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Asynchronous variational integration (AVI) is a tool which improves the numerical efficiency of explicit
time stepping schemes when applied to finite element meshes with local spatial refinement. This is
achieved by associating an individual time step length to each spatial domain. Furthermore, long-term
stability is ensured by its variational structure. This article presents AVI in the context of finite elements
based on a weakened weak form (W2) Liu (2009) [1], exemplified by continuous assumed gradient
elements Wolff and Bucher (2011) [2]. The article presents the main ideas of the modified AVI, gives
implementation notes and a recipe for estimating the critical time step.
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1. Introduction arbitrary ratios. The method is variational. Hence it is symplectic
Explicit time integration schemes may become inefficient in the
presence of fast oscillators in the system. For example, finite
elements of very small size and/or with stiff material properties
reduce the critical time step of the whole system.

An approach to overcome this problem are mixed methods using
explicit integrators for one domain and implicit methods for an-
other mesh region [3,4]. Another line of development are multiple
time stepping algorithms that integrate different parts of structures
with different step sizes. This strategy is also known as subcycling
[5]. The time step ratios are usually obtained by bisection, but also
non-integer ratios can be used [6,7]. In the latter case, a clock is
introduced which counts the smallest time step in the system. All
nodes are thus updated which are behind the clock. Variants based
on the symplectic Velocity Verlet method are presented in [8,7] to-
gether with stability criteria. The results are affirmed by Daniel [9]
comparing different subcycling algorithms and proving the Smolin-
ski and Sleith algorithm [8] as the only stable one. Belytschko’s
method [5] is shown to be only ‘statistically stable’ [9], improving
stability with growing number of degrees of freedom.

A generalization of the multiple-time stepping scheme r-RESPA
[10] are asynchronous variational integrators (AVIs) [11–14]. There-
in, time step sizes are individually assigned to each finite element at
and momentum preserving and, thus, well suited for long-term
simulation. It implements a priority queue which decides on the
sequence of drift phases and velocity kicks. The method can
be extended to parallel implementations [15]. Convergence can
be proved for linear elasticity [16]. Reliable stability criteria are
difficult to find. A stability analysis was exemplified for a single de-
gree of freedom system with two asynchronous potential functions
in [17]. AVIs were successfully employed to improve accuracy and
efficiency in domain decomposition [18,19] where each domain is
assigned to individual time step sizes. They managed to develop
implicit AVIs, but require synchronization times and lead to full-
implicit couplings in between. The benefits of AVIs in efficiency
were applied to contact/impact problems using a quadratic penalty
formulation to compute contact forces [20] or using discontinuous
momentum updates [21].

AVIs were originally formulated for isoparametric finite ele-
ments [11]. In this case, the critical time step size is approximated
for each finite element by computing the elemental wave speed.
This article formulates AVIs for a family of elements based on a
weakened weak (W2) form, see [1] and the references therein.
Such elements introduce either an assumed strain field (for infini-
tesimal strains) or an assumed deformation gradient field (for
finite strains). The family includes nodal integration [22–24],
smoothed finite element methods (SFEM) [25,26] and continuous
assumed gradient (CAG) elements [2]. The mentioned methods
were developed to improve the accuracy of low-order continuum
elements. They conceptually differ from classical assumed strain
methods, see for example [27], which enhance the interpolation
functions of the strains within a finite element and solve the addi-
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tional unknowns by static condensation. Among the W2 methods,
the assumed strain (or gradient) field is an independent field which
is solved only with information on the finite element geometry and
the mesh topology involving some kind of smoothing operator ap-
plied to the natural strains (or gradients). The ‘strain smoothing’ is
a very simple procedure which generally improves the accuracy of
bending dominated problems and, in some formulations, the sensi-
tivity to near incompressibility and mesh distortion. It is particu-
larly efficient in explicit dynamics which can be performed with
an increased critical time step due to softening the response by
the smoothing operator.

1.1. Objectives and outline

Some stability properties of AVI were recently illustrated in [17]
while its convergence was proven by [16] for linear elasticity.
Some convergence properties of W2 forms were proven in [1]. Con-
vergence and efficiency of CAG elements were extensively studied
in [2,28] using a great variety of static and dynamic numerical
experiments from linear and nonlinear elasticity involving infini-
tesimal and finite strains.

The objective of this article is to illustrate the implementation of
explicit AVI when using CAG elements. Application of AVIs is not
straight-forward. Due to the smoothing operator, no element stiff-
ness matrix exists. Therefore, one needs to find new strategies for
the spatial partition of asynchronous integration and for the estima-
tion of the local time step size. The latter is solved by defining an
equivalent ‘‘stiffness matrix’’ associated with a single smoothing cell
and by redistributing the mass to the involved degrees of freedom.

The outline is as follows: Section 2 introduces the basics of CAG
elements. For more details, the reader is referred to [2]. Section 3
and 4 presents a generalized formulation of asynchronous varia-
tional scheme following the ideas in [17] and then applies the for-
mulation to structural elasticity using CAG elements. The strategy
for estimating the time step length is illustrated in Section 5.
Examples compare the efficiency of AVI with central differences
in Section 6.

2. Continuous assumed gradient elements

2.1. Assumed gradient field

The deformation gradient of isoparametric elements is

Fh
abðnÞ ¼ OcNiðnÞJ�1

cb ðnÞuia þ dab ð1Þ

with shape function Ni and the inverse of the Jacobian J�1. Due to
C0-continuity of the displacements Fh is continuous in the interior
of each element and discontinuous at finite element boundaries.
This discontinuity is the reason that the error (in energy norm) in
the interior of low-order elements is often smaller than at the finite
element boundaries.

The idea behind CAG is now to replace Fh by a continuous field
with interpolation function Mi

FAN
ab ðnÞ ¼ MAðnÞFAab ð2Þ

where FA are the values at the supporting points A and FANðnÞ is the
assumed natural deformation gradient. In case of nodal integration,
MA are identical with the finite element shape functions. In case of
SFEM, the interpolation functions are piecewise constant.

The values FA are additional degrees of freedom. They are cho-
sen in such a way that the resulting field FAN

ab ðnÞ is a good approx-
imation to the field computed from the finite element shape
derivatives Fh

abðnÞ. The identity of both fields is enforced in a weak
sense using the principle of Veubeke-Hu-Washizu incorporating a
continuous field of Lagrange multipliers kðnÞ, i.e.
kabðnÞ ¼ LAðnÞkAab ð3Þ

with interpolation function LAðnÞ. The multipliers are incorporated
by adding the term PVHW to the strain energy,

PVHW ¼
Z

V
kabðnÞ FAN

ab ðnÞ � Fh
abðnÞ

� �
dV ð4Þ

introducing kAab as additional degrees of freedom. By using dual
multiplier spaces [29] for the interpolation of k one obtains a
lumped matrix structure and, thus, the discrete multipliers can be
explicitly eliminated. The multiplier space is constructed by the lin-
ear combination

LAðnÞ ¼ aABMBðnÞ ð5Þ

where aAB denotes some coefficient matrix which is chosen to sat-
isfy the biorthogonality conditionZ

V
LAðnÞMBðnÞdV ¼ dAB

Z
V

MAðnÞdV ð6Þ

Finally, after variation of the enhanced energy function with virtual
degrees of freedom duA; dkA and dFA, one obtains for the discrete
deformation gradient

FAab ¼
R

V LAðnÞFh
abðnÞdVR

V MAðnÞdV
¼
R

V LAðnÞOcNBðnÞJ�1
cb ðnÞdVR

V MAðnÞdV
uBa þ dab ð7Þ

while the Lagrange multipliers kA are identified as the 1st Piola–
Kirchhoff stress tensor. The integrals are numerically evaluated in
a preprocessing step. The dual coefficients aAB are geometry depen-
dent; the averaging operator (or ‘smoothing operator’) in Eq. (7) de-
pends on the mesh topology.

2.2. Strain energy

Using the explicit representation (7), the strain energy becomes

U ¼
Z

V
UdðFAN; tÞdV ¼

X
A

WAUd
AðFA; tÞ ð8Þ

with strain energy density function Ud. WA is an integration weight
denoting the fictive volume around integration point A, i.e.

WA ¼
Z

V
MAðnÞdV ð9Þ

Therein, the numerical integration points are chosen to be identical
to the support points A of the gradient interpolation.

Relation (7) defines an explicit smoothing operator which aver-
ages the discontinuous deformation gradients at finite element
boundaries to obtain a single quantity. It does not require static
condensation or other knowledge on constitutive relations, but is
entirely dependent on the geometry of the adjacent elements
and on the finite element mesh topology.

The choice of the interpolation functions and support point
coordinates for the gradient field is crucial to ensure stability and
accuracy of the formulation. For example, nodal integration and
NS-FEM are unstable involving the appearance of spurious low-en-
ergy modes. They need non-physical penalty energy functions that
stabilize them. The articles [2,28] numerically verify the stability,
convergence and accuracy of several W2 variants including new
elements which can be constructed based on the idea of assumed
continuous deformation gradients. For first order hexahedral ele-
ments, [2,28] found good results for the element types
C3D_8N_27C and C3D_8N_8I. The first is defined by 27 support
points and a second order tensor-product interpolation of the
deformation gradient by Lagrange polynomials. The latter element
type is defined by 16 support points with 8 points being coincident
with the nodes and 8 additional points in the element interior.
Among the tested first order tetrahedra, the nodally integrated
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tetrahedron with an additional bubble mode in the gradients was
found to be most accurate. It turned out to be even the most effi-
cient with respect to computing time in explicit analysis [28] be-
cause the enlarged critical time step compensates the slightly
increased numerical cost per restoring force assembly. Fig. 1 illus-
trates the positions of support points for various CAG and SFEM
formulations.

2.3. Linearization

The restoring force vector F and the stiffness matrix K are well
defined and given through

FA ¼
X

B

X
m2B

Wm
B rm

Ba
@�m

a ðFBÞ
@FBbc

@FBbc

@uA

ð10Þ

KAB ¼
X

C

X
m2C

Wm
C rm

Ca
@2�m

a ðFCÞ
@FCbc@FCgx

@FCbc

@uA

@FCgx

@uB

þ
X

C

X
m2C

Wm
C Cm

Cad

@�m
a ðFCÞ
@FCbc

@�m
d ðFCÞ
@FCgx

@FCbc

@uA

@FCgx

@uB

ð11Þ

wherein

rm
Aa ¼

@

@�m
a

Um
A ð�mðFAÞ;am

A ; tÞ ð12Þ

Cm
Aab ¼

@2

@�m
a @�m

b

Um
A ð�mðFAÞ;am

A ; tÞ ð13Þ

denote the 2nd Piola–Kirchhoff stress and tangential material ten-
sors. � is the strain tensor and m 2 A denotes the index within the
set of materials being topological neighbors of the Ath integration
point.

To prepare the outline in Section 5 consider the structure of K.
In classical finite element formulations, even when using enhanced
strains or incompatible modes, the stiffness matrix can be assem-
bled by the union of element stiffness matrices. Each element stiff-
ness matrix Kn contributes stiffness values to all degrees of
freedom which belong to the nodes of the respective element n.
The same is true for the element mass matrix Mn. Since both are
defined in the same conforming space of nodal displacements,
the generalized element eigenvalues can be computed straight-for-
ward. This approach is widely used to approximate the largest
eigenvalue (and, thus, critical time step) of the entire system by
the maximum element eigenvalue among all elements.

An element stiffness matrix in this sense does not exist for the
weakened weak form. An element stiffness matrix may be ob-
tained by integrating the strain energy density over the spatial do-
main of the nth element and calculating its Hessian. But this matrix
then influences not only the degrees of freedom of the nth element,
Fig. 1. Illustration of various 1st order CAG elements [2]. The circles defi
but also the degrees of freedom of all adjacent elements. A quantity
being used in this article, however, is the Hessian KA ¼WAr2

uUd
A

associated with the Ath ‘smoothing cell’ [25] (or, repsectively,
Ath support point of the assumed gradient interpolation). It gener-
ally contains terms regarding to all degrees of freedom influenced
by Eq. (7). For inner-elemental support points, these are all ele-
ment degrees of freedom. For nodal support points, these are the
degrees of freedom of all surrounding elements.

3. Asynchronous variational integration

Assume that the total potential energy is obtained by some
additive composition

VðqÞ ¼
X

i

V iðqÞ ð14Þ

with generalized coordinates q.
In case of a synchronous time stepping scheme, the composition

VðqÞ is evaluated at discrete times, i.e. the potentials ViðqÞ and their
derivatives are computed at synchronous times. The idea of asyn-
chronous integration lies in evaluating the individual potentials at
separate times. Asynchronous integration can, therefore, be inter-
preted as a generalization of multi time stepping. While multiple
time stepping schemes create points in time which are synchro-
nous, AVIs can be configured such that synchronous points exist;
but their existence is not required.

Assign to each potential Vi a sequence of times
f0 ¼ t0

i < � � � < tMi
i ¼ Tig. Another sequence is created by inserting

all times tj
i into a unique and sorted set which then contains all sys-

tem times fh0 < h1 < � � � < hMg, see Fig. 2. The solution trajectory is
obtained by a piecewise linear interpolation of the generalized
coordinates along their supports at the system times hk, i.e. each
hk is associated to a discrete coordinate qk.

Define the function

Aðk; iÞ ¼ j; max
j

tj
i 6 hk ð15Þ

which determines the index j of time tj
i where the potential Vi has

been evaluated most recently prior system time hk. The function

Kði; jÞ ¼ k; tj
i ¼ hk ð16Þ

returns the index k on the total time scale h for a given index pair
ði; jÞ defining the potential Vi and the potential time index j. Then
the discrete action for a single element writes

Sk ¼ jT
k qþk � jT

kþ1q�kþ1 þ
1

2ðhkþ1 � hkÞ
q�kþ1 � qþk
�� ��2

M

� hkþ1 � hkð Þ
X

i

V i qþKði;Aðk;iÞÞ
� � !

ð17Þ
ne the positions of the support points of the assumed gradient field.



Fig. 2. Illustration of fixed-step size AVI of a SDOF system with 2 potentials Vi being
evaluated either at tj

1 or tj
2. qðtÞ is interpolated between discrete times hk .
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wherein the discrete momenta jk are Lagrange multipliers which
enforce continuity of qðtÞ at the time step boundaries. Application
of the stationarity principle leads to the time stepping scheme

jkþ1 ¼ jk �
X

i2IðkÞ
tAðk;iÞþ1

i � tAðk;iÞi

� �
rVi qþk

� �
ð18Þ
Fig. 3. Illustration of space–time integration in one spatial dimension. The colored
area is the space–time domain to be integrated (material space X � time t). Each
cross denotes a single spatial integration point representing a single potential Vi.
The highlighted cell is a space–time cell associated with a single integration point in
space and time.
qþkþ1 ¼ qþk þ hkþ1 � hkð ÞM�1jkþ1 ð19Þ

In words, at time hk one determines all potentials which are part of
the set IðkÞ, i.e. which are active at this time. The modification of the
momentum is identical to symplectic synchronous Euler except that
the time step sizes, which scale the contributions of all active poten-
tials Vi, are not identical to the size of the time element ðhkþ1 � hkÞ,
but are the time steps of the potentials tAðk;iÞþ1

i � tAðk;iÞi

� �
. The trajec-

tory of the generalized coordinates within the time element is char-
acterized by a constant motion using the modified momentum jkþ1.

4. Application to structural elasticity

Let us turn to Hamilton’s principle of structural mechanics. The
action is given through the space–time integral

S ¼
Z T

0

Z
V

1
2
qðnÞ _xðn; tÞ½ �2 � UdðFhðn; qÞ; tÞ

� �
dV dt ð20Þ

with material coordinate n, deformed coordinate x, mass density q,
strain energy density Ud and volume in reference configuration V. In
synchronous time stepping schemes, the spatial integral is discret-
ized and evaluated first. Subsequently, the temporal integral is dis-
cretized. In asynchronous schemes, both integrals are discretized
and solved simultaneously. For CAG elements, the strain density
function in the above equation is replaced by UdðFANðn; qÞ; tÞ while
the mixed terms enforcing the weak equivalence of FAN and Fh do
not contribute to the action and can be neglected.

For the kinetic action, one choses

Td ¼
Z tb

ta

1
2

_qhðtÞT M _qhðtÞdt ð21Þ

Therein, qhðtÞ is a piecewise linear interpolation of the generalized
coordinates q with support at times hk. The mass matrix is given by

MAB ¼
Z

V
qðnÞNAðnÞNBðnÞdV ð22Þ

with finite element shape function NAðnÞ. AVIs can only be efficient
if a diagonal (lumped) mass matrix is assumed, for example through

Mlumped
AB ¼ dB

A

Z
V
qðnÞNAðnÞdV ð23Þ
where dB
A denotes the Kronecker delta.

The potential energy can be expressed by a linear combination
of discrete values of the strain energy density Ud

A and some integra-
tion weights WA at spatial integration point A

Vd ¼
Z tb

ta

VðqðtÞÞdt ¼
Z tb

ta

X
A

WAUd
AðF

ANðqðtÞÞ; tÞ
 !

dt ð24Þ

Utilizing the symplectic Euler scheme one obtains

Vd ¼
X

i

Xni�1

j¼0

hj
iVi q tj

i

� �
; t

� �
ð25Þ

Viðq; tÞ ¼WiU
d
i ðF

ANðqÞ; tÞ ð26Þ
hj

i ¼ tjþ1
i � tj

i ð27Þ

Therein, hi denotes the time step of the ith potential Vi. Notice, that
symplectic Euler is second order in the displacements, but only first
order in the velocities. A complete second order scheme is given

through Velocity Verlet which computes the momenta as jVV
kþ1 ¼

jEuler
kþ1 þ jEuler

k

� �
=2 wherein jEuler

k denotes the momenta in Eq. (18).

The discretization is shown in Fig. 3. It also illustrates that the
equation systems to be solved are very small compared with the
synchronous case: Every spatial integration point is only depen-
dent on the deformed coordinates of the adjacent nodes. Therefore,
a force influences only the momentum of these nodes. All other
nodes perform a constant motion during this time. It is, therefore,
not necessary to update the deformed coordinates of all nodes at
all system times hk, but only those nodes which are part of the
influencing domain of the currently active potential Vi.

In the original formulation [11], each finite element is associ-
ated with an individual time step, i.e. the spatial integration points
of each finite element are collected to an individual Vi. This
strategy simplifies a few things: (1) It is easier to implement AVIs
in existing finite element codes since the finite elements are inde-
pendent from the temporal discretization. (2) An estimation of the
critical time step is relatively easy when elemental wave speeds
are computed.

When using interpolations of the deformation gradient being
continuous at finite element interfaces then a finite element based
subdivision may not be the best solution. Using classical isopara-
metric finite elements, the forces of the ith element influence the
nodes of the same element only. Using continuous interpolations,
an integration point located on an element interface may influence
the nodes of all surrounding elements. In particular nodal integra-



Fig. 4. Element partition vs. integration point partition. Two linear finite elements
in 1d. Left: each Vi is one element; Right: each integration point Ai is one Vi .
Standard finite elements have their integration points only in the interior, i.e. A2 and
A4. CAG elements use integration points which are part of multiple elements, i.e. A3.
The number of shared elements can be numerous in 3d. These integration points are
unnecessarily often evaluated if an element partition is used.

Fig. 5. Illustration of a space–time front in one spatial dimension [21]: The colored
area is the space–time domain to be integrated (material space X � time t). The
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tion points may belong to many finite elements. If the integration
points of a single element are collected to build some Viðq; tÞ then
one needs to update the nodes of all surrounding elements. Fur-
thermore, since the same integration point is part of two or more
elements, it may be evaluated more often than necessary, see
Fig. 4. Therefore, it is proposed that every support point A of the
continuous gradient interpolation describes an individual potential
ViðqÞ. By doing so, the number of material law evaluations is min-
imized during the time integration. On the other hand, the number
of coordinate updates is larger compared with [11].

Variation of the space–time integral, Eq. (20), leads to the
scheme given by Eqs. (18) and (19). Special care must be spent
when updating the minimum required set of coordinates in Eq.
(19). Every node A remembers the time hA at which its coordinates
and momentum has been computed (and stored) the last time.
Then the next update of the same node refers to the state at time
hkþ1, see Fig. 5 for more details. Of course, all nodes may be updated
at all system times. But this greatly reduces numerical efficiency.

The resulting scheme is summarized in Algorithm 1. A main
component is the priority queue. It decides which potential is the
next one to be evaluated. Each potential appears once in the queue
which is sorted according to the next evaluation times. Since multi-
ple potentials may have identical times, a secondary sort condition
is required to make the ordering unique. Further notice, the set of
nodes which influence the currently active potential Vi in Algorithm
1 is identical to the set of nodes which obtains a momentum update.

Algorithm 1. AVI with constant step sizes

Set initial conditions q0; j0.
Create global counter k :¼ 0

For each potential Vi, compute a time step h0
i and a first kick

time ti :¼ h0
i .

Create a priority queue of indices i which is sorted for ti in
ascending order.

Set global time hk :¼ 0
For each node A, set a global time hA :¼ hk.
while hk < T do

Take 1st element from priority queue and remember
indices i and time ti.
hkþ1 :¼ ti

for all nodes A which influence Vi do
Perform drift:

qA
kþ1 :¼ qA

k þ hkjA
k=MA; hk :¼ hkþ1 � hA

Set current time of node A : hA :¼ hkþ1

Perform kick:

jA
kþ1 ¼ jA

k � h0
i rAViðqkþ1Þ

end for
Update state:

Set next evaluation time ti :¼ ti þ h0
i

k :¼ kþ 1

Reinsert i (and tji

i ) into priority queue.
end while
Drift all nodes to the final time:
for all nodes A do

qA
kþ1 :¼ qA

k þ hkjA
k=MA; hk :¼ T � hA

end for
highlighted area is the domain which is already integrated. The deformed
coordinates of all nodes are known at times hA defining the current front. For
standard finite elements (top) the front is identical to the boundary of the already
integrated domain. This is different for CAG elements (bottom): The most recently
integrated space–time cells require the drift of all influencing nodes (even of
adjacent finite elements). Potential V3 is ‘‘kicked’’ next at time t2

3 requiring the drift
of surrounding nodes.
5. Estimating the critical time step

A strict proof of stability criteria for AVI applied to multiple de-
gree of freedom systems is not available at the moment. For tradi-
tional sub-cycling methods it is possible to give stability criteria
(e.g. [7]) because synchronous configurations in time exist. Then
one can construct the transition matrix which maps one synchro-
nous phase space configuration to the other. This is very different
in AVI where generally no synchronous configurations appear after
the initial time.

A deep discussion of stability limits of AVI was presented
by Fong et al. [17] when considering a single degree of freedom



Fig. 7. Domain of dependence and stability for a rectangular space–time grid in one
dimension.

S. Wolff, C. Bucher / Comput. Methods Appl. Mech. Engrg. 255 (2013) 158–166 163
system with two potentials. The instabilities have the same nature
as resonances appearing in r-RESPA [10,30].

An intuitive explanation for resonances is given in Fig. 6 using
two potentials. Assume that the time step of the first potential Dt
is exactly the half period of the second potential. Between two
kicks of V1 ¼ Vslow the vibration phase yields a trajectory with
the natural frequency of V2 ¼ Vfast . Now consider a linear oscillator
(representing the ‘vibration’ of V2) with initial conditions q ¼ 1 and
j ¼ 0. The kick of V1 is then always applied when q ¼ 1; j 6 0 or
q ¼ �1; j P 0. In both cases, the sign of the force is such that the
velocity will always increase leading to a monotonous increase of
energy.

One of the unpleasant results of the analysis in [17] is that
unstable combinations of arbitrarily small time steps may appear
even though many of them are very mild which are hard to notice
are which only play a role in long-term simulation. Furthermore,
nearby any stable time step combination there is an arbitrarily
close combination of times steps that could be unstable. Some of
these instabilities may arise only for the single degree of freedom
system under consideration, but may explain unexpected instabil-
ities in finite element models. The authors notice, however, that for
most finite element meshes these instabilities are less frequent or
not dangerous.

A strategy to estimate the local time step in finite element
meshes which usually leads to a stable solution relies on the CFL
condition [31,32] being illustrated in Fig. 7. Using the solution of
the system of partial differential equations in time and space, the
state at point P0 depends on the state of all points within the do-
main of dependence. This domain is a cone which slope is defined
by the wave speed. Stability is then ensured if all grid points within
the cone of dependence are actually used when computing the
state in P0 by the numerical method. The time step may be reduced
to ensure stability in Fig. 7 right. The scheme using central
differences is stable if the CFL condition

c
Dt
DX
6 C ð28Þ

is satisfied where C denotes the (dimension dependent) Courant
number, DX and Dt the grid spacing, and c the velocity of wave
propagation.

Given isoparametric finite elements the wave speed can be
computed using elemental eigenvalues [11]. This strategy usually
gives a stable time step limit. It should be noted, however, that this
estimation is used without a rationale except an illustrative inter-
pretation of the CFL condition, albeit it can be backed by numerical
examples.

For general material laws and general finite element types a
prediction of the wave speed and of the suitable grid size
Fig. 6. Phase space diagram of a harmonic oscillator illustrating r-RESPA resonances
[17]. The oscillator is hit by a velocity change every half period. Instead of forming a
closed orbit, the kicks lead to monotonous energy growth. Assume that the
oscillator is represented by Vfast with a very small time step.
parameter leads to numerous case studies. Thus, a general recipe
is required. We propose a local eigenvalue problem for each inter-
polation point of the continuous assumed gradient field, i.e. at each
spatial integration point.

Solve the local eigenvalue problem

r2VAðq0Þv ¼ kmAv ð29Þ

at integration point A, wherein r2VA denotes the local initial Hes-
sian, v the eigenvector, k the eigenvalue and mA the mass of the
integration point

mA ¼ qAWA ð30Þ

The Hessian r2VA can be interpreted as a local stiffness matrix of
the Ath support point.

The largest eigenvalue can be easily obtained by the power iter-
ation. Notice, the Hessian matrix r2VA is very sparse. It is usually
stored in a column-wise layout. During the iteration, the matrix–
vector product y ¼ r2VAx can be computed efficiently by assum-
ing symmetry, i.e. one multiplies all nonzero components of the
ith column with the jth element of x to obtain the ith element in
y. The vectors can be stored in dense format. Although many de-
grees of freedom may be allocated, the vector norm of y is com-
puted efficiently since all non-zero components of y can be
determined as the non-empty column indices of the local Hessian
matrix.

The critical time step is then estimated from

DtA 6
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

max kA
p ð31Þ

This condition is identical to the stability condition of Velocity
Verlet.

6. Example: asynchronous integration of a cantilever beam

6.1. Model problem

The following example presents the performance of AVI com-
pared with Velocity Verlet. Furthermore, it illustrates the behavior
of the distribution of the time step sizes within the structural mod-
el. The mechanical system is conservative, but nonlinear.

Consider a cantilever beam with square cross section as illus-
trated in Fig. 8. The geometry is defined by L ¼ 100; B ¼ H ¼ 10.
The material is a given by the nonlinear elastic St. Venant model
with elastic modulus E ¼ 30� 103, Poisson’s ratio m ¼ 0:3 and mass
density 2400� 10�9.

The beam is discretized by 10n� n� n 8-noded brick elements
where n is a mesh parameter. As finite element formulation the
continuous assumed gradient element C3D_8N_27C is used. The
element sizes are chosen to vary along the x-axis. The element



Fig. 8. Geometry of a cantilever beam.

Fig. 9. Mesh of a cantilever beam.
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Fig. 11. Maximum displacement over time for Verlet and AVI.
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sizes are small at the support and large at the beam’s free side. The
x-coordinates of the finite element nodes are given by Xi ¼ L i

10n

� �2

where i is a node index i 2 ½0;10n�. The mesh is illustrated in Fig. 9.
The initial conditions are given by zero displacements q0 ¼ 0

and vertical velocity vy
A;0 ¼ �xXA with node A, horizontal coordi-

nate XA and parameter x ¼ 180. The time step is chosen to be
Dt ¼ 0:5Dtcrit . The simulation time interval is T ¼ 0:005.

6.2. Benchmark against synchronous time stepping

Velocity Verlet is used as reference solution. Therein, only one
restoring force evaluation is implemented (the end step force
vector is temporarily stored and used as start step force in the sub-
sequent time step). By doing so, the numerical efficiency is compa-
rable with the asynchronous method with only one force
evaluation per step.

Three methods are compared:

1. standard Velocity Verlet,
2. asynchronous scheme with constant step sizes.
3. Furthermore, the asynchronous algorithm is used to emu-

late a synchronous scheme by setting all time steps to the
smallest time step found in the system. Therefore, the algo-
rithm becomes synchronous. By comparing this strategy
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Fig. 10. Energy balance of AV
with standard Verlet one can measure the computational
overhead introduced by the asynchronous procedure
(maintaining the queue, numerous drifts, etc.).

The energy balance for Velocity Verlet and the asynchronous
procedure for the mesh size parameter n ¼ 4 is given in Fig. 10.
The maximum displacement over time for both methods is shown
in Fig. 11. Both solutions are nearly identical.

The total cpu times for the three methods are illustrated in
Fig. 12. The asynchronous scheme was faster than standard Verlet
by a factor of 4, . . . ,6 with increasing magnitude for larger meshes.
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The overhead of the asynchronous procedure is approximately
given by a factor of eight compared with the standard scheme. This
factor can be computed by relating the simulation times of both
schemes to the different time step sizes being actually used.

The critical time steps are given in Fig. 13. The critical time step
of standard Verlet is shown in the left subfigure. The time step of
the synchronous setting of the asynchronous algorithm is com-
puted from the minimum critical time step in the right subfigure.

Interestingly, the local estimation leads to a smallest time step
which is approximately half as large as the time step used in the
reference solution. Increasing the safety factor such that the small-
est time step equals the one used in Verlet, however, may lead to
an unstable solution.

6.3. Equally distant nodes

By changing the mesh generation scheme one may create a worst
case scenario for the efficiency of asynchronous integrators. Now,
each finite element is a cube with uniform edge length 10=n. The
computing times of standard Verlet and the asynchronous case
are presented in Fig. 14 for different mesh size parameters. Obvi-
ously, the standard method outperforms the asynchronous scheme.
This is because there is almost no benefit due to a broad deviation of
the critical time step size. For example, given a mesh size parameter
n ¼ 8, the standard integrator obtains a critical time step of
hcrit ¼ 7:016� 10�6. The asynchronous scheme obtains the interval
hcrit 2 ½6:406� 10�6;9:346� 10�6�with an average of havg

crit ¼ 8:357�
10�6. Clearly, there is almost no deviation of the critical time step
within the spatial domain. Its average value is very close to the
one of the standard method. Considering the additional computa-
tional effort of the asynchronous algorithm, this results in a less effi-
cient scheme.

This example shows that, although there may be great benefits
in numerical efficiency when applying AVIs to certain models, the
contrary may happen when applied to other models.

If isoparametric elements are used and if each element repre-
sents an individual potential Vi then Velocity Verlet and AVI would
produce the same solution because both would use the same time
step being applied to all elements. This is different in the present
case, because even in the presence of homogenous element geom-
etries slightly different eigenvalues are computed for the individ-
ual integration points.

7. Conclusions

Asynchronous variational integrators were presented in the
context of CAG elements. The space–time discretization includes
individual time step sizes per support point (or ‘‘smoothing cell’’)
while the original AVIs associate individual time step sizes to each
finite element.

Of particular interest was the estimation of the local time steps.
When applied to CAG elements, it is not easy to determine the local
time step. In the original AVI method this is done using the CFL con-
dition which uses elemental stiffness and mass matrices which do
not exist in the CAG context. The proposed strategy may be applied
to other spatial discretization methods based on the weakened
weak (W2) form, for example nodal integration and Smoothed
FEM. An example illustrated that the proposed strategy renders
the time stepping scheme sufficiently stable and efficient. Problems
regarding resonances as observed in r-RESPA or in AVI applied to
molecular dynamics did not appear in the numerical tests.
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