefficient matrix for all radial basic functions can be achieved by adding a polynomial term 
into equation (3.7). Carlson [7] reviewed that adding the polynomial term to the MQ interpolant 
is not an improvement. It is advisable to add a constant term to maintain the stability instead 
of polynomial term. However, Powell [11] further proved that the interpolation matrix of the 
multiquadric radial function as given in equation (3.7) is nonsingular for any set of distinct 
interpolation points, and that the invertibility is guaranteed. Therefore, adding the constant 
term to the MQ interpolant is not generally required. 

The MQ expansion equations (3.10) and (3.11) are positive definite. The partial derivative 
terms of these two equations are also conditionally positive definite as all the MQ basis functions 
are continuously differentiable. If the PDE problem is properly posed, then the PDE coefficient 
matrix which is constructed from a linear combination of functions and partial derivatives will 
also be positive definite, hence invertible. Improperly posed PDE problems may not be invertible. 
Furthermore, to ensure the PDE problem is to be invertible, the following conditions must be 
met: 

(1) all points belonging to the interior and boundary problem must be distinct, 
(2) the interior points must be distinct from the locus of the boundaries, and 
(3) a finite shape parameter distribution must be used. 

The first partial derivatives of the vector function @~(xi, y~) with respect to x and y are given, 
respectively, as follows: 

0,I~ n (x~, yi) N 
OX - ~ ' ~ C t ~ ( X i - - X j )  q f l ( x i , y i ) ;  (3.14) 

j= l  
N 

O~ n (X,,yi) = ~-:~ Ol~ (Yi -- Yj) q-~l (X, ,yi) .  (3.15) 
Oy j----1 
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The solution of the interior data points is solved by substituting (3.11) and the partial deriva- 
tives (3.14) and (3.15) into equation (3.9) with the given boundary conditions. 

The MQ scheme has been successfully applied to many linear and nonlinear equations. We 
employed the scheme to solve a system of nonlinear water quality model in our previous study [6] 
and a good agreement with the observed results is indicated. In this study, a new multizone 
decomposition algorithm is developed to improve the computational efficiency of the MQ scheme. 
The use of multizone decomposition algorithm is to be introduced in the next section. 

4.  M U L T I Z O N E  D E C O M P O S I T I O N  

F O R  M U L T I Q U A D R I C  S C H E M E  

A general discussion and the theory of the use of domain decomposition with multiquadric 
scheme were presented in [12] by Kansa. He remarked that the method has been proven to 
be very computationally efficiency and the accuracy have been considerably improved. He also 
advocated in [8] that two approaches can be considered in solving dense system of linear equa- 
tions. One approach is to use preconditioning and the other approach is to make use of domain 
decomposition techniques. Dubal [13] had successfully applied the domain decomposition with 
blending techniques for multiquadric approximation of second-order partial differential equations 
in a one-dimensional problem. Dubal concluded that multiquadric interpolation with domain 
decomposition could accurately solve elliptic PDEs equations and considerably improve the effi- 
ciency of computations. 

The present study aims to develop a technique to improve the computational efficiency of 
using multiquadric approximation to solve large-scale time-dependent problems. A multizone 
decomposition technique is developed together with multiquadric scheme in order to cope with 
the forementioned computational efficiency problems. Multiquadric method is a grid free scheme 
which has no restriction on the allocation of data points in any dimensional spaces. The multizone 
algorithm makes use of this characteristic by incorporating additional set of sparse data points 
away from each designated zone to enhance the accuracy of the computations in each data point 
within that zone. 

This section describes the detail setup of the multizone decomposition of a two-dimensional 
problem which is to be solved using the MQ method. Let 12 be the two-dimensional domain 
under study with a set of data points W defined as 

W = {Pj C 1~ 2 IJ = 1 , 2 , . . . , N } .  (4.16) 

Under the multizone decomposition scheme, l~ is divided into K zones 12J, j -- 1, 2 , . . . ,  K, and 
hence, W is also divided into K subsets of data points WJ, j = 1 , . . . ,  K such that 

W ~ N W j = ¢, i f i  # j, 
g 
U W  i =W. (4.17) 

For the zone O k, we denote the set of data points in W k by 

w k = I J =  1,2,  , L k } ,  (4.1s) 

where Lk is the number of data point in subset W k. In general, there is no criteria in how the 
subsets of data are to be formed. One possible way is to assign each subset with approximately 
the same number of data points which leads to load balancing needed for efficient implementation 
on parallel computers. Parallel computation across zones will be the next phase of our study. 
For the real-life problem we studied in this project which is the water flow circulation problem in 
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the Tolo Harbour of Hong Kong, the domain under consideration was divided into several zones 
according to the geographic and tidal characteristics of the harbour. This way of subdivision 
will make the results more consistent, since the water flow circulation properties will be quite 
different under different geographical conditions. 

Figure 1 depicts the subdivision of a 2-D domain into three nonoverlapping zones. Computation 
using the MQ method is applied to the points in each zone f~k individually. In order to enhance 
the accuracy of computation of each zone and to maintain the continuity of the interpolation 
function across the zone's boundaries, two more sets of extra data points will be added to the set 
of data  points in W k. The first set includes all the points which are in other zones and adjacent 
to the boundary of ~k denoted as 

B k =  { P y E W  l l l ¢ k a n d j = L k + l , L k + 2 , . . . , L k + M k , } ,  (4.19) 

where Mk is the total number of data  points adjacent to the boundary of ~k and is relatively 
smaller than Lk. 

Figure 1. Decomposit ion of a two-dimensional domain into three zones. 

We also include another set of data  points which are chosen at random such that  they are 
sparsely and evenly distributed over the other zones in ~. We denote this set of extra data points 
a~ 

S k = { P ~ e W l l l # k a n d j = L k + M k + l ,  L k + M k + 2 , . . . , L k + M k + N k }  , (4.20) 

where Ark is also a number of data points relatively smaller than Lk. 
Figure 2 depicts the data  points to be included when we apply MQ computation to ~ 1  The 

points represented by • are data points in W 1, [] represents data  points in B 1 a n d / k  represents 
data  points in S 1. To calculate the solution in each zone f~k, MQ computation is applied to the 
data  points in W k U B k U S k in a similar manner as global MQ simulation. The MQ interpolating 

function for zone K is given as 

Lk+Mk+Nk 1/2 
• ~ (xj,  y j ) =  E a~ [ ( x j -  xi) 2 + (yj - yi) 2 + r 2] , (4.21) 

i=1 

where n denotes the n th time step and (x j , y j )  E ( W  k U B k U Sk). The shape parameter 
rk = 0.815(dmin)k is different in each computational data  set, because (dmin)k is determined 
individually by using the set of collocation points belong to W k U B k U S k. 
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Distribution of collocating points for computational zone 1 

• Points in f~ ~ [] Points in B ~ • Points in S 
Figure 2. Distribution of the three different set of collocation points W 1, B 1, S 1 in 
Zone 1. 

Having calculated the set of unknown coefficients ai ,  for i = 1, 2 , . . . ,  Lk + Mk + Ark, the partial 
derivatives can then be determined for each collocation points P~ c W l, j = 1, 2 , . . . ,  Lk, l = 
1, 2 , . . . ,  K ,  by the following equations: 

n (Xj, yj) Lk +Mk +Nk 

- ( x j  - q ; 1  (4.22) 
0x i=1 

n (x j,  y j) Lk+M*,+Nk 

: E oln (Yj -- Yi) q~-I (Xj, y j ) .  (4.23) 
0y i=l 

These equations only calculate partial derivatives for the collocation points in the subset W a, 
since the extra  data  points in B k and S k are from other zones, their partial derivatives are not 
calculated here. The partial derivative of these points in B k and S k would be computed when 
the zone they belonged to are considered. 

It follows that  the numerical values @(xi, Yi) of the next time step n + 1 can be calculated 
using equation (3.9). The values of land and water boundaries are applied similarly as the global 
MQ computat ion to update  information at each time step using the conditions given in Section 2. 

It  is noted that  the zones only appear when we calculate the partial derivatives o~(xj ,uj)  and 0x 
o~(z j ,y j )  using the local interpolation on the data set W k. When numerical values @n(xi, Yi) Oy 
are calculated using equation (3.9), only local information of the points (xi, Yi) is required which 
has all been found in previous time steps. Therefore, no iteration is required in the calculation. 
The application of the multizone decomposition technique is a simple and effective scheme in 
comparison with domain decomposition techniques which usually employ iterative methods for 
boundary and subdomain interface treatment.  

To give a bet ter  understanding of the computational procedure of the multizone decomposition 
MQ scheme, the basic algorithm is outlined in Table 1. 

Furthermore, it is evident that  when the multiquadric method is used to solve initial boundary 
problems, the result is satisfactory for convex domains. In the MQ method, the shape parameter r 
controls the fitting of a continuous surface to the data. The shape parameter actually controls 
the effective number of collocation points used in the interpolation at any location. With proper 
choice of the shape parameter,  interpolation across discontinuities does not usually pose a prob- 
lem in the application of the MQ method to concave or multiply connected domains. As we 
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In i t i a l i ze  va lues  ¢][~°(Zl, Yl) ,  ¢I~°(x2, Y2),.  • • , cI)°(xN, YN); 

For each step do 
For each zone i = 1,2 . . . . .  K do 

Calculates unknown coefficients ~i,r for points in (W ~ U B ~ U S i) using equation (4.21); 
For each points in W ~ 

Calculates cgeb~ (xj, yj)  and 0 ~  (xj, yj) for points in W ~ only using 
Ox Oy 

equations (4.22) and (4.23); 
End for 

End for 
For each points i = 1, 2,. . . ,  N over the global domain ~ do 

Calculates results <I~n (Xl, Yl), ~I~n(X2, y2) . . . .  , ¢~n(xN, YN) using equation (3.9); 
for time step n --* n + 1; 

End for 
End for. 

can see from Figure 5 showing the geographic layout of Tolo Harbour, it contains an irregular 
coastline and two islands in the outer sea. This forms a concave computational domain. To 
handle the concavity, a small value of the shape parameter is suggested. The adopted shape 
parameter  0.815 dmin in the present model is sufficient small to assure that  the spatial derivatives 
evaluated at a point are influenced mostly by its immediate neighbouring points and that  the 
interpolation across dry land, which is discontinuous in the computational domain, is minimized 
in the computational process. Our studies show that  the effect of concavity is further improved 
by using the proposed multizone decomposition MQ method, the subdivision of the domains can 
handle the concave region better. 

4.1. C o m p u t a t i o n a l  C o m p l e x i t y  Ana ly s i s  

To analyze the computational complexity of the solution of the hydrodynamic equations using 
the global MQ method, there are several major components of computations we have to consider. 
First, the unknown coefficients vector [c~] in equation (3.13) are determined by 

[c~] = [A] - '  [ ~ ] ,  (4.24) 

where [A] is the coefficient matrix described in equation (3.12). The inversion of matrix [A~j] 
is only required to be calculated once at the beginning of the computation and is used in every 
time step computation. In equation (4.24), there are N 2 multiplications and N ( N -  1) additions. 
Hence, there should be 3(2N 2 - N) operations in the calculation of the unknown coefficients 
vector for the three equations in equation (2.1). 

After the computation of the unknown coefficients vector [c~], the six partial derivative in 
equations (3.14) and (3.15) can be determined accordingly. In this step, N multiplications and 
i N - 1) additions are needed in obtaining one partial derivative. Since there are N interpolation 
points over the entire region f/, therefore N ( 2 N  - 1) operations are involved for N data  points 
over the region f/. The  calculation of the six partial derivatives should involve in total 6 N ( 2 N -  1) 
operations. 

For the computations of the three interpolants ((,  u, v), each of them involves a fixed number 
of operations, p, where p << N. Hence, the total number of fixed operations for N data  points 
is 3pN.  Put t ing all the above operations together, the total  number of operations for the major 
components of computations at a time step is 

(6N 2 - 3N) + (12N 2 - 6N) + 3 p g  = 18N 2 + (3p - 9)Y. (4.25) 

For the multizone decomposition MQ scheme, the entire region is first subdivided into k non- 
overlapped zones with roughly the same number of data  points in each zone. We then include a 
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small portion of approximately rN data  points from its neighbouring zones. For each zone, there 
will be N/k+rN data  points involved in the computations. Following the same line of argument, 
the number of operations required for the computation of a single zone is then given by 

18(N+rN)2+(3p-9)(N+rN),  k~O. (4.26) 

To do the computat ion of the whole region, we need to carry out k sets of computations for 
the k zones. The total  number of operations will be given by 

. 

k ~ 0. (4.27) 

By ignoring the first-order terms in equations (4.25) and (4.27) and comparing the second-order 
terms, we can see tha t  there will be approximately [1 - ( l /k ) (1  + kr) 2] percent reduction in 
operations with the multizone scheme. For the example of our s tudy in Tolo Harbour, we divided 
the whole s tudy region into k = 5 zones with about r = 14%, we will have approximately a 
42% saving in computations. 

5. M O D E L  V E R I F I C A T I O N S  A N D  N U M E R I C A L  R E S U L T S  

To compare the application of the multizone decomposition MQ scheme with the global mul- 
tiquadric method,  we apply the proposed scheme to a two-dimensional hydrodynamic model. 
Numerical examples of a linear and a nonlinear model are considered individually to illustrate 
the efficiency and applicability of the proposed algorithm. The program is writ ten in C + +  with 
double precision on computations and executed on a Pentium PC. 

CASE 1. A LINEAR WATER FLOW MODEL. To give a better  insight into the multizone MQ algo- 
rithm, we firstly apply the method to a linear shallow water equation. This simple model allows 
a comparison of the computed results with the analytical solution. The equations to be solved 
are given as 

0¢ 
+ H V .  V -- 0, (5.28) 

0V 
0t -- gV¢, (5.29) 

where V is a vector of the depth-averaged advective velocities in x, y directions, respectively; ¢ is 
the sea water surface elevation; H is the total  depth of sea level, such tha t  H -- h + ~; h is the 
mean depth of sea level; g is the gravitational acceleration. As shown in Figure 3, we generate 
205 collocation points in a rectangular channel with length L -- 872 km, width W = 50 km and 
depth H -- 20m, in which 117 collocation points are in the interior, five are on the water-water 
boundary and 83 are on the land boundary. 

water-water boundary - ~  

L 

Figure 3. A rectangular channel with 205 collocation points. 
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On the basis of the multizone MQ algorithm, we first parti t ion the whole region into four 

nonoverlapped zones, each of these zones contains 51 to 52 collocation points and they are evenly 
distributed over each zone. For each computational zone, we include another two sets with about 
20 extra interpolation points which are placed in its adjacent and neighbouring zones. 

The boundary conditions are: 

~(t)7 = ~0 coswt, at x = 0, 

u(t) = 0, at x = L, 

v(t)=O, a t y = 0 ,  a n d y = W ,  

0 _< y < W, (5.30) 

0 < y < W, (5.31) 

0 < x < W, (5.32) 

and the initial conditions are: 

y, o) = o, (5.33) 

¢(x, y, o) = o, (5.34) 

where ~0 = I m and w -- 1.45444 × 10-a/s.  The analytical solution to this boundary-value 
problem is known and is given by 

¢(x, y, t) = ~0 cos (L - x) cos ( ( w / v ~ )  L)' (5.35) 

~-~__~ ( ~  ) sinwt . (5.36) 
u(x,y,t) = -¢o g sin ( L -  x) cos ( (w/v/~)  L)' 

v(x, y, t) = O. (5.37) 
t 

Since the wind stress, bot tom friction, and coriolis force terms are ignored, the solution cor- 
responds only to the interaction between the incident wave and the reflected waves from the 
wall at x = L. For the t ime integration scheme, we adopt the Euler method of second order to 
discretize equations (5.28) and (5.29) which yields 

~n+l = ~n _ AtH ( V .  V} n + ~'~-'~H9 (V2¢} n , (5.38) 

V "+ '  = V n - Atg{V¢} n + ~ g g { V  2 . v }  n.  (5.39) 

In the computation, the excitation wave period is taken to be 12 hours and the wavelength 
is calculated to be 605 km. To compare the methods with consistency, all results are generated 
with time step sizes At  = 30 seconds and the shape parameter r = 0.815drain. The root-mean- 
square (RMS) error of the tidal level (¢) and water velocity (u) calculated by global MQ and 
multizone MQ models in relation to the analytical solution are analyzed. The RMS  results of 
three of the interpolation points N = 87, 99, and 111 which are situated in the central of the 
basin and the requirement of the computational time (CPU) are summarized in Table 2. The 
root-mean-square error is calculated by 

I 1 ~(¢nalytical_rc°mputed'~ 2 
RMS = ~ i=1 ~i ] , (5.40) 

where T~ is the total  number of t ime steps, and is taken as T ,  = 1400, ~analytical is the analytical 

solution, /.computed is the simulated results. 
By comparing the RMS errors in Table 2, the error of the computed tidal level and velocities 

of the global scheme and the multizone scheme appear to be of the same order of magnitude. 
This indicates tha t  the simulated results of the multizone MQ scheme is as good as the global 
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Table 2. Root-mean-square  error (m). 

Global MQ Four Zones MQ 

N 87 99 111 87 99 111 

Tide level (¢) 9.251 x 10 -3  1.181 x 10 - 2  1.010 × 10 -2  6.486 x 10 -3  1.111 x 10 -2  1.039 x 10 -2  

Water  current  (u) 3.783 x 10 -3  5.623 x 10 - 3  1.412 x 10 -2  5.094 x 10 -3  7.887 x 10 -3  1.257 × 10 -2  

CPU t ime 
106 seconds 41 seconds 

for 100 t ime s teps  
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Figure 4. Condition numbers versus interpolation points for the global MQ and 
multizones MQ model. 

MQ scheme. Regarding the computational efficiency, multizone MQ performed more efficiently 

with a saving of 61% in CPU time comparing to the global MQ scheme. 

To further assure the superiority of the multizone decomposition MQ scheme over the global 

MQ scheme, the condition numbers of the coefficient matrices of the radial basis function for 

the two schemes with different number of interpolation points were compared. For simplicity, 

we only illustrate the condition numbers of the proposed decomposition MQ scheme for the 

rectangular channel model with four zones. The reader should be aware that the value of the 

condition number can be reduced by dividing the region into further division. For the multizone 

scheme, the average condition numbers of the four zones were used for comparison. The results 

are presented in Figure 4. We can see from the figure that the condition number of the coefficient 

matrix for the global scheme increases rapidly with increase in interpolation points while for the 
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multizone scheme, the rate of increase of condition number is much less. This indicates tha t  for 
global scheme, the coefficient matr ix will become ill-conditioned with increase in interpolation 
points but  not for the case of the multizone scheme. 

CASE 2. A NONLINEAR WATER FLOW MODEL. A hypothetical model is studied in Case 1 
where the analytical solution is available to compare with the computed solution. In this case, 
the application of the multizone MQ scheme is applied to a real-life model. We use Tolo Harbour 
of Hong Kong as a reference test case for a two-dimensional nonlinear hydrodynamic model. The 
MQ scheme has been successfully applied to solve a system of water quality equations to this 
harbour with 260 data  points in our previous study [6]. The construction of the multizone MQ 
scheme is based on the same set of data  points. These 260 data  points are distributed evenly as 
indicated in Figure 5. 

. . . . . . . . . . . . . . . .  / 

5.8 Two Major Rivers: i 

1 : Tai Po River f ~ , , - ~  . . . . .  I 
5.6 2:ShingManRiver ~ f "" ~7  ' 1 

• • ° • • * • I 

° ° ° ° • ° ° • ~ t 

~ b °  o ° ~ s . 2  ~ F t  • • 
I .  

• . ~  

i °  T - -  ~ = , I 

4.6 - 

4 . . . .  

2 25 3 35 4 4.5 5 

Figure 5. Map of the To|o Harbour of Hong Kong showing the location of t ide gauges, 
main rivers. The clot (o) distr ibuted on the map represents the interpolat ion points. 

Tolo Harbour is a semi-enclosed embayment with a very irregular coastline that  surrounds its 
land boundary, this typical geographical condition makes it well suited to verify the application 
of the method. The embayment occupies an area of 50 km 2 and is 16 km long. The width of the 
embayment varies from 5 km in the inner basin to just over 1 km at the mouth of the harbour. 
The tide in Tolo Harbour is a mixed semidiurnal type with a tidal period of 24.5 hours. The 
overall range of the tidal level is around 0.1 m to 2.7m. The measurement of the current flows 
is recorded as an average 10 cm/sec in the channel of the harbour. The water depth of Tolo 
Harbour is shallow in Inner Tolo Harbour with less than 10 m deep and is deeper in Channel Tolo 
more than 20 m. 

The simulation is done for the period between 1 February 1991 and 30 April 1991. We choose 
N = 260 collocation points in the whole domain fl of which 23 are on the water boundary; 107 are 
interior points, and 130 are on the land boundary. The tide and wind stress data  are obtained 
from the Observatory of Hong Kong. Both tide and wind data  are the average hourly observed 
data  at the tide gauges. The location of two tide gauges are indicated in Figure 5. To satisfy 
the water-water boundary condition as defined in equation (2.2), the input surface elevation ¢'~ 
on water-water boundary is estimated using the equation suggested by the Observatory of Hong 
Kong given as 

~"(x~,yi,t)=~*(t+TcoR,)+HcoR, for i = 1 , 2 , . . . , 2 3 ,  (5.41) 
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Figure 6. Computational Zone 1 showing the distribution of data points. 
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Figure 7. Computational Zone 2 showing the distribution of data points. 

where ~*(t) is the actual tide data measured at a tide gauge, TCOR~ is the time correction 
parameter, HcoR, is the tide level correction parameter. 

The model is tested using the multizone decomposition scheme with five and seven zones. Each 
computational zone consists of roughly a same number of collocation points with 80 to 90 points 
in five-zone model and 60 to 70 points in seven-zone model in the set (W k U B k U Sk). To 
reduce the spurious oscillation caused by the two islands in the harbour, we specially assigned 
more points in the zone containing these two islands. Figures 6-10 show the allocation of data 
points in the model of five zones. In the figures, the notation x denotes points in W k, V denotes 
points in B k, and [] denotes points in S k. The performance of the multizone decomposition 
MQ scheme exhibits reasonable stability and accuracy throughout the three months simulation 
period. Figure 11 shows the comparison of the computational results between the global MQ 
and the multizone MQ in 260 collocation points for the period between 23 February 1991 and 
27 February 1991. 

In order to investigate the effect of density of data points on the performance of the global MQ 
simulation, we repeat the simulation with several sets of data points ranging from 260 to 200. We 
removed a number of points at a time from the regions with small height gradient that are not 
close to the open sea and land boundaries. These removed points should have the least impact 
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Figure 8. Computational Zone 3 showing the distribution of data points. 
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on the simulated results, because the rate of change of water flow is considered to be insignificant 

there. 
In view of the numerical experiments when using time step At = 30 seconds and a constant 

r = 0.815drain, the results indicate that  the performance of the global MQ model degrades 
gradually with smaller number of data points. It becomes significantly unsteady with model of 

less than 200 data points. 
Table 3 compares the observed data at Ko Lau Wan tide gauge with the simulated results of 

the various models. Both the root-mean-square error and absolute maximum error are presented. 

The simulation is carried out for a total number of hours Tn = 2036 with time step size of 

30 seconds. 
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Figure 11. Comparison of the  s imulated  values of the global MQ and the multi- 
zone MQ in five and seven zones  in 260 data points with the observed hourly tide 
level in Tolo Harbour from 23 February to 28 February 1991. 
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Figure 11. (continued) 

Table 3. Analysis of the tidal level for the interpolation point at a tide gauge of the 
Tolo Harbour, At = 30 seconds, r = 0.815dmln. 

l~ot-Mean-Square Absolute Max. CPU Time 
Error (m) Error (rn) For 10 s Time Steps 

260 nodes global MQ 7.615 X 10 -2 2.469 × 10 -1 993 seconds 
210 nodes global MQ 1.058 × 10 -1 3.185 × 10 -1 706 seconds 
five zones MQ 7.906 × 10 -2 2.467 × 10 -1 575 seconds 
seven zones MQ 7.570 × 10 -2 2.392 x 10 -1 481 seconds 

The CPU time for 103 time steps is also shown in Table 3. By comparing the root-mean-square 

error, it is observed that  the accuracy of the multizone decomposition MQ models are very close 
to the global MQ with 260 data points. Multizone decomposition can effectively reduce the com- 

putational time by 42% in five zones and 51% in seven zones with only an relative computational 

error of around 4% when compared with the global MQ result in 260 data  points. On the other 

hand, the global MQ with 210 collocation points produced a relatively large RMS error. In 

spite of the fact that  computational time is considerably reduced with fewer collocation points, 
numerical experiments show a deterioration of computational accuracy. 

The eddy and flood velocities of the multizone decomposition MQ in five and seven zones 
are compared with those results of the global MQ with 260 points in Figures 12-14. These 

figures show that  there are no significant difference in the overall pattern of the current velocities 
between these three models. It indicates that  smoothness in distribution of velocities across zone 

boundaries can be maintained in the multizone MQ models. Since there is no regular monitoring 
of the current velocities in the Tolo Harbour, the prediction of the current velocities cannot be 

verified precisely at a single point. However, previous field measurement of the current flow is 

recorded at an average of 10 cm/sec in the channel and has a poor flushing rate in the inner 

harbour, which is consistent with the numerical predictions. 

6. C O N C L U S I O N  A N D  D I S C U S S I O N  

The application of the multizone decomposition technique to the multiquadric scheme has been 
described and successfully applied to solve a linear and a nonlinear two-dimensional hydrodynam- 
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Figure 12. Distribution of the eddy and flood velocities in Tolo Harbour at 353 and 
361 hours using global MQ with 260 points. 

1 

ics model. In the example of the model in Tolo Harbour, the region under study with 260 data 
points was divided into five zones and seven zones, respectively. The numerical results and the 
computing time were compared with those results from the global MQ in a single domain. The 
multizone MQ model has shown to be an efficient scheme with a saving of more than 40% and 50% 
of computational time in the five-zone and seven-zone, respectively. Our analysis also shows that 
the accuracy of the proposed scheme was comparable to that of using a single domain. 

Although using radial basis functions to solve partial differential equations provides a simply 
accurate and truly mesh free algorithm. It is known that when the multiquadric scheme is 
applied to solve large scale problems with a large number of data points, the resulting collocation 
matrix is very ill-conditioned and the computation is inefficient. To overcome these problems, the 



Multizone Decomposition 

$ z o n e B  

flooding velocity ~ 353 hours / /  ~ / ~ _  f " -- 
. I  

, , f  ? _  _ _ _ 

I 

5 ZOllll~ 

ebbing wlocity after 361 hours 

! 

£ 

\ 1 

/ - -  

£ 

Figure 13. Distribution of the eddy and flood velocities in the Tolo Harbour at 353 
and 361 hours using five-zone MQ. 

41 

proposed scheme in this paper applied the technique of multizone decomposition to work with 
the basis functions locMly at different zones of resolution. This gives a chance to improve the 
ill-conditioning problem by the reduction of the size of the full coefficient matrix to be solved. 
The proposed scheme will make the multiquadric method more feasible for the solving of large- 
scale or three-dimensional problems. The method also lends itself well to parallel computation 
with multiple processors, where parallelization across zones are possible. This parallel processing 
approach is currently under investigation by the authors. 

Furthermore, an alternative method using the multilevel approximation approach with com- 
pactly supported radial basis functions (RBFs) has been introduced by Floater and Iske [14]. The 
basic idea of this method is to use a preset compactly supported RBFs to approximate solutions 
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Figure 14. Distribution of the eddy and flood velocities in the Tolo Harbour at 353 
and 361 hours using seven-zone MQ. 

locally at different levels, the approximate  residuals obtained in the finer levels are subsequently 
added to the coarse level, thus the improvement  of the stability and accuracy can be achieved. 
However, the amount  of work involved in computing differentiable residuals at each level is enor- 
mous and the procedure would generate additional errors. Fasshauer [15] has recently suggested 
using a precomputed  hierarchy of smooth  functions to improve the efficiency of the multilevel ap- 
proximation with the use of the RBFs. We have made no a t t empt  to give numerical justification 
and verification to this alternative method as they are beyond the scope of s tudy in this report.  
The  comparison between the multilevel approximation with compact ly  supported basis functions 
and the present proposed multizone decomposition scheme will be investigated in the future. 
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