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a b s t r a c t

Consider the set of vectors over a field having non-zero coefficients only in a fixed sparse
set and multiplication defined by convolution, or the set of integers having non-zero digits
(in some base b) in a fixed sparse set. We show the existence of an optimal (or almost-
optimal, in the latter case) ‘magic’ multiplier constant that provides a perfect hash function
which transfers the information from the given sparse coefficients into consecutive digits.
Studying the convolution casewe also obtain a result of non-degeneracy for Schur functions
as polynomials in the elementary symmetric functions in positive characteristic.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction and motivation

Suppose n > 0, and let D = {d0, d1, . . . , dn−1} be a set of indices such that 0 = d0 < d1 < · · · < dn−1. For a field F and
N = dn−1 + 1, let FN be the standard vector space with basis ej for 0 ≤ j < N equipped with the convolution multiplication

(a ∗ b)i =

−
j+k=i

0≤j,k<N

ajbk,

and let F [D] be the subspace spanned by ed0 , . . . , edn−1 , which is formed by the vectors with non-zero coefficients only for
the indices di for 0 ≤ i ≤ n − 1. Similarly given a positive integer b let Zb[D] be the set of integers that can be written as∑n−1

i=0 aibdi for some ai ∈ {0, 1, . . . , b − 1}, i.e. the set of numbers such that their base-b representation only contains non-
zero digits in positions that belong to the setD.We study the existence of constants that can be used asmultipliers to transfer
the information stored in the sparse digits of an element of F [D] or of Zb[D] into a smallest possible set of consecutive digits,
providing a perfect hash function.

Motivation for this kind of question is provided by a technique used by many state-of-the-art chess playing
programs [2,8], based on the concept of ‘bitboards’, that are numbers whose base-2 representation is interpreted as
occupancy information of some kind, or more generally for storing 0–1 information for each square, having previously
established a correspondence between a range of digits and the squares on the board. The technique in question, known
under the name of ‘magic bitboards’, is a quick way to generate all possible attacks for sliding pieces, such as rooks and
bishops. The bitboard containing occupancy information for all pieces is transformedwith a bitwise-and to a bitboardwhose
only digits that may be different from zero are those corresponding to possible obstructions on the path of the sliding piece.
This information about the obstructions, which is stored in a small set of sparse digits, is then mapped via a multiplication
by a ‘magic number’ to a set of consecutive digits, which is then used as the index in a lookup table to recover pre-calculated
information about the possible attacks.
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While in the case of chess programs a database of very efficient multipliers has already been computed and is publicly
available, we investigate the existence of multipliers that provide perfect hashing functions in a more general setting. In
the convolution case we provide an optimal result, which shows that it is possible to transfer the information stored in any
number of sparse digits into the same number of consecutive digits, and which incidentally provides a result about values
of Schur functions as polynomials in elementary symmetric functions. On the other hand, in the case of base-b integers it is
not always possible to have a multiplier providing a hash into the same number of digits (D = {0, 1, 2, 4, 6} providing the
smallest counterexample for b = 2, as can be checked with a simple computer program), and we provide a linear estimate
of the number of consecutive digits that are required to ensure the existence of such a map.

While this kind of hashing cannot be directly compared to universal hashing (see [9,10,5,11] in particular) because of its
more restricted scope, it is still possible to compare the results about its effectiveness, and this is done below. See also [7].

2. The convolution case

In this section we consider the convolution case. The operation of convolution multiplication with a fixed vector
(a0, . . . , aN−1) can be expressed by a lower triangular Toeplitz matrix A = (ai−j)0≤i,j<N , where we have put ai = 0 for
negative i (the full convolution with a vector (a−N+1, . . . , aN−1) is expressed by a general Toeplitz matrix, but as shown
below, we can restrict to the class of lower triangular matrices). In the same way, when restricting the output to a set of
coefficients we shall consider the matrix formed by the corresponding selection of rows of A. We will show that for a good
choice of the ai the matrix formed by the last n rows of A defines a one-to-one function from F [D] to F n.

The operation of taking the convolution with a fixed vector, or multiplying by a Toeplitz matrix, is also equivalent to
multiplication by a polynomial in a ring of polynomials, and its properties as a hash function are well known, as well as fast
algorithms; see [4,1]. Note also that taking the convolution with a vector with entries in the set {0, 1} is actually obtained
by addition of selected entries.

Theorem 1. For every set D of cardinality n, there exists a lower triangular Toeplitz matrix such that its last n rows define a
one-to-one function from F [D] to F n, and furthermore its entries can be taken in the set {0, 1}.

Proof. Let δ = N − n, and for a vector (a0, . . . , aN−1) that is going to be determined let A be the associated rectangular
Toeplitz matrix (aδ+i−j) 0≤i<n

0≤j<N
corresponding to the selection of the last n coefficients after taking the convolution. Let B be

the n × n matrix obtained from A by selecting the columns with indices d0, . . . , dn−1, which defines the linear map on the
basis of F [D] formed by the edi :

B = (aδ+i−dk) 0≤i<n
0≤k<n

=


aδ−d0 aδ−d1 · · · aδ−dn−1

aδ+1−d0 aδ+1−d1 · · · aδ+1−dn−1
...

...
...

aδ+n−1−d0 aδ+n−1−d1 · · · aδ+n−1−dn−1

 .

We will now consider a sequence of k × k minors, for k = 1, . . . , n, where each minor will contain the previous one, and
inductively change some of the ai ensuring at the kth step that the determinant of the kth minor is non-zero, while leaving
unchanged the coefficients of the minors considered in the previous steps.

Let the k-minor Bk be obtained taking the first k rows, and a range of columns rk, rk+1, . . . , rk+k−1,where 0 ≤ rk ≤ n−k
is the biggest integer such that each column of Bk will contain at least one ai with i ≥ 0. It is an easy consequence of B being
a selection of columns from the Toeplitz matrix A that the set of integers rk satisfying the above condition is always non-
empty, and that the set of columns selected for Bk is the same set as was selected for Bk−1 with one column added either on
the left or on the right.

Let us begin the induction putting a0 = 1 and ai = 0 for all i ≠ 0. For k = 1, also change aδ−dr1
to be equal to 1. Let now

k be>1. When the columns of Bk are those of Bk−1 plus one column on the right, we have that the matrix Bk =


Bk−1 0

∗ a0


is

block lower triangular, with one block equal to Bk−1, and the other block being formed by the element a0 = 1, and Bk is non-
singular. On the other hand,when one column is added on the left, Bk is of the form Bk =


∗ Bk−1
aℓ ∗


, where ℓ = δ+k+1−drk

is the biggest index appearing in Bk (in fact, the indices are decreasingwhilemoving right along a row or up along a column).
Consequently, considering the Laplace expansion of the determinant of Bk along the first column

det Bk =

k−1−
i=1

aℓ−k+i · Ci,1(k) + aℓ · det Bk−1 (1)

where for each i, j, Ci,j(k) is the i, j cofactor of the matrix Bk, we can select an appropriate value for aℓ which makes the
determinant non-zero, while changing only the bottom left entry of Bk. Repeating this step up to k = n we have the
theorem. �

Remark 1. Since no division is involved, the above proof works in any ring with 1, but it does not ensure that the resulting
matrix B is invertible, only that it has non-zero determinant. Alternatively, it is possible to allow general ai, and solve (1)
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inductively in aℓ, to ensure that det Bk = 1 at each step, obtaining that B is invertible because the determinant is an invertible
element of the ring.

If F is a local ring (i.e. a ring with only one maximal ideal) with maximal ideal M , we can still take the ai in {0, 1}, and
make all the determinants of the Bk invertible: consider (1) and call S the sum; since in a local ring the invertible elements
are precisely those not in M and we assume det Bk−1 to be invertible, we cannot have both S ∈ M and S + det Bk−1 ∈ M
or we would also have det Bk−1 ∈ M , and hence putting aℓ equal to either 0 or 1 we obtain that det Bk ∉ M , i.e. that it is
invertible.

This has a practical consequence: take for instance F to be the set of integers modulo 2k; it is a local ring and hence we
have the existence of a magic multiplier with entries in the set {0, 1}, and taking the convolution is actually the addition of
selected entries.

It is possible to observe that the Schur functions that are well known in algebraic combinatorics (see [3,6]) for their
combinatorial properties and connections with the characters of the symmetric group can be expressed as a determinant of
a special matrix having the elementary symmetric functions as coefficients via the Jacobi–Trudi identity (also known as the
‘‘determinant formula’’), which has the same form as the transpose of thematrix B considered above. In particular, if sλ is the
Schur function associated with the partition λ = (λ1, λ2, . . .) and λ′ is the conjugate partition, and ei is the ith elementary
symmetric function for i ≥ 0, we have the formula

sλ = det(eλ′
i−i+j)1≤i,j≤n

expressing the Schur function sλ as a uniquely determined polynomial in the ei, having integral coefficients. Since the set D
considered in Theorem 1 is arbitrary, for each partition of length nwe choseD ensuring that δ−dk−1 = λ′

k−k for 1 ≤ k ≤ n,
making the matrix B equal to the transpose of above matrix evaluated with ei = ai for all i. It follows that the polynomials
expressing the sλ in terms of the ei assume a non-zero value when the ei are replaced with appropriate values in the field F
(note that this is not true for a general polynomial over a field, as the example xp − x over Fp shows). Hence we have:

Theorem 2. For a partition λ, consider the Schur function sλ as a polynomial in the elementary symmetric functions ei, considered
as indeterminates. Then it takes a non-zero value after substitution of the variables ei with appropriate elements of the field F ,
which moreover can be taken in the set {0, 1}.

3. The arithmetic case

The case of base-b digits of integers seems to be much more difficult, and we give a linear bound on the number of digits
required to ensure the existence of an appropriate multiplier. Let Z(b) be the set of rational numbers that can be written as
r/bk for some integers r, k, or equivalently that have a finite base-b expansion. For such an a =

∑
i<M aibi ∈ Z(b), define

[[a ]]k,m as the m-tuple (ak+m−1, . . . , ak+1, ak) ∈ {0, 1, . . . , b − 1}m. We can now state:

Theorem 3. Let D = {d0, . . . , dn−1} be a set of indices 0 = d0 < · · · < dn−1 having cardinality n. Then for

m =

logb((2b − 1)n − 1)


there exist a multiplier µ ∈ Z and a k ∈ N such that the map from Zb[D] to {0, 1, . . . , b − 1}m defined by a → [[a · µ ]]k,m
is injective. Furthermore, if D contains some consecutive integers and is formed by the union of the integral intervals {ci, ci +

1, . . . , ci + ℓi − 1} for i = 1, . . . , k and ℓi ≥ 1, we can take

m =


logb


k∏

i=1

(2bℓi − 1) − 1


.

It is possible to compare this estimate with what can be obtained using universal hashing: when a hashing function is
randomly chosen in a universal class (i.e. h(x) = h(y) with probability at most 1/bm, which can be done when the output is
formed by at least m digits; see [11]) we have that the probability of h being one-to-one on Zb[D] is at least 1 −


bn

2


b−m,

and we deduce the existence of a good hash function whenm is ≥ 2n. The above result is sharper because it just requiresm
to be about n logb(2b − 1), which is always smaller than 2n and its ratio with n approaches 1 as b grows.
Proof. We will prove the second estimate, as the first one can be obtained by taking n intervals of length ℓi = 1. Each
element in Zb[D] can be written as

a =

k−
i=1


ℓi−1−
j=0

aijbj


· bci =

k−
i=1

Aibci ,

with 0 ≤ Ai ≤ bℓi − 1, for each 1 ≤ i ≤ k. Consequently the difference of two elements a, a′
∈ Zb[D] can be written as

a − a′
=

k−
i=1

(Ai − A′

i)b
ci ,
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where −bℓi + 1 ≤ Ai − A′

i ≤ bℓi − 1, for each 1 ≤ i ≤ k. In particular the number ∆ of positive differences of two elements
of Zb[D] is at most

k∏
i=1

(2bℓi − 1) − 1

2
.

For any real number r , let Tr = R/rZ, and let πr : R → Tr be the projection map. For z ∈ Z \ {0} the map β : Tr → Tr
given by multiplication by z is measure-preserving, i.e. for each measurable X ⊆ Tr the measure of β−1(X) is equal to the
measure of X .

Let now bm be a power of b which is >2∆. The measure in Tbm of the set Uz = β−1 (πbm([−1, 1])) of the ‘bad’ λ ∈ Tbm

such that zλ ∈ πbm([−1, 1]) is equal to 2/bm, supposing the measure of Tbm to be normalized to 1. Since the number of
positive and non-zero differences is <bm/2, and clearly U−z = Uz , we have that the union of all the Ua−a′ for all distinct
a, a′

∈ Zp[D] cannot be all Tbm . Consequently since Z(b) is dense in R there exists an element in ν ∈ Z(b) which falls out of
all the Ua−a′ when reduced modulo bm, the above union being a closed set. We have that aν and a′ν differ by at least 1 after
reduction modulo bm, and hence the map a → [[a · ν ]]0,m is injective.

Multiplying by the smallest power of bk divisible by the denominator of ν we obtain an integerµ = νbk with the required
properties with respect to the map a → [[a · µ ]]k,m. �
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