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SUMMARY

Spinal and bulbar muscular atrophy (SBMA) is
caused by the polyglutamine androgen receptor
(polyQ-AR), a protein expressed by both lower motor
neurons and skeletal muscle. Although viewed as a
motor neuronopathy, data from patients and mouse
models suggest that muscle contributes to disease
pathogenesis. Here, we tested this hypothesis using
AR113Q knockin and human bacterial artificial chro-
mosome/clone (BAC) transgenic mice that express
the full-length polyQ-AR and display androgen-
dependent weakness, muscle atrophy, and early
death. We developed antisense oligonucleotides
that suppressed AR gene expression in the periphery
but not the CNS after subcutaneous administration.
Suppression of polyQ-AR in the periphery rescued
deficits inmuscleweight, fiber size, andgrip strength,
reversed changes in muscle gene expression, and
extended the lifespan of mutant males. We conclude
that polyQ-AR expression in the periphery is an
important contributor to pathology in SBMA mice
and that peripheral administration of therapeutics
should be explored for SBMA patients.

INTRODUCTION

Spinal and bulbar muscular atrophy (SBMA) is one of nine un-

treatable diseases caused by CAG/glutamine tract expansions.

In SBMA, a polyglutamine (polyQ) tract near the amino terminus

of the androgen receptor (AR) leads to hormone-dependent

protein unfolding and to the loss of lower motor neurons in

the brainstem and spinal cord of affected males (Lieberman

and Fischbeck, 2000). Clinical onset occurs in adolescence to

adulthood and is characterized initially by muscle cramps and

elevated serum creatine kinase (Katsuno et al., 2006b; Sperfeld

et al., 2002). These myopathic features commonly precede
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muscle weakness, which inevitably develops as the disease

progresses and is most severe in the proximal limb and bulbar

muscles. As with all of the polyglutamine disorders, the mecha-

nisms that lead to selective neuronal dysfunction and degenera-

tion are poorly understood, and disease-modifying therapies are

currently unavailable.

Several general principles have emerged from the study of

SBMA model systems that guide our understanding of disease

pathogenesis. Binding of testosterone or dihydrotestosterone

to the polyQ-AR promotes ligand-dependent unfolding and

nuclear translocation of the mutant protein (Katsuno et al.,

2002; Takeyama et al., 2002). These steps are required for path-

ogenesis and underlie the occurrence of disease only in men.

The mutation leads to a partial loss of transactivation function

(Chamberlain et al., 1994; Irvine et al., 2000; Kazemi-Esfarjani

et al., 1995; Lieberman et al., 2002; Mhatre et al., 1993), and

while this may contribute to features of androgen insensitivity,

neuromuscular degeneration is mediated by a toxic gain of func-

tion conferred by protein unfolding. In SBMA, as in other CAG/

polyQ disorders, the mutant protein disrupts multiple down-

stream pathways, and toxicity likely results from the cumulative

effects of altering a diverse array of cellular processes including

transcription, RNA splicing, axonal transport, and mitochondrial

function (Katsuno et al., 2006a; Kemp et al., 2011; McCampbell

et al., 2000; Morfini et al., 2006; Ranganathan et al., 2009; Sze-

benyi et al., 2003; Yu et al., 2009). The existence of divergent

mechanisms of toxicity suggests that potential treatments tar-

geting a single downstream pathway are likely to be incomplete

or unsuccessful. In contrast, efforts to target the polyQ-AR as the

proximal mediator of toxicity by harnessing cellular machinery to

promote its degradation hold promise for therapeutic interven-

tion. Because the Hsp90-based chaperone machinery controls

proteostasis of the AR (Morishima et al., 2008; Thomas et al.,

2004, 2006; Wang et al., 2010), genetic and pharmacological

approaches to promote Hsp70-dependent ubiquitination have

been shown to facilitate degradation of the mutant protein

(Wang et al., 2013).

Insights into the mechanisms underlying selective neuromus-

cular degeneration in SBMA have come from the study of mouse
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models. Previous analysis of AR113Q knockin mice suggested

that pathology arising in skeletal muscle contributes to the dis-

ease phenotype (Yu et al., 2006a). In these mice, denervation

and myopathy precede spinal cord pathology, consistent with

the notion that myopathy is an early disease manifestation

(Jordan and Lieberman, 2008). Supporting a role for muscle in

pathogenesis are data from transgenic mice that overexpress

wild-type (WT) AR only in skeletal muscle and show hormone-

dependent myopathy and motor axon loss (Johansen et al.,

2009; Monks et al., 2007). That muscle both contributes to the

SBMA phenotype and provides a therapeutic target is supported

by data showing diminished disease severity in polyQ-AR

transgenic mice with genetic overexpression of IGF-1 in skeletal

muscle (Palazzolo et al., 2009) or with peripheral IGF-1 adminis-

tration (Rinaldi et al., 2012).

Here, we test an alternative strategy to ameliorate toxicity in

mouse models of SBMA by suppressing polyQ-AR expression

using antisense oligonucleotides (ASOs). We use these com-

pounds to specifically target polyQ-AR expression in the periph-

ery. We demonstrate using two mouse models that peripheral

gene suppression of the polyQ-AR rescues deficits in muscle

weight, fiber size, and grip strength; reverses changes in muscle

gene expression; and extends lifespan of mutant males. We

conclude that polyQ-AR expression in the periphery is an impor-

tant contributor to pathology in SBMA mice and that peripheral

administration of therapeutics should be explored for SBMA

patients.

RESULTS

Subcutaneous ASO Suppresses PolyQ-AR Expression in
the Periphery but Not the Spinal Cord
We sought to define the contribution of peripherally expressed

polyQ-AR to the phenotype of SBMA mice and to determine

whether peripheral tissue is a therapeutic target. To accomplish

this, we suppressed AR expression by subcutaneous adminis-

tration of ASOs. Because these compounds do not cross the

blood-brain barrier (Geary, 2009; Yu et al., 2007), this strategy

selectively targeted AR in peripheral tissues such as skeletal

muscle. We developed 16-mer chemically modified ASO com-

plementary to human and mouse or human AR transcripts

(ASO1 and ASO2 respectively; Table S1). These 20,40-con-
strained ethyl (cEt) gapmer ASOs show increased stability,

tolerability, and potency upon in vivo administration (Seth

et al., 2009). Initial characterization demonstrated dose-depen-

dent suppression of human andmouse ARmRNAs in cell culture

by targeted, but not control, ASOs (Figure 1A). Similarly, subcu-

taneous administration of targeted, but not control, ASOs led to

dose-dependent suppression of AR mRNA and protein expres-

sion in skeletal muscle of WT male mice (Figures 1B and 1C).

Serum testosterone levels of these males exhibited modest

variability, and treatment with targeted ASOs did not result in a

significant alteration (Figure S1).

We used these compounds to determine the extent to which

suppressing peripheral expression of the polyQ-AR rescued the

phenotype of SBMA mice. This was accomplished using both

AR113Q knockin (Yu et al., 2006a; Yu et al., 2006b) and human

bacterial artificial chromosome/clone (BAC) fxAR121 transgenic
mice (Cortes et al., 2014). Both of these models express the

full-length polyQ-AR under the regulation of its endogenous

promoter. These mice display a similar androgen-dependent

phenotype characterized by weakness, muscle atrophy, and

early death. In both models, subcutaneous administration of

ASOs decreased AR expression in skeletal muscle, but not

spinal cord. To determine the targeting efficacy and specificity

in skeletal muscle, BAC fxAR121 transgenic males were treated

with the human AR-targeted ASO2. Subcutaneous adminis-

tration of human AR-targeted ASO2, but not control ASO,

led to dose-dependent suppression of transgene expression

in skeletal muscle without affecting expression of the endoge-

nous mouse allele (Figure 1D). While treatment with ASO2

(50 mg/kg, twice weekly, starting at 11 weeks) specifically

suppressed transgene expression in skeletal muscle of BAC

transgenic mice, the human and mouse cross-reactive ASO1

suppressed both transgenic human AR and endogenous

mouse AR mRNA (Figure 2A), demonstrating target selectivity.

Quantitative real-time RT-PCR demonstrated >95% reduction

of human AR mRNA levels in skeletal muscle of treated males.

No significant change in mouse or human AR mRNA levels was

detected in brain or spinal cord of treated mice (Figure 2A), indi-

cating that subcutaneous administration selectively targeted

peripheral AR expression. The decrease of AR mRNA in muscle

was associated with comparable reduction in AR protein

immunoreactivity in skeletal muscle nuclei following treatment

(Figure 2B).

AR113Q knockin males express a hybrid humanized AR in

which most of mouse AR exon 1 has been replaced by human

sequence (Yu et al., 2006b). Therefore, we used ASO1, a human

and mouse AR cross-reactive ASO, to treat these mice. Subcu-

taneous administration of ASO1 (50 mg/kg, twice per week for

4 weeks and then once per week) or saline was initiated at

8 weeks and continued until 26 weeks. Treatment resulted in a

significant decrease in AR mRNA levels in quadriceps muscle,

but not spinal cord (Figure 2C). This decrease in AR expression

was long-lived, as partial mRNA reduction was detected in skel-

etal muscle harvested from mice at 36 weeks of age, 10 weeks

after the termination of treatment; by 46 weeks of age (20 weeks

posttreatment washout), ARmRNA levels in muscle approached

those of saline-treated controls. Similarly, sustained suppres-

sion of transcripts by ASOs has been reported in skeletal muscle

of myotonic dystrophy mice (Wheeler et al., 2012). Knockdown

of AR mRNA levels in muscle was associated with a �90%

decrease in AR protein levels (Figure 2D). We observed a slow

recovery in AR protein levels in muscle after the termination of

treatment, with expression remaining �80% lower than controls

at 10 weeks posttreatment and �65% lower than controls at

20 weeks posttreatment (age 46 weeks). In contrast, AR mRNA

and protein expression in spinal cord were not significantly

altered by peripheral ASO delivery.

Peripheral PolyQ-AR Suppression Rescues Disease in
SBMA Mice
Significant amelioration of disease phenotype following AR

gene suppression in the periphery was observed in both

SBMA mouse models. BAC fxAR121 mice exhibited an age-

dependent loss of grip strength and body mass (Figures 3A
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Figure 1. Dose-Dependent Suppression of AR Expression by Targeted ASOs

(A) Human umbilical vein endothelial cells (top) and mouse brain endothelial cells (bEnd.3) cells (bottom) were electroporated in the presence of AR-targeted or

control ASOs at the indicated concentrations. Relative ARmRNA levels were determined after 16 hr and are reported as mean ± SD. UTC, untransfected control.

(B and C) Wild-type male mice received subcutaneous injections of ASO1, control ASO, or saline from 6 to 14 weeks (n = 3 per group). Animals were treated with

ASO1 or control ASO at 50 mg/kg per week, or with two lower doses of ASO1 (25 mg/kg per day 3 3 days, then 12.5 mg/kg per week; or 17.5 mg/kg per day3

3 days, then 10 mg/kg per week). Quadriceps muscle was harvested at 14 weeks for analysis of AR expression.

(B) Relative AR mRNA levels (mean ± SEM). *p < 0.05, ***p < 0.001.

(C) AR protein as detected by immunoprecipitation and western blot.

(D) BAC fxAR121males (n = 4 per group) received subcutaneous injections of control ASO (25mg/kg per week), ASO2 (25, 12.5, or 6.25mg/kg per week), or saline

from 7–15 weeks. Quadriceps muscle was harvested 48 hr after the final dose and analyzed for human and mouse ARmRNA levels. Data are mean ± SD. ***p <

0.001 compared to saline treatment.
and 3B). These deficits were partially rescued in a dose-depen-

dent manner by subcutaneous administration of ASO2, but not

control ASO (Figures 3A and 3B). Higher-dose treatment with

ASO2 (50 mg/kg per week), starting at an asymptomatic age

(6 weeks) and continuing for 4 weeks, completely ameliorated

the loss of grip strength and body mass in transgenic males

(Figures 3C and 3D). This was associated with rescue of lean

body mass as measured by MRI (Figure 3E). BAC fxAR121

males treated with ASO2 showed a dose-dependent extension

of lifespan (Figure 4A). Similarly, treatment of AR113Q knockin

males with ASO1 starting at 8 weeks resulted in a significant

extension of lifespan (Figure 4B), without altering serum testos-

terone levels (Figure S2).

To further assess the clinical implications and therapeutic

relevance of this strategy, we initiated treatment with ASO2 in

a separate cohort of BAC fxAR121 mice at 11 weeks, an age
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at which these males begin to exhibit diminished grip strength

and bodymass, as shown in Figure 3. Subcutaneous administra-

tion of ASO2 for durations varying from 2 to 8 weeks resulted in a

significant increase in survival that reflected the length of treat-

ment (Figure 5A). Furthermore, we detected a significant deficit

in grip strength only in those animals treated with ASOs for the

shortest duration (Figure 5B). These data indicate that therapeu-

tic benefits from peripherally administered ASOs are dependent

upon total treatment dose and are detected even when initiated

at the onset of symptoms.

ASO treatment rescued polyQ-AR-mediated pathology in

skeletal muscle of both SBMA mouse models. AR113Q knockin

males showed skeletal muscle atrophy at 26 weeks of age, and

both tibialis anterior muscle mass (Figure 6A) and quadriceps

muscle fiber size (Figure 6B) were increased by ASO1 treatment

starting at 8 weeks. This rescue of muscle mass was maintained



Figure 2. Subcutaneous ASO Administration

Suppresses AR Expression in Muscle but

Not Spinal Cord

(A) The 11-week-old BAC fxAR121 males (n = 4 per

group) received subcutaneous injections of ASOs

(50 mg/kg, twice weekly) or saline for 4 weeks.

Quadriceps muscle, brain, and spinal cord were

harvested 48 hr after the final dose and analyzed for

human (left) and mouse (right) AR mRNA levels.

Data are mean ± SD. ND, not detected. ***p < 0.001

compared to saline treatment.

(B) Wild-type (WT; left) and BAC fxAR121 males

(middle and right) received subcutaneous injections

of ASO1 (50 mg/kg weekly, starting at 6 weeks) or

saline for 4 weeks. The external urethral sphincter

muscle was harvested and stained for AR by

immunohistochemistry. Scale bar, 15 mm.

(C and D) AR113Q (n = 10 per group) and WT (n = 3

per group) males received subcutaneous injections

of ASO1 (50 mg/kg, twice weekly for 4 weeks, and

then once weekly) or saline, from 8 until 26 weeks.

Quadriceps muscle and spinal cord were harvested

at the indicated ages and analyzed for (C) ARmRNA

(mean ± SEM) and (D) protein by immunoprecipi-

tation and western blot. ***p < 0.001; n.s., not sig-

nificant.
in mice at 36 weeks of age, 10 weeks after termination of treat-

ment, but was lost at 46 weeks, or 20 weeks off treatment.

These findings paralleled changes in polyQ-AR expression (Fig-

ures 2C and 2D). ASO1 treatment also diminished the frequency

of AR immunoreactive intranuclear inclusions in skeletal muscle

nuclei of knockin males (Figure 6C). These inclusions were not

detected in quadriceps muscle of treated males at 26 weeks

and were present in only occasional nuclei of the levator ani/bul-
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bocavernosus (LA/BC) muscle. Because

the LA/BC expresses high levels of AR

(Jordan et al., 1997; Monks et al., 2004),

intranuclear inclusions were frequent in

saline-treated AR113Q males, and their

persistence in some nuclei after ASO

treatment indicated that a subpopulation

was long-lived. Similar findings have

been observed following ASO treatment

of Huntington disease mice (Kordasiewicz

et al., 2012). As with the LA/BC muscle,

the external urethral sphincter (EUS)

muscle expressed high levels of AR (data

not shown) and exhibited more severe

and early-onset atrophy than quadriceps

muscle (Figure 6D). In BAC fxAR121

males, ASO2 treatment rescued muscle

fiber size in both EUS and quadriceps

muscles (Figure 6D). In both BAC

fxAR121 and AR113Q males, ASO treat-

ment also diminished the levels of acetyl-

choline receptor-a subunit and myogenin

mRNAs, genes that are induced following

denervation and are upregulated in
SBMA mice (Figures 6E and 6F). In both models, this rescue

was partially maintained 6–10 weeks posttreatment.

Finally, to further assess the relative contribution of peripheral

polyQ-AR expression to the disease phenotype, we directly

compared the efficacy of peripheral versus intraventricular

versus combined administration of ASOs in BAC fxAR121

mice. For these experiments, we used a third AR-targeted

ASO, ASO3, whose chemistry is well tolerated by mice following
–784, May 8, 2014 ª2014 The Authors 777



Figure 3. Dose-Dependent Rescue of Grip Strength and Body Mass in BAC fxAR121 Males by ASO2

(A and B) BAC fxAR121 or wild-type (WT) males (n = 10 per group) were treated with increasing doses of ASO2 (6.25–25 mg/kg per week), control ASO, or saline

from 7 until 15 weeks. Grip strength (A) and body mass (B) are reported as mean ± SD. Grip strength and body mass of transgenic (Tg) mice treated with ASO2 at

12.5 and 25mg/kg per week are different from saline treated in weeks 15–21 (p < 0.05). Tgmice treatedwith saline show decreased grip strength compared toWT

mice in weeks 11–21 (p < 0.05 by ANOVA) and decreased body mass in weeks 12–21 (p < 0.05 by ANOVA).

(C and D) BAC fxAR121 or WT males (n = 7–10 per group) received subcutaneous injections of ASO2 (50 mg/kg per week, starting at 6 weeks) or saline for

4 weeks. Age-dependent changes in (C) grip strength and (D) body mass are reported as mean ± SD. In (C), **p < 0.01, ***p < 0.001 compared to saline-treated

BAC fxAR121 starting at week 13 by ANOVA. In (D), p < 0.05 for ASO2 versus saline-treated Tg mice from weeks 14 to 16 by ANOVA.

(E) BAC fxAR121 or WT males (n = 9–10 per group) received subcutaneous injections of ASO2 (50 mg/kg per week, starting at 6 weeks) or saline for 4 weeks.

MRI was performed at 16 weeks and used to determine lean body mass. Data are mean ± SD. ***p < 0.001 compared to saline-treated BAC fxAR121 by

ANOVA.
intraventricular injection (Table S1). We found that a single intra-

ventricular administration of ASO3 (100 mg at 8 weeks) dimin-

ished human polyQ-AR mRNA levels in lumbar spinal cord by

60% (Figure 7A). This effect was long-lived and was detected

up to 8 weeks after intraventricular administration. Notably,

intraventricular delivery did not alter polyQ-AR mRNA levels in

quadriceps muscle, which were only diminished in mice

receiving subcutaneously delivered ASO2 (Figure 7A). In order

to increase the likelihood of detecting an additive benefit from

intraventricular administration, we limited the subcutaneous

dose to 12.5 mg/kg per week. At this dose, peripheral ASO2

diminished polyQ-AR mRNA expression in muscle by �60%–

70% (Figure 7A) and partially rescued grip strength and survival

(Figures 7B and 7C). A single bolus intraventricular administra-

tion of ASO3 did not alter grip strength or survival in BAC

fxAR121 mice, despite lowering polyQ-AR mRNA expression
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in lumbar spinal cord (Figures 7B and 7C). Furthermore, com-

bined intraventricular and subcutaneous delivery of ASO was

no more effective than subcutaneous delivery alone at rescuing

the disease phenotype (Figures 7B and 7C). Altogether, we

conclude that peripheral delivery of targeted ASOs suppresses

AR expression in skeletal muscle, but not spinal cord, and that

this treatment rescues deficits in grip strength, body weight,

survival, and skeletal muscle atrophy in two mouse models of

SBMA.

DISCUSSION

Our data demonstrate that polyQ-AR suppression outside the

CNS is sufficient to ameliorate the disease phenotype in two

independent mouse models of SBMA. This strategy is distinct

from prior efforts that have focused on targeting polyQ-AR



Figure 4. Peripheral PolyQ-AR Suppression Rescues Survival of SBMA Mice

(A) Survival of BAC fxAR121 or wild-type (WT) males (n = 10 per group) treated with increasing doses of ASO2 (6.25–25 mg/kg per week), control ASO, or saline

from 7 until 15 weeks. The dark blue/black line depicts overlapping survival curves of WT (saline- and ASO2-treated) and transgenic (Tg) mice treated with ASO2

at 25 mg/kg per week.

(B) Survival of AR113Q (n = 10 per group) andWT (n = 3 per group) males receiving subcutaneous injections of ASO1 or saline from 8 until 26 weeks (as described

in Figure 1C). The red line depicts overlapping survival of WTmales treated with saline or ASO1. ASO1 treatment significantly extended lifespan of AR113Qmales

(p = 0.016).
toxicity within motor neurons. We show that subcutaneous

delivery of ASOs suppresses polyQ-AR expression in skeletal

muscle, but not spinal cord, and this rescues deficits in muscle

weight, fiber size, and grip strength; reverses changes in mus-

cle gene expression; and extends lifespan of mutant males.

Complementary analysis of BAC fxAR121 mice following ge-

netic deletion of the floxed allele specifically in skeletal muscle

corroborates our findings (Cortes et al., 2014) and confirms that

skeletal muscle is the critical target tissue for this therapeutic

intervention.

Our data demonstrate an unexpectedly important contribu-

tion of skeletal muscle to the SBMA phenotype. The occur-

rence of non-cell-autonomous neurotoxicity is an increasingly

recognized component of degenerative disorders (Ilieva

et al., 2009). For motor neuron diseases, models of familial

amyotrophic lateral sclerosis caused by mutant superoxide

dismutase 1 have uncovered contributions to pathogenesis

from astrocytes, oligodendrocytes, and microglia (Boillée

et al., 2006; Di Giorgio et al., 2007; Kang et al., 2013; Lee

et al., 2012; Yamanaka et al., 2008). Similarly, models of spinal

muscular atrophy have demonstrated important contributions

from skeletal muscle (Cifuentes-Diaz et al., 2001; Mutsaers

et al., 2011) and have shown efficacy of peripheral gene target-

ing using ASOs to regulate SMN2 mRNA splicing (Hua et al.,

2011). For SBMA, the findings reported here and by Cortes

et al. (2014) indicate that peripheral expression of the polyQ-

AR in skeletal muscle underlies degenerative changes in the

neuromuscular system. This correlates with much higher

expression of polyQ-AR protein in skeletal muscle than in spi-

nal cord of SBMA patients (Tanaka et al., 1999). Although the

precise mechanism by which skeletal muscle influences dis-

ease remains to be defined, impaired trophic support from

SBMA muscle may contribute to pathogenesis. Diminished

expression of several trophic factors by skeletal muscle in

SBMA mouse models has been demonstrated previously,

including neurotrophin-4, glial-derived neurotrophic factor,
and vascular endothelial growth factor (Sopher et al., 2004;

Yu et al., 2006a). Because these and other muscle-derived

factors support innervating neurons, their decreased expres-

sion could impact the function and viability of lower motor

neurons expressing the polyQ-AR as well as their resistance

to polyQ toxicity (Jordan and Lieberman, 2008). This model

of pathogenesis is consistent with the well-established role

of skeletal muscle in maintaining motor neurons (Jessell and

Sanes, 2000) and suggests a mechanism whereby the neuro-

muscular system may be especially vulnerable to toxicity

from the polyQ-AR.

The therapeutic benefits documented here following periph-

eral administration of ASOs provide a compelling rationale for

exploring treatments targeted to skeletal muscle in SBMA

patients. However, several important questions remain as we

work toward translating these findings to patients. The optimal

therapeutic dose for alleviating proteotoxicity while maintaining

beneficial anabolic effects of AR on skeletal muscle remains to

be defined. Figures 1B and 1C show dose-dependent effects

on AR mRNA and protein levels over the therapeutic range of

ASOs used in these studies, and future work will help optimize

this approach to treatment. Importantly, no target-related

adverse findings were observed in either WT or SBMA mice

following ASO treatment, demonstrating that this treatment

approach is feasible, beneficial, and lacking untoward conse-

quences. We recognize that the loss of anabolic effects of AR

on skeletal muscle may be more pronounced in SBMA patients

than in mice and could necessitate concurrent trophic factor

support. Furthermore, we acknowledge that both mouse

models exhibit marked skeletal muscle pathology and do not

display motor neuron loss, a limitation of the available model

systems. Nonetheless, the observations reported here estab-

lish a foundation for developing disease-modifying therapies

targeted to skeletal muscle and demonstrate the important

contribution of peripherally expressed polyQ-AR to SBMA

pathogenesis.
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Figure 5. Phenotype Rescue Is Dependent upon Treatment Duration

and Is Observed when Treatment Begins at Symptom Onset

BAC fxAR121 or wild-type (WT) males received subcutaneous injections of

ASO2 or saline starting at 11 weeks. Mice were treated (n = 6–10 per group) for

8weekswith 50mg/kg perweek or for 2, 4, or 8weekswith 25mg/kg per week.

(A) Survival of BAC fxAR121 (Tg) is significantly extended by ASO treatment

(p < 0.01). The light-blue line depicts overlapping curves for WT and Tg mice

treated with ASO2 at 50 mg/kg per week for 8 weeks and Tg mice treated with

ASO2 at 25 mg/kg per week for 8 weeks.

(B) Grip strength at 22 weeks, 4 weeks after final treatment (n = 3–5 per group,

except saline-treated BAC fxAR121, where only one mouse survived at this

time point).

Data are mean ± SD. **p < 0.05 compared to saline-treated WT males.
EXPERIMENTAL PROCEDURES

Mice

Derivation of AR113Q mice with a targeted Ar allele containing 113 CAG

repeats in exon 1 was described previously (Yu et al., 2006b). Briefly, mice

were generated by recombining a portion of human exon 1 (amino acids 31–

484) with the mouse Ar gene in CJ7 embryonic stem cells. Male chimeras

were mated with C57BL/6J females, and females heterozygous for the tar-

geted Ar allele were backcrossed to C57BL/6J ten or more generations.

BAC fxAR121 mice were derived as described elsewhere (Cortes et al.,

2014). Male offspring housed in SPF facilities and maintained on a constant

12 hr light/12 hr dark cycle were used in this study. Subcutaneous administra-

tion of ASOs or saline was performed according to the indicated treatment

schedules. For intraventricular administration, 8-week-old mice were anaes-

thetized with 2% isoflurane and held by the head in a stereotaxic instrument.

A total of 10 ml of ASO (100 mg) in saline was injected into the right lateral

ventricle. The coordinates for injection were 0.3 mm anterior, 1.0 mm lateral,

and 3.0 mm ventral from the bregma, as described previously (Sahashi

et al., 2013). Body composition was measured by an Echo MRI system

(Echo Medical System). Procedures involving mice were approved by the

University of Michigan Committee on Use and Care of Animals, in accord

with the NIH Guidelines for the Care and Use of Experimental Animals, or by

the Isis Pharmaceuticals Institutional Animal Care and Use Committee.

Oligonucleotides

A series of uniform chimeric 16-mer phosphorothioate oligonucleotides con-

taining cEt groups at positions 1–3 and 14–16 targeted to mouse or human
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AR and a control ASO (Table S1) were synthesized and purified on an

automated DNA synthesizer using phosphoramidite chemistry, as previously

described (Koller et al., 2011). All ASOs were dissolved in PBS and filtered

before injections were performed.

RNA Analysis

Total RNA was isolated from tissues of AR113Q knockin males with TRIzol

(Invitrogen) according to the manufacturer’s instructions. RNA (1 mg) was

used to synthesize cDNAwith the high-capacity cDNA archive kit (Applied Bio-

systems). Gene-specific primers (18S rRNA, 4310893E;Ar, Mm00442688_m1;

a-acetylcholine receptor, Mm00431627_m1; myogenin, Mm00446194_m1)

were purchased from Applied Biosystems, and analyses were performed in

duplicate using 10 ng aliquots of cDNA on an ABI 7500 Real Time PCR system.

Relative expression levels were calculated by comparison with the expression

of 18S rRNA.

BAC fxAR121 tissues were homogenized in a guanidine isothiocyanate

solution (Invitrogen) supplemented with 8% 2-mercaptoethanol (Sigma-

Aldrich). Total RNA was prepared according to the PureLink Total RNA Puri-

fication Kit (Invitrogen). The quantitative RT-PCR analyses were done using

a StepOne Real-Time PCR System (Applied Biosystems). The sequences

of primers and probe used were as follows: mouse androgen receptor: for-

ward: 50-CAGCAGAAACGATTGTACCATTG-30, reverse: 50- GCTTACGAGCT

CCCAGAGTCA-30, probe: 50-Fam- AAAATTGCCCATCTTGTCGTCTCCGG-

Tamra-30; human androgen receptor: forward: 50-GCCCCTGGATGGATAGC

TACT-30, reverse: 50- CCACAGATCAGGCAGGTCTTC-30, probe: 50-Fam-

ACTGCCAGGGACCATGTTTTGCCC-Tamra-30; mouse cholinergic receptor

nicotinic, alpha polypeptide1 (Life Technologies) Mm00431627_m1; mouse

myogenin (Life Technologies) Mm00446194_m1. PCR results were normal-

ized to total RNA measure by Quant-iT RiboGreen RNA reagent (Molecular

Probes).

Immunoprecipitation and Western Blot

Muscle and spinal cord were homogenized in RIPA buffer containing com-

plete protease inhibitor cocktail (Roche) using a motor homogenizer

(TH115, OMNI). Lysates were incubated on a rotator at 4�C for 1 hr and

then precleared by centrifugation at 13,0003 g for 10 min at 4�C. Protein con-

centration was determined by bicinchoninic acid protein assay (Pierce). Pro-

tein lysates (500 mg) were incubated with AR antibody (Millipore, PG-21) or

rabbit immunoglobulin G (Santa Cruz Biotechnology) overnight at 4�C and

then with protein A beads (Santa Cruz) for 1 hr at 4�C. Beads were washed

and the eluate was resolved by 7.5% SDS-PAGE and then transferred to

nitrocellulose membranes (Bio-Rad). Blots were probed with AR antibody

(Santa Cruz), and proteins were visualized by chemiluminescence (Thermo

Scientific).

Muscle Histology and Immunofluorescence Staining

AR113Q skeletal muscle was frozen in isopentane prechilled by liquid nitrogen,

sectioned at 5 mm with a cryostat, and stained with hematoxylin and eosin

(H&E). For immunofluorescence, frozen sections were stained with an AR anti-

body (Santa Cruz) and a secondary antibody conjugated to Alexa Fluor 594

(Invitrogen). Confocal imageswere capturedwith a Zeiss LSM510microscope

and a water-immersion lens (363).

BAC fxAR121 muscle was fixed with 10% neutral buffered formalin,

embedded in paraffin, and sectioned at 4 mm. Antigen retrieval was performed

by boiling in Thermo citrate buffer (pH 6.0) (Thermo Scientific) for 20min. Slides

were blocked by donkey serum (Jackson ImmunoResearch) for 30 min. The

primary antibody (AR: sc-816, Santa Cruz; laminin: ab11575, Abcam) was

applied and incubated at room temperature for 1 hr. After three washes in

PBSwith Tween 20, slides were incubated with donkey anti-rabbit horseradish

peroxidase (Jackson ImmunoResearch) at 1:200 for 30 min, then developed

with DAB and counterstained with hematoxylin (Surgipath), dehydrated, and

mounted.

Muscle Fiber Size Quantification

The cross-sectional diameter of BAC fxAR121muscle fibers wasmeasured by

image analysis after staining with laminin to highlight the muscle membrane.

The minimal diameter of each muscle fiber was quantified by the muscle fiber



Figure 6. Peripheral ASO Administration Rescues Muscle Atrophy and Gene Expression Changes

(A) Tibialis anterior (TA) muscle mass at 26 weeks from AR113Q or wild-type (WT) males treated with ASO1 or saline (treated as described in Figure 1C) or

posttreatment at age 36 or 46 weeks. Data are mean ± SEM. *p < 0.05; n.s., not significant.

(B) Quadriceps muscle fiber size distribution (left panel) and mean ± SEM (right panel) from AR113Q or WT males at 26 weeks, treated as described in Figure 1C.

***p < 0.001.

(C) AR immunofluorescence (red) of quadriceps and levator ani/bulbocavernosus (LA/BC)muscles of AR113Q andWTmales at 26 weeks, treated as described in

Figure 1C. DAPI stains nuclei. Scale bar, 10 mm.

(D) External urethral sphincter (upper panel) and quadriceps muscle (lower panel) fiber size were determined from BAC fxAR121 males (n = 4 per group) that

received subcutaneous ASO2 (50 mg/kg per week, starting at 6 weeks) for 4 weeks. Muscle was harvested from transgenic (Tg) and WT males at 10 and

16 weeks. Data are mean ± SD. *p < 0.05.

(E) BAC fxAR121males (n = 3–4 per group) received subcutaneous injections of ASO2 (50mg/kg per week, starting at 6 weeks) or saline for 4 weeks. Quadriceps

muscle was harvested at 10 and 16 weeks, and AChR-a and myogenin mRNA expression determined. Data are mean ± SD. **p < 0.01, ***p < 0.001.

(F) AChR-a and myogenin mRNA expression in quadriceps muscle of AR113Q or WT males at 26 weeks (treated as described in Figure 1C) or following

termination of treatment at 36 weeks. Data are mean ± SEM. **p < 0.01, *p < 0.05.
algorithm (Indica Lab). Frozen sections of AR113Qmuscle (5 mm) were stained

by H&E, and digital images were captured using a Zeiss Axioplan 2 imaging

system. The area of each muscle fiber was defined using Adobe Photoshop

CS4, and the pixel number was converted to mm2 according to scale, as

described elsewhere (Yu et al., 2011). A total of 100 adjacent fibers from

each section were measured.

Grip Strength

Forelimb strength of BAC fxAR121 mice was measured with a digital grip

strength meter that records the maximal strength an animal exerts while trying
to resist an opposing pulling force. In brief, each mouse was allowed to grasp

the metal rail with its forelimbs and gradually pulled backward in the horizontal

plane. The highest reading from five to ten consecutive trials was recorded

by a four-channel transducer (TBM4M, World Precision Instruments) using

labScribe2 software (Transonic Systems).

Testosterone Levels

Serum was collected by cardiac puncture. Testosterone levels were deter-

mined by radioimmunoassay by the Ligand Assay and Analysis Core Facility

at the University of Virginia Center for Research in Reproduction.
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Figure 7. Intraventricular ASO Administration Does Not Provide Added Benefit to BAC fxAR121 Mice Receiving Peripheral ASO

(A) BAC fxAR121micewere dosed as indicated with saline (sal), intraventricular (ICV) ASO3, or control (cnl) ASO (100 mg at 8weeks) and subcutaneous (SQ) ASO2

(12.5 mg/kg per week, starting at 8 weeks). Spinal cord and quadricepsmuscle were harvested 4 or 8 weeks following ICV administration and analyzed for human

AR mRNA levels. Data (mean ± SEM) are reported relative to mice receiving ICV and SQ saline (n = 4 per group). ***p < 0.001.

(B and C) Wild-type (WT) or BAC fxAR121 males (n = 8–10 per group) were treated as indicated with saline (sal), intraventricular (ICV) ASO3, or control (cnl) ASO

(100 mg at 8 weeks) and subcutaneous (SQ) ASO2 (12.5 mg/kg per week, starting at 8 weeks). Age-dependent changes in grip strength (B) and survival (C) are

shown. Data are mean ± SEM.
Statistics

Statistical significance was assessed by an unpaired Student’s t test (for pair-

wisecomparisons)orbyone-wayANOVAwithNewman-Keulsmultiplecompar-

ison test or Tukey’s post hoc test (for multiple comparisons). The distribution of

muscle fiber size was analyzed by Mann-Whitney test. Effects on survival were

assessedby log-rankanalysis. All statisticswasperformedusingPrism5or 5.04

(GraphPad Software). p values less than 0.05 were considered significant.
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