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SUMMARY

HCN1 channel subunits, which contribute to the
hyperpolarization-activated cation current (Ih), are
selectively targeted to distal apical dendrites of
hippocampal CA1 pyramidal neurons. Here, we
addressed the importance of the brain-specific
auxiliary subunit of HCN1, TRIP8b, in regulating
HCN1 expression and localization. More than ten
N-terminal splice variants of TRIP8b exist in brain
and exert distinct effects on HCN1 trafficking when
overexpressed. We found that isoform-wide disrup-
tion of the TRIP8b/HCN1 interaction caused HCN1
to be mistargeted throughout CA1 somatodendritic
compartments. In contrast, HCN1 was targeted nor-
mally to CA1 distal dendrites in a TRIP8b knockout
mouse that selectively lacked exons 1b and 2. Of
the two remaining hippocampal TRIP8b isoforms,
TRIP8b(1a-4) promoted HCN1 surface expression in
dendrites, whereas TRIP8b(1a) suppressed HCN1
misexpression in axons. Thus, proper subcellular
localization of HCN1 depends on its differential addi-
tive and subtractive sculpting by two isoforms of
a single auxiliary subunit.

INTRODUCTION

Ion channels are often targeted to select regions of a neuron

where they locally regulate specific physiological functions.

HCN1 channels, which generate the hyperpolarization-activated

cation current, Ih, are expressed in the apical dendrites of hippo-

campal CA1 pyramidal neurons in a striking gradient of in-

creasing density with increasing distance from the soma

(Lorincz et al., 2002; Magee, 1998; Notomi and Shigemoto,

2004; Santoro et al., 1997). As a consequence, Ih acts as a rela-

tively selective inhibitory constraint of the direct cortical perfo-

rant path (PP) inputs to CA1 neurons, which terminate on CA1

distal dendrites in stratum lacunosum moleculare (SLM) (Nolan

et al., 2004; Tsay et al., 2007). In contrast, HCN1 has less effect
at Schaffer collateral (SC) synapses, which arise from hippo-

campal CA3 neurons and terminate on more proximal CA1

dendrites in stratum radiatum (SR). Thus, trafficking of HCN1 to

distal dendrites selectively constrains the cortical versus hippo-

campal inputs to CA1 neurons, which may contribute to the

effect of HCN1 to constrain spatial learning and memory (Nolan

et al., 2004).

Despite the importance of the subcellular targeting of HCN1,

the molecular mechanisms underlying this regulatory control

remain unknown. One promising candidate is the auxiliary

subunit of HCN channels TRIP8b (Santoro et al., 2004). This

brain-specific cytoplasmic protein binds to all HCN channels

(HCN1-4) and regulates HCN gating in both heterologous

expression systems and hippocampal cultures (Lewis et al.,

2009; Santoro et al., 2009; Zolles et al., 2009). TRIP8b undergoes

extensive alternative splicing at its N terminus, with more than

ten isoforms expressed in brain. There are two alternate transla-

tion start sites (exons 1a or 1b) followed by variable combina-

tions of exons 2, 3, and 4. The majority of the protein, encoded

by exons 5–16, is constant among isoforms. The various TRIP8b

isoforms exert dramatically different effects to upregulate or

downregulate HCN1 surface expression when overexpressed

heterologously or in dissociated neurons.

Based on real-time PCR and western blot analysis of brain

tissue, TRIP8b(1a-4), and TRIP8b(1a) represent the two most

prominently expressed isoforms, with TRIP8b(1b-2) expressed

at somewhat lower levels (Lewis et al., 2009; Santoro et al.,

2004, 2009). TRIP8b(1b-2) overexpression causes a near

complete loss of HCN1 surface expression and Ih, in both

heterologous cells and hippocampal neurons (Lewis et al.,

2009; Santoro et al., 2004, 2009). This effect is likely caused by

clathrin-mediated channel endocytosis through the binding of

adaptor protein (AP) complexes to specific tyrosine-based and

dileucine trafficking motifs in the TRIP8b N terminus (Santoro

et al., 2004, 2009). In contrast, TRIP8b(1a-4) enhances surface

expression of HCN1 (Lewis et al., 2009; Santoro et al., 2009).

The effect of TRIP8b(1a) depends on cellular context, causing

a 10-fold decrease in HCN1 surface expression in oocytes

(Santoro et al., 2009, 2011) while enhancing HCN1 expression

in HEK293 cells (Lewis et al., 2009).

Although exogenously expressed TRIP8b is a potent regu-

lator of HCN1 in vitro and in vivo, little is known about how
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endogenous TRIP8b controls HCN1 trafficking in the brain.

Using immunohistochemical, electrophysiological, and genetic

targeting approaches, we found that endogenous TRIP8b is

a necessary element for the trafficking of HCN1 to the surface

membrane of CA1 pyramidal cells in vivo. Moreover, we found

that TRIP8b(1a-4), which upregulates HCN1 in heterologous

systems, is the key isoform involved in dendritic expression of

HCN1. In contrast, TRIP8b(1a), which causes downregulation

of HCN1 surface expression in Xenopus oocytes, is important

for preventing mislocalization of HCN1 in the axons of CA1

pyramidal neurons. Furthermore, we provide evidence that

TRIP8b isoforms containing exon 1b are largely expressed in

oligodendrocytes, where they are coexpressed with HCN2

(Notomi and Shigemoto, 2004). Thus, the variety of TRIP8b

N-terminal splice isoforms is important for differential regulation

of HCN channels in distinct neuronal compartments and distinct

cell types.

RESULTS

TRIP8b Knockdown Reduces Ih in CA1 Pyramidal
Neurons Both In Vitro and In Vivo
To investigate the role of TRIP8b in the regulation of HCN1 chan-

nels in vivo, we reduced endogenous levels of all isoforms using

short interfering RNA (siRNA) designed against a constant region

of TRIP8b. A lentivirus vector delivered either the TRIP8b-

specific siRNA or a scrambled control siRNA. The same vector

also independently expressed enhanced green fluorescent

protein (EGFP) to mark infected neurons. We confirmed the

efficacy and specificity of our chosen siRNA sequence in disso-

ciated hippocampal neuron cultures (Figures 1A–1D). TRIP8b

siRNA reduced the amount of TRIP8b protein in western blots

relative to control siRNA. Furthermore, the amplitude of Ih in

whole-cell voltage-clamp recordings was significantly smaller

in neurons expressing TRIP8b siRNA versus neurons expressing

control siRNA. Thus, Ih density (see Supplemental Experimental

Procedures available online) was reduced from 1.40 ± 0.2 pA/pF

(mean ± SEM, N = 21 cells) in neurons infected with control

siRNA to 0.35 ± 0.05 pA/pF (N = 23 cells) in neurons infected

with TRIP8b siRNA (p < 0.01, t test). These results confirm those

of Lewis et al. (2009), who used a different siRNA sequence to

knockdown TRIP8b in vitro. In independent experiments, we

verified that both TRIP8b siRNAs exerted similar effects to

reduce Ih amplitude (R.P, and S.A.S., unpublished data)..

When we measured whole cell currents in the presence of the

Ih antagonist ZD7288 (10 mM), there was no difference in current

amplitude from cells expressing TRIP8b siRNA versus control

siRNA (Figure 1B; current density was 0.22 ± 0.03 pA/pF with

control siRNA and 0.18 ± 0.02 pA/pF with TRIP8b siRNA;

p > 0.5, t test). This provides strong evidence that the action of

TRIP8b siRNA is specific for Ih with no obvious off-target effects.

As HCN1 is not properly targeted to distal dendrites of hippo-

campal neurons in dissociated cell cultures, we examined the

effect of reducing TRIP8b levels on Ih expression in CA1 pyra-

midal neurons in vivo. Lentivirus encoding TRIP8b siRNA or

control siRNA was injected under stereotactic control into the

CA1 region of the hippocampus of 5-week-old mice. After

2 weeks, brains were dissected and sliced for immunohisto-
496 Neuron 70, 495–509, May 12, 2011 ª2011 Elsevier Inc.
chemical analysis. The EGFP-positive (infected) regions of CA1

from hippocampi expressing TRIP8b siRNA had reduced levels

of TRIP8b staining compared with neighboring regions of CA1

that were not EGFP-positive (Figure S1). No change in TRIP8b

staining was detected in slices infected with virus expressing

control siRNA, confirming the in vivo efficacy and specificity of

the siRNA.

To examine the effect of in vivo knockdown of TRIP8b on HCN

channel surface density, we obtained whole-cell recordings from

EGFP-positive CA1 pyramidal neurons in acute slices from

hippocampi injected with virus expressing either TRIP8b siRNA

or control siRNA. Because of limitations in achieving adequate

voltage-clamp of CA1 dendrites in acute slices, we relied on

current clamp measurements of electrophysiological parame-

ters known to reflect Ih (Magee, 1998, 1999) and HCN1 (Nolan

et al., 2004). We found that CA1 neurons infected with TRIP8b

siRNA displayed a series of changes consistent with a marked

reduction in Ih. First, there was a �3 mV negative shift in the

resting potential of neurons infected with TRIP8b siRNA

(�72.1 ± 1.0 mV; n = 15) compared with control siRNA

(�69.0 ± 0.9 mV; n = 18; p < 0.05, t test), consistent with a loss

of the depolarizing influence of Ih. Moreover, this difference

was eliminated in the presence of ZD7288 (TRIP8b siRNA:

�78.7 ± 0.9 mV; n = 15; control siRNA: �78.4 ± 0.7 mV;

n = 18), indicating a specific role of Ih (Figure 1B). Second,

knockdown of TRIP8b caused a large increase in input resis-

tance (TRIP8b siRNA: 140.5 ± 9.9 MU; n = 15; control siRNA:

89.67 ± 5.1 MU; n = 18; p < 0.01, t test), consistent with the

loss of HCN channels (Figure 1F). This effect was also abolished

by ZD7288 (TRIP8b siRNA: 189.9 ± 11.4 MU; n = 15; control:

180.1 ± 10.5 MU; n = 18). Third, the depolarizing sag in response

to a hyperpolarizing current step, characteristic of Ih activation,

was significantly decreased in CA1 neurons infected with

TRIP8b siRNA (TRIP8b siRNA: sag ratio = 0.10 ± 0.02; n = 15;

control: sag ratio = 0.24 ± 0.02; n = 18; p < 0.01, t test) (Figure 1G).

In neurons expressing TRIP8b or control siRNA, the sag was

eliminated by 10 mM ZD7288.

Next, we examined changes in Ih based on the decay time

course of the PP EPSP, which is sped up by HCN channels in

distal dendrites (Magee, 1999; Nolan et al., 2004). Knockdown

of TRIP8b led to a �70% increase in the t1/2 (time to decay by

50%) of PP EPSPs relative to control (TRIP8b siRNA: 28.36 ±

1.26 ms, n = 15; control siRNA: 47.79 ± 2.92 ms, n = 18;

p<0.01; Figure 1H). Addition of ZD7288 increased the t1/2 further,

and to identical values in both populations of neurons (TRIP8b

siRNA: 62.91 ± 1.47 ms; n = 15; control: 63.45 ± 2.14 ms;

n= 18). These results are consistentwith the view that a reduction

of TRIP8b protein in CA1 pyramidal neurons in vivo causes

a substantial and specific decrease in somatodendritic Ih.

Reduction of TRIP8b Disrupts HCN1 Protein Trafficking
in CA1 Pyramidal Neurons
To examine how reduction in TRIP8b causes loss of Ih, we used

immunohistochemistry to examine the expression and localiza-

tion of HCN1 protein (the predominant HCN isoform in pyramidal

neurons) following siRNA-mediated knockdown of TRIP8b.

Viral expression of TRIP8b siRNA, but not control siRNA,

caused a marked redistribution of HCN1 in CA1 neurons, with
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Figure 1. Expression of TRIP8b siRNA Alters the Electrophysiological Properties of CA1 Neurons Consistent with a Reduction in Ih In Vitro
and In Vivo

(A) Western blot of total protein extracts from hippocampal neuron cultures 18 days in vitro infected with lentiviral vectors expressing EGFP plus either control

siRNA or TRIP8b siRNA. Note that TRIP8b siRNA reduced TRIP8b levels with no change in tubulin from cultures expressing roughly equal amounts of EGFP. The

long arrow points to the TRIP8b(1a-4) band and the short arrow to TRIP8b(1a).

(B) Voltage clamp recordings from dissociated hippocampal cultures show reduction in Ih with TRIP8b siRNA compared with control siRNA, before and after

application of 10 mM ZD7288. Currents elicited by 3 s hyperpolarizing voltage steps from holding potential of –40 mV to –130 mV in 10 mV increments.

(C) Current clamp recordings from dissociated hippocampal cultures show voltage responses to a �80 pA hyperpolarizing current step before and after

application of 10 mM ZD7288.

(D) Mean Ih current density from cells expressing control or TRIP8b siRNAs, before and after application of 10 mM ZD7288 (mean ± SEM).

(E–H) Electrophysiological properties of CA1 pyramidal neurons in acute slices expressing either control or TRIP8b siRNAs. Lines connect individual data points

(small circles) from same slice in absence or presence of 10 mM ZD7288. Large circles: mean ± SEM.

(E) Resting membrane potential.

(F) Input resistance (measured with a 500 ms �50 pA hyperpolarizing current step).

(G) Sag ratio (see Experimental Procedures). Traces show voltage responses to hyperpolarizing current pulses from a holding potential of �70 mV in absence

(black traces) or presence (red traces) of 10 mM ZD7288 from cells expressing control (left) or TRIP8b (right) siRNA.

(H) Somatic EPSP decay time (t1/2). Traces show somatic EPSPs in response to PP stimulus from cells expressing control (left) or TRIP8b (right) siRNAs, either in

absence (black traces) or presence (red traces) of 10 mM ZD7288.
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a significant increase in channel staining in the somatic layer and

proximal dendrites in SR, compared with uninfected neurons in

the same slice (Figure 2A). High magnification z-series sections

revealed the appearance of HCN1 in discrete puncta in the cyto-

plasm surrounding the nucleus of neurons expressing the

TRIP8b siRNA (Figure 2B). Such puncta were not observed in

neighboring uninfected cells or in neurons infected with control

siRNA.

These results were quantified by measuring the intensity of

HCN1 staining in the pyramidal layer (SP), proximal dendrites

(SR) and distal dendrites (SLM) of infected (EGFP +) and unin-

fected (EGFP -) CA1 neurons (Figure 2C). There was no signifi-

cant difference in HCN1 staining between uninfected cells and

cells infected with control siRNA. However, cells infected with
TRIP8b siRNA exhibited a 43% increase in HCN1 staining inten-

sity in the soma and a 22% increase in the SR, compared with

uninfected neighboring cells in the same slice (N = 6 mice, 12

injections sites for TRIP8b siRNA, N = 4 mice, 8 injections sites

for control. Each data point is the average of 17 regions). In

contrast, there was no detectable difference in staining intensity

in SLM between regions infected with TRIP8b siRNA versus

uninfected regions.

The punctate pattern of HCN1 suggests that the increase in

staining in the soma and proximal dendrites results from channel

accumulation in an intracellular compartment, consistent with

the observed decrease in Ih (see Figures 1D–1H). These results

imply that a reduction in TRIP8b expression produces a defect

in HCN1 membrane trafficking. The lack of change in HCN1 in
Neuron 70, 495–509, May 12, 2011 ª2011 Elsevier Inc. 497
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Figure 2. In Vivo siRNA-Mediated Knockdown of TRIP8b Reduces Its Protein Levels and Leads to Redistribution of HCN1

(A) Expression pattern of EGFP, HCN1 or TRIP8b in CA1 region of hippocampal slices from brains of mice in which lentiviral vectors expressing control siRNA (top

row) or TRIP8b knockdown siRNA (bottom row) were injected stereotactically in CA1. Left column, Images of EGFP fluorescence reveal variable pattern of viral

expression, which ranged across transverse axis of a hippocampal slice from regions with very high siRNA expression (thick solid arrow), to regions with

intermediate expression (thin arrow), to regions with undetectable viral infection (open arrow).Right column, Levels of TRIP8b detected by immunohistochemistry

were decreased in region of slice where viral expression (EGFP signal) was highest (thick solid arrow). Levels of TRIP8b were unaffected in region of slice where

viral expression was undetectable (open arrow). Middle column, Levels of HCN1 increased in somatic layer of CA1 where viral expression was very high (thick

solid arrow). The scale bar represents 300 mm.

(B) Higher-magnification z-series projections showing specific redistribution of HCN1 protein into the somatic layer of CA1 pyramidal cells infected with TRIP8b

knockdown siRNA. Note lack of somatic staining with control siRNA. The scale bar represents 10 mm.

(C) Quantification of HCN1 staining in the SP, SR and SLM regions of CA1 infected with control (top) or anti-TRIP8b (bottom) siRNAs. EGFP-positive regions were

compared with EGFP- negative regions in same slice. HCN1 fluorescence intensity was normalized by setting the maximal intensity of the image to 1. Note

significant increase in relative staining in soma and SR of slices expressing TRIP8b siRNA (*p < 0.05; t test).

Neuron

Targeting of HCN1 Channels by TRIP8b Isoforms
SLM may reflect technical limitations of the immunohistochem-

ical approach to detect a redistribution of HCN1 from the

membrane to cytoplasmic compartments in the thin distal

dendrites. In addition, high levels of background HCN1 staining

in lateral dendritic branches from uninfected neurons may
498 Neuron 70, 495–509, May 12, 2011 ª2011 Elsevier Inc.
prevent the detection of changes in channel expression in those

neurons infected with virus. Finally, the interaction of TRIP8b

with HCN1 in distal dendrites may be extremely stable and

persist even when the pool of available TRIP8b is decreased

(Santoro et al., 2009).
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Figure 3. TRIP8b siRNA Impairs the Dendritic Expression of EGFP-

HCN1 in HCN1 KO Mice

(A) EGFP-HCN1 was coexpressed with either control (top row) or TRIP8b

(bottom row) siRNAs using independent lentiviral vectors in HCN1 KO mice.

Left column: Fluorescence signal from EGFP-HCN1. Middle column: DsRed2

signal (expressed from siRNA vector). Right column: merged signal showing

EGFP-HCN1 (green) and DsRed2 (red). Note effect of TRIP8b siRNA to reduce

EGFP-HCN1 signal, especially in distal dendrites. The scale bar represents

100 mm.

(B) Ratio of EGFP-HCN1 to DsRed2 fluorescence as function of distance along

somatodendritic axis in slices infected with control (filled symbols) or TRIP8b

(open symbols) siRNAs. Symbols show mean; error bars show SEM.

(C) EGFP-HCN1/DsRed2 ratio from slices infected with control siRNA divided

by ratio from slices infected with TRIP8b siRNA. Note selective decrease in

HCN1 staining in distal dendrites of SR and SLM. (Error bars, SEM). The

horizontal gray line indicates a ratio of 1.
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Knockdown of TRIP8b Impairs the Expression
of EGFP-HCN1 in CA1 Distal Dendrites
To overcome some of the above limitations of immunohisto-

chemistry, we coinfected slices with viral vectors expressing

siRNA and EGFP-tagged HCN1 (EGFP-HCN1). To prevent inter-

ference from endogenous HCN1, we performed these experi-

ments in HCN1 knockout mice (Nolan et al., 2003; Santoro

et al., 2009). With the siRNA vector, a separate vector expressed

the soluble red fluorescent protein, DsRed2. We were therefore

able to examine channel distribution (green fluorescence) only

from those neurons coinfected with siRNA (red fluorescence).

Because we coinjected independent lentiviral vectors to coex-

press EGFP-HCN1 with siRNA, we could selectively monitor

the effect of TRIP8b knockdown on channels that were synthe-

sized de novo when endogenous levels of TRIP8b were being

reduced.

We previously found (Santoro et al., 2009) that virally ex-

pressed EGFP-HCN1 (in the background of the HCN1 KO

mouse) is properly trafficked to the distal apical dendrites of

CA1 pyramidal neurons in a gradient of increasing expression

that closely resembles the profile of endogenous HCN1 (Lorincz

et al., 2002; Notomi and Shigemoto, 2004; Santoro et al., 1997).

In contrast, DsRed2 is expressed uniformly throughout the

somatodendritic compartments (Figure 3A, center panels).

Although the dendritic targeting of EGFP-HCN1 was unaltered

by control siRNA, it was markedly perturbed by TRIP8b siRNA,

which greatly reduced EGFP fluorescence in distal CA1

dendrites with no detectable change in soma and proximal

dendrites (Figure 3A, left panels).

We analyzed the profile of channel expression by plotting the

ratio of EGFP-HCN1 to DsRed2 fluorescence as a function of

distance along the somatodendritic longitudinal axis (Figure 3B).

In slices that had been infected with control siRNA, this ratio was

relatively constant in the soma and proximal dendrites of SR

and increased steeply in the distal regions of SR into SLM,

reflecting the normal gradient of endogenous HCN1. TRIP8b

knockdown had little effect on the EGFP-HCN1 to DsRed2 fluo-

rescence ratio in the soma and proximal dendrites of SR.

However, there was a large decrease in the EGFP-HCN1 to

DsRed2 ratio in the distal regions of SR and throughout SLM.

A comparison of the ratio in slices expressing control siRNA to

the ratio in slices expressing TRIP8b siRNA confirmed that

downregulation of TRIP8b produced a selective reduction in

channel expression in CA1 distal dendrites (Figure 3C, N = 5

mice, 10 injection sites for TRIP8b siRNA and 4 mice, 8 injection

sites for control). This altered ratio was not caused by changes in

dendritic architecture as the DsRed2 distribution was unaffected

by the siRNA.

In summary, siRNA-mediated reduction of TRIP8b resulted in

a marked loss of HCN1 in the plasma membrane as detected by

several electrophysiological parameters that reflect Ih. Further-

more, knockdown of TRIP8b in vivo resulted in an increased

immunoreactivity for HCN1 channels in the CA1 soma and

proximal dendrites that represents a redistribution of HCN1

to intracellular compartments. Additionally, coexpression of

EGFP-HCN1 with TRIP8b siRNA revealed a selective loss of

channel fluorescence in SLM. All together, these results indicate

that, in addition to being important for HCN1 expression on the
Neuron 70, 495–509, May 12, 2011 ª2011 Elsevier Inc. 499
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Figure 4. HCN1DSNL Truncation Mutant

Shows Defective Trafficking to CA1 Distal

Dendrites

(A and B) Images of CA1 region from hippocampal

slices from HCN1 KO mouse expressing EGFP-

HCN1 (A) or EGFP-HCN1DSNL (B). EGFP-tagged

channel fluorescence (left column) and as green

(right column). Staining for MAP2 dendritic marker

(middle column) and as red (right). Note that full-

length EGFP-HCN1 was trafficked efficiently to

distal apical dendrites whereas EGFP-HCN1DSNL
showed even dendritic distribution, with relatively

high expression in soma and proximal apical and

basal dendrites. The scale bar represents 200 mm.

(C) Higher magnification z-series projections

showing fluorescence signals for EGFP-HCN1,

EGFP-HCN1DSNL, and coexpressed DsRed2. The

scale bar represents 10 mm.

(D) EGFP and DsRed2 fluorescence intensities

were measured along somato-dendritic axis in

soma and apical dendrites of individual cells.

Mean EGFP signal averaged from individual

dendrites was normalized by DsRed2 signal and

plotted as function of distance from somatic layer

for neurons expressing EGFP-HCN1 (black) or

EGFP-HCN1DSNL (red). (Solid lines: means;

dashed lines: SEM).
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plasmamembrane, TRIP8bmay also be important for the target-

ing of HCN1 to distal dendrites. However, the loss of HCN1 in

distal dendrites might not reflect a specific role of TRIP8b in

dendritic targeting but may be secondary to the general loss

of HCN1 surface expression upon TRIP8b knockdown. More-

over, because the TRIP8b siRNA reduced but did not eliminate

TRIP8b protein, it is unclear whether the residual targeting

of HCN1 to the distal dendrites results from an effect of

residual TRIP8b or represents the action of some other targeting
500 Neuron 70, 495–509, May 12, 2011 ª2011 Elsevier Inc.
protein that interacts with HCN1. To

address these questions, we adopted

a third, complementary approach, dis-

cussed next.

A C-Terminal EGFP-HCN1
Truncation Mutant with Impaired
Binding to TRIP8b Shows
Impaired Targeting to CA1 Distal
Dendrites
To overcome the limitations of the siRNA

approach, we expressed an EGFP-

tagged HCN1 truncation mutant (EGFP-

HCN1DSNL) that lacks the HCN1

C-terminal SNL tripeptide required for

high affinity binding of HCN1 to TRIP8b

(Santoro et al., 2004, 2011; Lewis et al.,

2009). We observed a dramatic loss of

dendritic targeting when we expressed

EGFP-HCN1DSNL in the background of

HCN1 KO mice (Figures 4A and 4B).

Unlike wild-type HCN1, the mutant

channel was expressed uniformly at high
levels throughout CA1, as evident in the relatively constant

EGFP-HCN1DSNL to DsRed2 fluorescence ratio along the soma-

todendritic axis. A comparison with the distribution of full-length

HCN1 revealed not only a loss of expression of the mutant

channel in the distal dendrites but also an increase in expression

in proximal dendrites (Figures 4C and 4D; EGF-HCN1: N = 4

mice, 8 injection sites; EGFP-HCN1DSNL: N = 5mice, 10 injection

sites). As TRIP8b is the major protein that interacts with the

HCN C terminus in the brain (Santoro et al., 2004, 2009; Zolles
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A series of electrophysiological properties were determined for CA1 pyramidal neurons fromHCN1KOmice expressing EGFP (control, black), EGFP-HCN1 (blue)

or EGFP-HCN1DSNL (red). (A) Somatic voltage traces from whole-cell current-clamp recordings showing expression of full-length or truncated HCN1 resulted in

a prominent depolarizing voltage sag in response to 100 pA hyperpolarizing current steps from a holding potential of �70 mV. (B) Expression of EGFP-HCN1

and EGFP-HCN1DSNL differentially enhanced t1/2 decay time of EPSPs in response to stimulation of proximal (SC) inputs (B1) versus distal (PP) inputs (B2). (B3)

Ratio of SC/PP EPSP t1/2 values was significantly different following expression of EGFP-HCN1 versus EGFP-HCN1DSNL. Peak amplitude input-output curves for

SC (C) and PP (D) EPSPs from CA1 pyramidal neurons expressing EGFP (black triangles), EGFP-HCN1 (blue circles) or EGFP-HCN1DSNL (red squares). (Error

bars: SEM).
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et al., 2009), these results strongly implicate TRIP8b as a key

element necessary for the efficient targeting of HCN1 channels

to distal portions of CA1 pyramidal neuron apical dendrites.

CA1 Neurons Expressing EGFP-HCN1DSNL Display
Altered Physiological Properties Consistent
with Channel Mistargeting
Because of the limitations of fluorescence imaging, we used an

electrophysiological approach to measure EGFP-HCN1DSNL
channel levels in the surface membrane in HCN1 KO mice. The

resting potential of neurons expressing EGFP-HCN1DSNL
(�69.2 ± 1.2; n = 13) was identical to that of neurons expressing

EGFP-HCN1 (�69.1 ± 1.1 mV; n = 15), and both were �14 mV

more positive than the resting potential of control neurons from

the HCN1 knockout mice expressing EGFP (�82.7 ± 1.5 mV;

n = 15; p < 0.01 relative to full-length and mutant channels).

This suggests that the wild-type and mutant channels produced

similar increases in somatic Ih. Expression of full-length and

mutant channels also led to similar, significant decreases in input

resistance (EGFP- HCN1DSNL:107.2 ± 15.7 MU, n = 13; EGFP-

HCN1:109.1 ± 7 MU, n = 15) relative to that of control neurons
expressing EGFP (149.6 ± 14 MU, n = 15; p < 0.01). Finally, sag

ratios were similarly enhanced (Figure 5A) in neurons

expressing EGFP-HCN1 (0.23 ± 0.03, n = 15) or EGFP-HCN1DSNL
(0.22 ± 0.02, n = 13), relative to that in control neurons from the

knockout mice (0.05 ± 0.01, n = 15; p < 0.01). Thus, expression

of EGFP-HCN1 and EGFP-HCN1DSNL in HCN1 KO mice yielded

large, nearly identical levels of Ih when measured at the soma.

Next, we assessed levels of Ih in CA1 proximal and distal

dendrites, based on the time course of decay of SC and PP

EPSPs (Figure 5B). In control knockout neurons expressing

EGFP, the t1/2 of the SC EPSP (35 ± 2ms) was significantly faster

than that of the PP EPSP (52 ± 4 ms; n = 15; p < 0.05), as

expected from the passive cable properties of the dendrite.

Expression of either EGFP-HCN1 or EGFP-HCN1DSNL led to

a speeding of the decay of the SC EPSP, although EGFP-

HCN1DSNL produced a significantly larger speeding of the t1/2
(23 ± 1 ms; n = 13) relative to the t1/2 with EGFP-HCN1 (27.7 ±

3 ms; n = 15; p < 0.05, compared with EGFP and EGFP-HCN1;

ANOVA, Tukey HSD). In contrast we observed the opposite

pattern for PP EPSPs; EGFP-HCN1 produced a significantly

larger speeding (t1/2 of 24 ± 2 ms; n = 15) compared with the
Neuron 70, 495–509, May 12, 2011 ª2011 Elsevier Inc. 501
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truncated channel (t1/2 of 29 ± 2 ms; n = 13; p < 0.05, ANOVA

Tukey HSD). The differential effect of full-length versus mutant

HCN1 on the decay of the PP versus SC EPSP was apparent

when we compared the ratio of SC EPSP to PP EPSP decay

times in neurons expressing EGFP, EGFP-HCN1 and EGFP-

HCN1DSNL (Figure 5B3). Whereas full-length HCN1 preferentially

sped the decay of the PP EPSP relative to the SC EPSP, the

mutant channel produced a similar speeding of EPSPs in both

pathways.

As a final assay of functional levels of Ih in dendritic compart-

ments, we compared the effects of the three different constructs

on the input-output curves for SC and PP EPSP peak amplitude,

as this parameter is reduced by high levels of HCN1 (George

et al., 2009; Magee, 1998). EGFP-HCN1 had no effect on the

input-output curve for SC EPSPs (Figures 5C and 5D), consistent

with the relatively low levels of full-length HCN1 in proximal

dendrites. In contrast, EGFP-HCN1DSNL decreased significantly

the SC EPSP amplitude, relative to the EPSP in either control

knockout neurons expressing EGFP or neurons expressing full-

length EGFP-HCN1 (p < 0.01, ANOVA with Tukey’s HSD test,

stimulus strengths >4 V) (Figure 5D). In contrast, EGFP-HCN1

caused a large reduction of the PP EPSP (p < 0.01, ANOVA

with Tukey’s HSD test relative to EGFP control EPSPs, stimulus

strengths >15 V) that was significantly greater than the reduction

seen with EGFP-HCN1DSNL (p < 0.05 ANOVA with Tukey’s HSD,

25 and 30 V stimulus strengths).

These results demonstrate that while full-length HCN1 is

targeted to CA1 distal dendrites, the truncation mutant is

expressed at high, relatively uniform levels in the somatoden-

dritic membrane throughout the CA1 neuron, consistent with

our results based on EGFP fluorescence. Thus, the loss of distal

dendritic targeting of HCN1DSNL is not secondary to loss of

membrane surface expression but must represent the loss of

a primary action of TRIP8b to target full-length HCN1 to distal

dendrites. As downregulation of TRIP8b with siRNA decreases

HCN1 surface expression, the HCN1DSNL results further indicate

that the actions of TRIP8b to enable proper surface membrane

expression and to direct distal dendritic targeting of HCN1 are

dissociable functions. This is consistent with recent reports

that HCN1 and TRIP8b interact at two distinct sites (Lewis

et al., 2009; Santoro et al., 2011) and that the weakened binding

between TRIP8b and HCN1DSNL is sufficient to allow certain

TRIP8b isoforms to enhance surface expression of the mutant

channel (see Discussion).

Which TRIP8b Splice Isoforms Are Important
for HCN1 Trafficking?
Although our results indicate that TRIP8b is critical for the proper

surface expression and dendritic targeting of HCN1 in CA1 pyra-

midal neurons, these data do not provide insight as to which

specific TRIP8b isoform (or combination of isoforms) is involved.

The identification of the role of individual isoforms is a daunting

task as there are at least ten different splice variants of TRIP8b

expressed in brain (Lewis et al., 2009; Santoro et al., 2009).

Moreover, the small size of the various alternatively spliced

exons makes it impractical to design selective siRNAs to knock-

down specific isoforms. Nonetheless, we obtained insight into

the function of specific isoforms by examining a mouse line,
502 Neuron 70, 495–509, May 12, 2011 ª2011 Elsevier Inc.
Pex5ltm1(KOMP)Vlcg, in which exons 1b and 2 in the TRIP8b gene

were replaced by lacZ through homologous recombination

(http://www.komp.org; Figure S2). The removal of all splice

forms containing exons 1b or 2 is expected to delete all except

three of the TRIP8b splice isoforms, namely TRIP8b(1a),

TRIP8b(1a-4) and TRIP8b(1a-3-4). Of these, TRIP8b(1a) and

TRIP8b(1a-4) are the most abundant splice forms in the mouse

brain, accounting for 25%–30% and 30%–40%, respectively,

of total TRIP8b mRNA. In contrast, TRIP8b(1a-3-4) is normally

expressed at very low levels in brain (<5% of total brain TRIP8b

mRNA; (Santoro et al., 2009) and is not detected in hippocampus

(Lewis et al., 2009).

The TRIP8b exon 1b/2 KO mice are generally viable, with

normal body weight and overall brain structure. Western blot

analysis of brain extracts from these mice confirmed the loss

of all TRIP8b isoforms containing exons 1b or 2. In contrast,

the hippocampal TRIP8b isoforms lacking these exons,

TRIP8b(1a) and TRIP8b(1a-4), showed strong signals onwestern

blots of brain extracts from the knockout mice, although the

levels of expression of these isoforms were reduced somewhat

compared with those seen in wild-type littermates (Figure S2).

Moreover, the remaining TRIP8b splice forms showed a normal

dendritic pattern of immunohistochemical staining in the CA1

region of the KO mice (Figure 6A; see also Figures S3 and S4).

Remarkably, despite the loss of all but two of the hippocampal

TRIP8b isoforms, the endogenous expression pattern of HCN1

in the CA1 region of the KO mice was identical to that of wild-

type mice, with the characteristic dendritic gradient of HCN1

expression (Figures 6C and 6D; see also Figure S4). Combined

with our above results using siRNA and EGFP-HCN1DSNL, which

demonstrated the general importance of TRIP8b isoforms for

HCN1 expression and dendritic targeting, the results from the

1b/2 KO mice indicate that TRIP8b(1a-4) and/or TRIP8b(1a)

must be the key isoforms that regulate HCN1 trafficking in CA1

neurons.

What is the role of the TRIP8b isoforms containing exons 1b or

2? Although the endogenous staining pattern with the pan-

TRIP8b antibody in CA1 was very similar in the knockout and

control animals, labeling disappeared in the KO mice from

a distinct population of small cells enriched in the dentate gyrus

and CA3 regions (Figure 6B). These cells, present throughout the

brain, are likely oligodendrocytes, as theywere colabeledwith an

antibody to 20, 30-cyclic nucleotide 30-phosphodiesterase
(CNPase), an oligodendrocyte-specific marker (Figure S3).

Furthermore, we detected b-galactosidase (which replaced

exons 1b/2 in the KO mice, see Figure S2) in these cells of the

1b/2 KO animals, indicating that these cells normally express

exons 1b and 2 (Figure S3). Although oligodendrocytes do not

express HCN1, they do express HCN2 (Notomi and Shigemoto,

2004), which also interacts strongly with TRIP8b (Santoro et al.,

2004; Zolles et al., 2009).

TRIP8b(1a-4) and TRIP8b(1a) Are Expressed in CA1
Neuron Axonal-Dendritic Compartments
To elucidate further the potential role of TRIP8b(1a) and

TRIP8b(1a-4) in the trafficking of HCN1 in the hippocampus,

we examined their endogenous localization in wild-type and

KO mice using exon-specific antibodies. We first studied

http://www.komp.org
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(A) Coronal hippocampal sections from wild-type and

TRIP8b exon 1b/2 knockout mice littermates. Slices were

labeled with amonoclonal pan-TRIP8b antibody that binds

to all isoforms. The scale bar represents 500 mm.

(B) Higher magnification z-axis projection of area CA3 from

wild-type and TRIP8b 1b/2 KO mice, showing loss of pan-

TRIP8b staining from small glial-like cells following dele-

tion of exons 1b and 2. The scale bar represents 100 mm.

(C) Immunolabelling of slices from wild-type and TRIP8b

1b/2 KO littermates mice showing a normal expression

pattern of endogenous HCN1 throughout the hippo-

campus. The scale bar represents 500 mm.

(D) Higher magnification z-axis projection of area CA1

showing the identical targeting of HCN1 to distal dendrites

in SLM of wild-type and TRIP8b 1b/2 KO mice. The scale

bar represents 100 mm.
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immunohistochemical staining with a mouse monoclonal anti-

body that specifically recognizes exon 4. In hippocampal

slices from wild-type mice, exon 4 labeling was detected

in a pattern very similar to that of endogenous HCN1. Thus,

labeling was present at highest levels in the SLMof CA1 and sub-

iculum, with a sharp cutoff in signal at the CA1-CA2 border

(Figures 7A and 7B). Although four TRIP8b splice isoforms that

containexon4 (TRIP8b(1a-2-3-4), TRIP8b(1a-2-4), TRIP8b(1a-4),

and TRIP8b(1b-2-4)) are normally expressed in hippocampus

(Santoro et al., 2009), TRIP8b(1a-4) is by far the most abundant

(Santoro et al., 2009). Moreover, we found that the hippocampal
Neuron 70
staining pattern for exon 4 was identical in wild-

type and 1b/2 knockout mice (Figure S4). Thus,

the exon 4 antibody signal in wild-type animals

is likely to predominantly represent staining for

TRIP8b(1a-4), as all other exon 4-containing

isoforms normally expressed in hippocampus

were deleted in the knockout mice. These

immuno-histochemistry data, together with

previous findings that TRIP8b(1a-4) promotes

HCN1 surface expression in heterologous cells

(Lewis et al., 2009; Santoro et al., 2009), suggest

that TRIP8b(1a-4) is likely to be a key TRIP8b iso-

form that promotes the surface expression and

efficient targeting of HCN1 to the CA1 distal

dendrites.

Next we examined the expression pattern of

TRIP8b(1a) using a chicken polyclonal antibody

recognizing a peptide corresponding to the

junction of exons 1a and 5. This antibody prefer-

entially detected TRIP8b(1a) over TRIP8b(1a-4),

based on western blot analysis, and detected

virally expressed TRIP8b(1a) in CA1 neurons

by immunohistochemistry (Figure S5). The stain-

ing pattern with the TRIP8b(1a) antibody was

distinct and remarkably complementary to

both the staining with the exon 4 antibody and

the staining pattern of HCN1. Thus, in the hippo-
campus, TRIP8b(1a) was detected at highest levels in the alveus,

where TRIP8b(1a-4) and HCN1 staining were lacking. Although

the TRIP8b(1a) antibody did stain the SLM of CA1 and subiculum

(Figure 7C), high magnification z-axis projections revealed that

the TRIP8b(1a) signal was present in dense bundles of fibers

running semiperpendicularly to the dendritic axis of the CA1

pyramidal neurons (Figure 7D). This is distinct from the diffuse

SLM signal seen with the antibody against exon 4. Sparse fibers

were also detected with the TRIP8b(1a) antibody in SR and SO.

TRIP8b(1a)-labeled fibers were colabeled with an antibody to

intermediate-sized neurofilament, an axonal marker (Figure S6).
, 495–509, May 12, 2011 ª2011 Elsevier Inc. 503
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(A) Coronal brain sections immunolabeled with an antibody

specific to exon 4 of TRIP8b. Strongest signal was seen in
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500 mm.

(B) Higher-magnification z-projection image of CA1

neurons immunolabeled with antibody to TRIP8b exon 4.

The scale bar represents 100 mm.

(C) Immunolabeling with an antibody recognizing

TRIP8b(1a). Note the high expression in the alveus of the

hippocampus. The scale bar represents 500 mm.

(D) Higher magnification images reveal that TRIP8b(1a) is

localized to fiber bundles in SO, SLM and in sparse fibers in

SR. The scale bar represents 100 mm.
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These results suggest that TRIP8b(1a) is present in axonal fibers,

including those of CA1 pyramidal cells, which project through the

alveus. Of interest, little or no staining for endogenous HCN1was

detected in such fibers, as seen by comparing Figure 6D with

Figure 7D. Given that TRIP8b(1a) downregulates HCN1 surface

expression in Xenopus oocytes (Santoro et al., 2009), our find-

ings suggest that TRIP8b(1a) may act to suppress HCN1 channel

misexpression in CA1 neuron axons.

Effects of Overexpression of HA-Tagged TRIP8b(1a-4)
and TRIP8b(1a) on EGFP-HCN1 Trafficking in Dendrites
of CA1 Pyramidal Neurons
To test the hypothesis that TRIP8b(1a-4) enhancesHCN1 surface

expression and targets the channel to its proper dendritic locale

whereas TRIP8b(1a) prevents axonal expression of the channel,

we examined the effects of viral overexpression of these two

TRIP8b isoforms, both fused toanHA tag toallowus todistinguish

exogenous fromendogenousprotein. Inapreviousstudy (Santoro

et al., 2009), coexpression of TRIP8b(1a-4)-HA with EGFP-HCN1

enhanced expression of the channel in the surface membrane of

CA1 neuron apical dendrites. However, the normal targeting of

the channel to the distal dendrites was perturbed as HCN1 was

present uniformly throughout the somatodendritic axis.

In our present experiments, we confirmed that overexpression

of TRIP8b(1a-4)-HA enhanced expression and caused mislocal-

ization of EGFP-HCN1 as previously described (Figure 8A, right;
504 Neuron 70, 495–509, May 12, 2011 ª2011 Elsevier Inc.
compare to Figure 4A). In addition, by staining

for the HA tag, we found that overexpressed

TRIP8b(1a-4)-HA was present in a uniform

dendritic distribution similar to that of EGFP-

HCN1 (Figure 8A, left), in contrast to the distal

dendritic localization of endogenous

TRIP8b(1a-4) (see Figure 7A). Although overex-

pressedTRIP8b(1a-4)-HA fails to formadendritic

gradient, the fact that HCN1 is consistently colo-

calized with TRIP8b(1a-4), either under physio-

logical conditions when both are targeted to

distal dendrites or when TRIP8b(1a-4)-HA is

overexpressed and both are present in a uniform

distribution, suggests that TRIP8b(1a-4) is a key

isoform that helps direct channel localization.
The above hypothesis is supported by the contrasting action

of overexpressed TRIP8b(1a)-HA. When coexpressed with

EGFP-HCN1, TRIP8b(1a)-HA was detected in an even distribu-

tion throughout CA1 pyramidal neurons (Figure 8B, left),

similar to the localization of TRIP8b(1a-4)-HA. However, unlike

with TRIP8b(1a-4)-HA, the dendritic expression of EGFP-HCN1

was unaltered by TRIP8b(1a)-HA, with the channel displaying a

normal localization in CA1 distal dendrites (Figure 8B, right).

The lack of change in EGFP-HCN1 dendritic targeting is consis-

tent with the view that TRIP8b(1a)may act preferentially in axons.

Effects of Overexpression of HA-Tagged TRIP8b(1a-4)
and TRIP8b(1a) on EGFP-HCN1 Trafficking in Axons
of CA1 Pyramidal Neurons
To test directly the idea that TRIP8b(1a) prevents HCN1 misloc-

alization in CA1 pyramidal neuron axons, we examined the

effects of overexpressing HA-tagged TRIP8b(1a) on axonal

EGFP-HCN1. Although endogenous levels of HCN1 in CA1 pyra-

midal neuron axons are normally very low (see Lorincz et al.,

2002; Notomi and Shigemoto, 2004), a strong fluorescence

signal for overexpressed EGFP-HCN1 was observed in CA1

axonal fibers running through SO and alveus of the hippocampus

(Figures 9A–9C). Perhaps the clearest evidence that EGFP-

HCN1 was present in CA1 axons comes from our finding of

a strong fluorescence signal in SO of CA1 and subiculum in the

hemisphere contralateral to that where virus was injected
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(Figures 9A and 9B), sites where commissural CA1 axons are

known to project (van Groen and Wyss, 1990).

Strikingly, coexpression of TRIP8b(1a)-HA with EGFP-HCN1

eliminated channel fluorescence in axon fibers in both contralat-

eral (Figure 9F) and ipsilateral hippocampus (Figure 8B). This

effect represents a local action to downregulate channel expres-

sion in axons because TRIP8b(1a)-HA caused no change in the

dendritic expression of HCN1 (Figure 8B). Moreover the effect

is isoform-specific as TRIP8b(1a-4)-HA had no effect on axonal

expression of EGFP-HCN1 (Figure 9E). Further confirmation of

the specificity of action of TRIP8b(1a) comes from our finding

that TRIP8b(1a)-HA caused no change in the dendritic or axonal

expression of EGFP-HCN1DSNL (Figure S7), whose membrane

expression also cannot be downregulated by TRIP8b(1a) in

Xenopus oocytes (Santoro et al., 2011; see Discussion).
Neuron 70
Downregulation of HCN1 surface expression

by TRIP8b(1a) in Xenopus oocytes is dependent

on the presence of a dileucine adaptor protein

trafficking motif in the control of axonal expres-

sion of HCN1 (Bonifacino and Traub, 2003) in

the N-terminal domain of the TRIP8b protein

(Santoroet al., 2009). Toexamine the importance

of this motif we coexpressed EGFP-HCN1 with

TRIP8b(1a)LL/AA-HA, whose dileucine residues

were substituted with alanine (L18A/L19A, see

Santoro et al., 2009). Unlike the wild-type

protein, TRIP8b(1a)LL/AA-HA failed to prevent

the mislocalization of EGFP-HCN1 in axons in

both contralateral (Figure 9G) and ipsilateral

hippocampus (Figure 8C), even though the

mutant protein was expressed at high levels.

These results strongly support the view that

TRIP8b(1a) exerts a highly specific action to

prevent HCN1 mislocalization in axons through

adirect interactionwith thechannel and the likely

recruitment of adaptor protein complexes.

DISCUSSION

Our results demonstrate that TRIP8b splice iso-

forms are necessary for the proper trafficking of

HCN1 channels to the surface membrane of

CA1 pyramidal neurons and for the proper tar-
geting of the channels to the distal dendritic compartment.

Furthermore, of the more than ten TRIP8b isoforms present in

brain, TRIP8b(1a) and TRIP8b(1a-4) appear to bemost important

for proper HCN1 localization in hippocampal CA1 pyramidal

neurons. In particular, we suggest that TRIP8b(1a) largely

prevents HCN1 misexpression in axons whereas TRIP8b(1a-4)

enhances channel surface expression and ensures proper

dendritic targeting.

Effect of General Knockdown of HCN1 Interaction
with All TRIPb Isoforms
Lewis et al. (2009) previously reported that the reduction of

all TRIP8b isoforms with siRNA suppresses HCN1 membrane

expression and Ih in hippocampal neurons in dissociated cell

culture. In addition to confirming these in vitro results, we
, 495–509, May 12, 2011 ª2011 Elsevier Inc. 505
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(A) Low magnification image of EGFP-HCN1 fluorescence

from hippocampus of HCN1 KO mouse infected with

independent TRIP8b(1a)-HA and EGFP-HCN1 viral

vectors.

(B) Fluorescence image from uninjected contralateral

hippocampus from samemouse. The scale bars represent

500 mm.

(C) Diagram illustrating the distal dendritic expression

pattern of infected neurons at injection site and the loca-

tion of axonal fibers in the contralateral hippocampus. The

blue, green and red boxes correspond to the regions

shown in (A), (B), and (D).

(D) Higher-magnification image of EGFP-HCN1 labeled

axonal fibers in the contralateral hippocampus. The scale

bar represents 20 mm.

(E–G) Similar experiment as in (A)–(D), except EGFP-HCN1

is coexpressed with TRIP8b(1a-4)-HA (E), TRIP8b(1a)-HA

(F), or TRIP8b(1a)LL/AA (G). Note how TRIP8b(1a)-HA

selectively downregulates EGFP-HCN1 in axons. The

scale bar represents 20 mm.
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found that downregulation of TRIP8b in vivo inhibited HCN1

membrane expression and Ih in CA1 neurons. In particular,

we observed a marked decrease in HCN1 expression in CA1

distal dendrites. Our results with in vivo siRNA knockdown

thus provide clear evidence that TRIP8b is necessary for the

proper expression and localization of HCN1 in CA1 neuronal

compartments.

This conclusion is supported by our finding that an HCN1 trun-

cation mutant lacking its C-terminal TRIP8b interaction peptide,

HCN1DSNL, which has a decreased affinity for TRIP8b, failed to

localize to the CA1 distal dendrites. As the mutant channel was

strongly expressed in the surface membrane throughout the so-

matodendritic compartment in a fairly uniform manner, we

further conclude that HCN1 surface expression and dendritic

targeting are dissociable functions of TRIP8b that are differen-

tially sensitive to alterations in its biochemical interactions with

HCN1 (see below).
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Role of Different TRIP8b Isoforms
in Regulating HCN1 Expression
and Dendritic Localization
The task of defining the importance of individual

TRIP8b splice forms in the surface expression

and targeting of HCN1 to its proper neuronal

compartments was greatly simplified by the

availability of a mouse line, Pex5ltm1(KOMP)Vlcg,

in which TRIP8b exons 1b and 2 were selec-

tively deleted by homologous recombination.

Remarkably, despite the loss of all but three of

the more than ten TRIP8b splice forms normally

present in the brain, the dendritic staining

pattern of HCN1 was unaltered in CA1 neurons

in the mutant mice. A comparison of TRIP8b

expression in wild-type and KO mice further

revealed that TRIP8b isoforms containing

exons1b or 2 are normally present predomi-

nantly in small CNPase-positive oligodendro-
cytes. The functional role of TRIP8b in these cells, and whether

this role depends on an interaction with HCN2 channels present

in oligodendrocytes, is unknown (Notomi and Shigemoto, 2004).

The data with the TRIP8b 1b/2 knockout mice strongly

suggest that TRIP8b(1a-4) is a key isoform important in the

establishment of the HCN1 dendritic gradient in CA1 pyramidal

neurons. Thus, of TRIP8b(1a), TRIP8(1a-4), and TRIP8b(1a-3-4),

the three isoforms expressed in the knockout mice, TRIP8b(1a-

3-4) is unlikely to be important as it is present at very low levels in

brain (Santoro et al., 2009) and is not detected in hippocampus

(Lewis et al., 2009). Because HCN1 dendritic targeting was

unperturbed in the KOmouse but was disrupted when all TRIP8b

isoforms were downregulated with siRNA (or when their interac-

tion with HCN1 was inhibited in the HCN1DSNL mutant), we

conclude that either TRIP8b(1a-4) or TRIP8b(1a) must be neces-

sary and sufficient for HCN1 to be properly localized to CA1

distal dendrites. Furthermore, as TRIP8b(1a) immunostaining
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was largely limited to axons, TRIP8b(1a-4) appears the most

likely isoform required for dendritic targeting of HCN1. This

view is supported by our finding that TRIP8b(1a-4) was concen-

trated and colocalized with HCN1 in the distal dendrites of CA1

neurons, in both wild-type and TRIP8b 1b/2 KO mice, and by

previous results that overexpression of TRIP8b(1a-4) markedly

enhances the surface expression of HCN1 in heterologous cells

and CA1 pyramidal neurons (Santoro et al., 2009).

At first glance, our observation that HCN1DSNL, which has

a reduced binding affinity for all TRIP8b isoforms, was strongly

expressed in the surface membrane of CA1 neurons seems at

oddswith the siRNA findings that TRIP8b in general was required

for efficient trafficking of HCN1 to the surface membrane.

However, TRIP8b and HCN1 have been recently found to

interact at two distinct sites, only one of which involves the

SNL sequence (Lewis et al., 2009; Santoro et al., 2011). In addi-

tion, our laboratory recently reported that TRIP8b(1a-4) retains

its full functional ability to upregulate surface expression of the

HCN1DSNL mutant channel when heterologously expressed in

Xenopus oocytes. Thus, the residual interaction of TRIP8b(1a-4)

with the mutant HCN1 channel is likely to account for its strong

surface expression.

The ability of TRIP8b(1a-4) to upregulate surface membrane

expression of HCN1DSNL raises the question as to why this inter-

action failed to localize properly the mutant channel to the CA1

distal dendrites. One explanation is that dendritic targeting and

channel surface expression depend on distinct interactions of

HCN1 with TRIP8b(1a-4) that are differentially sensitive to the

loss of the SNL binding site. Alternatively, proper dendritic local-

ization may require the cooperative interaction of TRIP8b(1a-4)

with TRIP8b(1a), whose action to downregulate HCN1 surface

expression in heterologous expression systems is eliminated

upon deletion of the SNL tripeptide (Santoro et al., 2011).

A second result seemingly at odds with the hypothesis that

TRIP8b(1a-4) specifies the dendritic gradient of HCN1 is that

exogenously expressed TRIP8b(1a-4)-HA did not localize to

distal CA1 dendrites but showed a relatively uniform expression

throughout the somatodendritic compartment. We suggest that

TRIP8b(1a-4) must interact with a separate trafficking element,

possibly another protein or mRNA targeting motif, that is in

limited supply. As a result, there may have been an insufficient

amount of this factor to ensure proper dendritic targeting of

TRIP8b(1a-4)-HA when it was overexpressed. Nonetheless, our

finding that HCN1 expression matches that of TRIP8b(1a-4),

both under physiological conditions when the two proteins are

present in a dendritic gradient and during overexpression

when both proteins are present in a uniform distribution, implies

that the high concentration of endogenous TRIP8b(1a-4) in the

distal dendrites of CA1 neurons should be sufficient to localize

HCN1 channels at this site under physiological conditions.

Comparison of HCN1 Dendritic Targeting with Polarized
Trafficking of Other Ion Channels
It is of interest to consider our findings on the role of TRIP8b iso-

forms in the trafficking of HCN1 in the context of previous results

on the trafficking of other neuronal membrane proteins to

different polarized neuronal compartments. Four distinct mech-

anisms have been reported (Arnold, 2009): (1) Some proteins are
present in transport vesicles that are directly targeted to the

proper compartment. (2) Other proteins are shipped indiscrimin-

ately to all neuronal compartments, but then removed by endo-

cytosis from inappropriate regions. (3) Still other proteins are

also transported indiscriminately, but the transport vesicles

only dock in the appropriate compartment. (4) Finally some

proteins are targeted through transcytosis, in which the protein

is first expressed in one compartment from which it is removed

by endocytosis and then shipped to the appropriate locale

through recycling endosomes (Lasiecka et al., 2009).

With respect to these four mechanisms, perhaps the simplest

view is that TRIP8b(1a-4) promotes HCN1 distal dendritic

targeting through mechanism 1 whereas TRIP8b(1a) prevents

axonal mislocalization through mechanism 2. However, the two

isoformsmight also act sequentially through transcytosis (mech-

anism 4). This latter mechanism could explain why HCN1DSNL,

whose SNL truncation prevents its downregulation by

TRIP8b(1a), fails to be targeted to the distal dendrites despite

its continued interaction with TRIP8b(1a-4) that enhances

channel surface expression. Exploration of these possibilities

will provide an ample challenge for future work.

Functional Role and Dynamic Regulation of Dendritic
HCN1 Channels in Hippocampal Pyramidal Neurons
By comparing the electrophysiological properties of CA1

neurons from HCN1 knockout mice that have been rescued

with either full-length EGFP-HCN1 or EGFP-HCN1DSNL, our

experiments reveal how the proper targeting of HCN1 to its

dendritic locale is required for the normal processing of informa-

tion through the hippocampal circuit by CA1 neuron dendrites.

Thus, we found that the preferential targeting of full-length

HCN1 to the distal dendrites is required for the selective inhibi-

tory action of this channel on the integration of distal PP EPSPs

relative to more proximal SC EPSPs (Nolan et al., 2004). This

selective effect helps ensure that the distal PP EPSPs will have

a relatively weak influence at the CA1 neuron soma, relative to

the proximal SC EPSPs. In contrast, we found that themistarget-

ing of EGFP-HCN1DSNL to proximal dendrites changes the

normal balance of the two inputs, enhancing the contribution

of the PP EPSPs while decreasing the contribution of the SC

EPSPs.

The marked effects that the various TRIP8b isoforms exert on

HCN1 surface levels also provide a potential molecular mecha-

nism to explain the recent findings that the levels of Ih in neurons

are not fixed but can be increased or decreased by different

patterns of neural activity that induce synaptic plasticity (Brager

and Johnston, 2007; Campanac et al., 2008; Fan et al., 2005).

Alterations in TRIP8b-HCN1 interactions may also contribute to

the maladaptive changes in HCN1 expression associated with

seizures that is thought to contribute to the development of

epilepsy (Brewster et al., 2002, 2005; Chen et al., 2001; Jung

et al., 2007; Shah et al., 2004; Shin and Chetkovich, 2007), an

effect that is, in part, due to a redistribution of HCN1 from the

distal dendrites to the soma of CA1 neurons (Shin et al., 2008).

Given the strong regulatory action of TRIP8b splice variants on

the surface expression and compartmentalization of both native

and exogenous HCN1 in vivo, it will be of interest to determine

how changes in expression of specific TRIP8b isoforms plays
Neuron 70, 495–509, May 12, 2011 ª2011 Elsevier Inc. 507
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a role in these dynamic activity-dependent changes in Ih. Future

studies examining the regulation of TRIP8b alternative splicing

and posttranslational modifications by signaling cascades may

further enhance our understanding of how this auxiliary subunit

acts as a central regulator of Ih, thereby influencing the excit-

ability and plasticity of the hippocampal circuit.

EXPERIMENTAL PROCEDURES

Lentivirus Expression

The lentiviral expression vector containing the CaMKII promoter, pFCK(0.4)

GW was provided by Pavel Osten (Max Planck Institute, Heidelberg) (Dittgen

et al., 2004). Subcloning and virus preparation were carried out essentially

as described (Santoro et al., 2009; see also Supplemental Experimental Proce-

dures). For in vivo delivery, virus was concentrated to 108 IU/ml in sterile saline

and stereotaxically injected into the hippocampal CA1 region of adult mice

(aged 3–9 months). HCN1 knockout animals (genotype HCN1�/�) were gener-

ated and bred as described (Nolan et al., 2003). For all siRNA and EGFP-

HCN1DSNL experiments, at least four animals were bilaterally injected for

each experimental condition, with eight to ten injection sites analyzed. For

all experiments investigating the interaction between EGFP-HCN1 and

TRIP8b(1a-4) or TRIP8b(1a-4)-HA, 8 mice were unilaterally injected for each

experimental condition, with eight injection sites analyzed.

Immunohistochemistry

Animals were perfused with ice-cold 13 PBS followed by 4% paraformalde-

hyde in 13 PBS; 50 mm slices were cut with a vibratome, and permeabilized

in PBS+0.2% Triton, followed by incubation in blocking solution (PBS+0.2%

Triton+3%normal goat serum). For stainingwith theTRIP8b(1a) antibody, anti-

body retrieval was performed by incubating slices for 30 min in 10 mM sodium

citrate at 80�C before blocking. Primary antibody incubation was carried out in

blocking solution overnight at 4�C. For a complete list of antibodies used see

Supplemental Experimental Procedures. Slices were mounted with Immuno-

gold (Invitrogen), and fluorescence imaging performed on inverted laser scan-

ning confocal microscopes (BioRad MRC 1000, Olympus FV1000, Zeiss LSM

700). For immunohistochemistry with Pex5ltm1(KOMP)Vlcg animals, two aged-

matchedpairs of Trip8b1b/2 andcontrol littermateswere examined.All images

were analyzed with ImageJ (NIH) and IGORPro software (Wavemetrics).

siRNA Knockdown

siRNA target sequences were selected using the GenScript and Ambion algo-

rithms, and dsDNA oligonucleotides cloned into the pLLhS lentivirus vector

(Nakagawa et al., 2004) under control of the U6 promoter. The pLLhS vector

also expressed EGFP under the control of the synapsin promoter. siRNA effi-

cacy was assayed by western blot analysis from cultured neuronal extracts;

one TRIP8b siRNA construct greatly reduced the levels of TRIP8b protein (Fig-

ure 1) compared with control siRNA. This TRIP8b- siRNA targeted nucleotide

positions 1419–1439 in the TRIP8b(1b-2) isoform cDNA sequence (50-CCA
CCTGAGTGGAGAGTTCAA-30) in constant exon 14 (Santoro et al., 2009).

The control siRNA construct was similarly constructed, but encodes a scram-

bled target sequence. Histology and electrophysiology were performed two to

3 weeks after viral injection.

TRIP8b Exon 1b/2 Knockout Mouse

The Trip8b exon1b and 2 knockout mice were generated by the NIH KOMP

mutagenesis project. Details of the mouse can be found at www.komp.org.

In summary, Regeneron designed the targeting vector (project ID VG11153)

used to generate the allele Pex5ltm1(KOMP)Vlcg. The lacZ coding sequence

was inserted directly after the start codon in exon 1b, followed by a neomycin

selection cassette flanked by loxP sites, replacing all of exons 1b and 2 (see

Figure S3). Note that despite the presence of polyadenylation sites both

following the lacZ as well as the neomycin coding sequences in the targeting

cassette, alternate start sites still enabled translation of TRIP8b splice isoforms

starting with exon 1a (see Figure 6A and Figure S2). The occurrence of read-

through transcripts from exon 1a through the constant region of TRIP8b was

verified through RT-PCR (data not shown).
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Acute Hippocampal Slices and Electrophysiology

Lentivirus was stereotactically injected into the dorsal hippocampi of 5-week-

old mice. Transverse hippocampal slices (400 mm) were prepared two weeks

after viral injection. Animals were sacrificed in accordance to institutional

IACUC standards. For solution composition and detailedmethods see Supple-

mental Experimental Procedures. Virally infected neurons were identified by

EGFP fluorescence. Following recordings of infected neurons, slices were

fixed for 30 min in PFA and imaged to ensure that all dye-filled cells were

also EGFP+ and that the dendritic structure of infected cells was normal.

Series resistance was less than 15 MU; capacitance and series resistance

were monitored and compensated throughout the experiments. Recordings

were performed at 32�C. All datawas aquiredwith Pclamp software (Molecular

Devices) and analyzed with IGORPro (wavemetrics).
SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and seven figures and can be found with this article online at doi:10.1016/

j.neuron.2011.03.023.
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