Finite Boundary Interpolation by Univalent Functions

T. H. MacGregor
Department of Mathematics and Statistics, State University of New York, Albany, New York I2222, U.S.A.
AND
D. E. Tepper
Department of Mathematics, Baruch College, City University of New York, New York, New York I0010, U.S.A.
Communicated by T. J. Rivlin

Received April 22, 1985; revised November 22, 1985

1. Introduction

Let $D=\{z \in \mathbb{C}:|z|<1\}$, and suppose that $z_{1}, z_{2}, \ldots, z_{n}$ and $w_{1}, w_{2}, \ldots, w_{n}$ are two collections of distinct points on ∂D arranged in counterclockwise order. Let $z_{k}=e^{i x_{k}}$ and $w_{k}=e^{i \beta_{k}}$, where $\alpha_{1}<\alpha_{2}<\cdots<\alpha_{n}<\alpha_{1}+2 \pi$ and $\beta_{1}<\beta_{2}<\cdots<\beta_{n}<\beta_{1}+2 \pi$. We are interested in functions f which are analytic and univalent in D and satisfy the boundary interpolation $f\left(z_{k}\right)=$ w_{k} for $k=1,2, \ldots, n$.

In particular we prove the following theorem.

Theorem 1. There is a function f which is analytic and univalent in the union of D and a neighborhood of $\left\{z_{1}, z_{2}, \ldots, z_{n}\right\}$ and continuous on \bar{D} such that $f\left(z_{k}\right)=w_{k}$ for $k=1,2, \ldots, n$. Furthermore, $|f(z)|=1$ if $|z|=1$ and z is sufficiently near any of the points z_{k}.

Theorem 1 is related to considerations in the recent paper [3], where the following theorem about simultaneous peaking and interpolation is proved.

Thoerem A. (Clunie, Hallenbeck, and MacGregor). There is a function f that is analytic and univalent in \bar{D} and satisfies $|f(z)|<1$ for $|z| \leqslant 1$ and $z \neq z_{k}(k=1,2, \ldots, n)$ and $f\left(z_{k}\right)=w_{k}$ for $k=1,2, \ldots, n$.

The proof of Theorem A is rather long and in several places non-constructive. The main steps in the argument rely on the following ideas: a peaking result for polynomials [1, p. 101]; an interpolation result for finite Blaschke products [2]; a starlike mapping having suitable properties [3, Lemma 1]; and an application of the Riemann mapping theorem for a domain formed from a disk by adding "channels."
Theorem 1 can be used to give a somewhat simpler and more constructive proof of Therem A. The argument relies on the following reslt, which is cntained in [3, Sect. 3] and is a weakened version of Theorem A. The proof of this result is elementary and provides a step by step procedure for obtaining the function from the given points. This function is a composition of a finite number of functions which are power functions, exponentials, or Möbius transformations. The argument for Theorem 1 also relies of properties of explicit functions which map D onto the complement of spirals.

Theorem B. There is a function f that is analytic and univalent in \bar{D} and satisfies $|f(z)|<1$ for $|z| \leqslant 1$ and $z \neq z_{k}(k=1,2, \ldots, n)$ and $\left|f\left(z_{k}\right)\right|=1$ for $k=1,2, \ldots, n$.

Our proof of Theorem A is as follows. Let g be a function given by Theorem B and let $\zeta_{k}=g\left(z_{k}\right)$ for $k=1,2, \ldots, n$. Let h be a function given by Theorem 1 for the two collections of points, $\zeta_{1}, \zeta_{2}, \ldots, \zeta_{n}$ and $w_{1}, w_{2}, \ldots, w_{n}$. Then $f=h \circ g$ satisfies Theorem A.

We also prove the following similar results.

Theorem 2. Suppose $a<x_{1}<x_{2}<\cdots<x_{n}<b$ and $y_{1}<y_{2}<\cdots<y_{n}$. There is a real-valued polynomial p which is univalent in a domain containing $[a, b]$ such that $p\left(x_{k}\right)=y_{k}$ for $k=1,2, \ldots, n$.

Theorem 3. Let $R=\{\zeta \in \mathbb{C}: \operatorname{Re} \zeta>0\}$ and let S be a subset of R such that $\partial S \cap \partial R=\left\{\zeta_{1}, \zeta_{2}, \ldots, \zeta_{n}\right\}$. Given $\varepsilon>0$, there is a function f that is analytic and univalent in a neighborhood of $S \cup\left\{\zeta_{1}, \zeta_{2}, \ldots, \zeta_{n}\right\}$, and continuous in \bar{S} such that $f\left(\zeta_{k}\right)=\zeta_{k}$ for $k=1,2, \ldots, n$ and $f(S) \subset\{\zeta: 0<$ $\operatorname{Rc} \zeta<\varepsilon\}$.

Stated briefly, Theorem 3 provides mappings which keep ζ_{k} fixed while "squashing" the set S toward the imaginary axis. We ask whether Theorem 3 can be improved to include the conclusion $f(S) \subset\{\zeta: m-\varepsilon<$ $\operatorname{Im} \zeta<M+\varepsilon\}$, where $m=\min _{k} \operatorname{Im} \zeta_{k}$ and $M=\max _{k} \operatorname{Im} \zeta_{k}$. Such a result may have implications when combined with Theorem 2 or similar facts.

2. Proof of Theorem 1

The proof of Theorem 1 depends on the following construction of a map of D onto a set consisting of D less a finite number of slits.

Suppose that m is an integer, $m \geqslant 2$, and let $\zeta_{k}=e^{i_{i, k}}$ for $k=1,2, \ldots, m$, where $\gamma_{1}<\gamma_{2}<\cdots<\gamma_{m}<\gamma_{1}+2 \pi$. Assume that $\zeta^{\prime}=e^{i_{i}^{\prime}}$, where $\gamma_{m-1}<\gamma^{\prime}<$ $\gamma_{1}+2 \pi$. We will obtain a function h which in particular is analytic in D and at $\zeta_{1}, \zeta_{2}, \ldots, \zeta_{m}$ 1, ζ^{\prime} such that $h\left(\zeta_{k}\right)=\zeta_{k}$ for $k=1,2, \ldots, m-1$ and $h\left(\zeta^{\prime}\right)=\zeta_{m}$.

If $\zeta^{\prime}=\zeta_{m}$ then the identity function serves for h. Otherwise, define $\gamma^{\prime \prime}$ by

$$
\gamma^{\prime \prime}= \begin{cases}\frac{1}{2}\left(\gamma_{m-1}+\gamma_{m}\right), & \text { if } \quad \gamma^{\prime}>\gamma_{m} \tag{1}\\ \frac{1}{2}\left(\gamma_{m}+\gamma_{1}+2 \pi\right), & \text { if } \quad \gamma^{\prime}<\gamma_{m} .\end{cases}
$$

This gives a point $\zeta^{\prime \prime}=e^{i_{7}^{\prime \prime}}$ so that on the counterclockwise arc on ∂D from ζ_{m-1} to ζ_{1}, ζ_{m} is between ζ^{\prime} and $\zeta^{\prime \prime}$. For $|z|<1$, let

$$
\begin{equation*}
p(z)=\frac{1}{m-1} \sum_{j=1}^{m-1} \frac{1+\bar{\zeta}_{j} z}{1-\check{\zeta}_{j} z}, \tag{2}
\end{equation*}
$$

and define α by $|\alpha|<\pi / 2$ and

$$
\begin{equation*}
\tan \alpha=\frac{1}{m-1} \sum_{j=1}^{m-1} \cot \left(\frac{\gamma_{j}-\gamma^{\prime \prime}}{2}\right) . \tag{3}
\end{equation*}
$$

Also, let the function g be defined by the differential equation

$$
\begin{equation*}
\frac{z g^{\prime}(z)}{g(z)}=e^{i x}[(\cos \alpha) p(z)+i \sin \alpha] \tag{4}
\end{equation*}
$$

and the conditions $g(0)=0$ and $g^{\prime}(0)=1$. Since $\operatorname{Re} p(z)>0$ for $|z|<1$ and $p(0)=1$, it follows from [5, p. 52] that g is α-spiral-like. The function g maps D one-to-one onto the plane slit along $m-1$ Jordan arcs (spirals) connected only at infinity.

Let $C_{1}, C_{2}, \ldots, C_{m-1}$ denote the circular arcs on ∂D which correspond to the individual slits comprising $C \backslash g(D)$. On each arc C_{j} there is a unique point ξ_{j} mapping to the tip of the corresponding slit. Equations (2), (3), and (4) imply that $g^{\prime}\left(e^{i_{\gamma^{\prime}}}\right)=0$, and therefore $\xi_{m \ldots 1}=\xi^{\prime \prime}$.

Let $\sigma_{j}=g\left(\xi_{j}\right)$ for $j=1,2, \ldots, m-1$, and for $t>0$ let G_{t} denote the subset of \mathbb{C} defined by $w \neq \sigma_{j} \exp \left[-e^{i z} s\right]$ for $0<s<t$ and $j=1,2, \ldots, m-1$. Properties of α-spiral-like functions imply that $G_{t} \subset g(D)$. Thus the function g_{t} defined by $g_{t}(z)=g^{-1}\left[\left\{\exp \left(-e^{i x} t\right)\right\} g(z)\right]$ for $t>0$ is analytic in D. Also $g_{\text {, maps }} D$ one-to-one onto a subset of D formed by removing $m-1$ Jordan slits joined to ∂D at the points $\xi_{1}, \xi_{2}, \ldots, \xi_{m-1}$. Each point z with
$|z|=1$ and $z \neq \zeta_{j}(j=1,2, \ldots, m-1)$ is mapped by $\left\{\exp \left[-e^{i x} t\right]\right\} g$ onto another (finite) point on the spiral containing $g(z)$ or on the extension of that spiral toward the origin. Therefore, $g_{l}\left(\zeta_{j}\right)=\zeta_{j}$ for $j=1,2, \ldots, m-1$. The function $g_{\text {, }}$ is continuous in t for each z in \bar{D}, and if $|z| \leqslant 1$ and $z \neq \zeta_{j}$ $(j=1,2, \ldots, m-1)$ then $g_{t}(z) \rightarrow 0$ as $t \rightarrow \infty$. This implies that $g_{t_{0}}\left(\zeta^{\prime}\right)=\zeta_{m}$ for some $t_{0}>0$. The function $g_{t_{0}}$ is analytic in D and is continuous in \bar{D}. Also, $\left|g_{t_{0}}(z)\right|=1$ if $|z|=1$ and z is sufficiently near any of the points $\zeta_{1}, \zeta_{2}, \ldots, \zeta_{m} \quad, \zeta^{\prime}$. The reflection principle implies that $g_{t_{0}}$ is analytic at $\zeta_{1}, \zeta_{2}, \ldots, \zeta_{m-1}, \zeta^{\prime}$ and the reflection also shows that $g_{i_{0}}$ is univalent in the union of D and a neighborhood of $\left\{\zeta_{1}, \zeta_{2}, \ldots, \zeta_{m-1}, \zeta^{\prime}\right\}$.

This obtains $h=g_{t_{0}}$. Geometrically stated, for each t, g_{t} fixes $\zeta_{1}, \zeta_{2}, \ldots$, ζ_{m-1} as $g_{t}\left(\zeta^{\prime}\right)$ moves along ∂D (which monotone argument) until it reaches ζ_{m} for the value $t=t_{0}$. The slit at $\zeta^{\prime \prime}$ effectively pulls ζ^{\prime} toward ζ_{m}.

We now prove Theorem 1. Let $z_{1}, z_{2}, \ldots, z_{n}$ and $w_{1}, w_{2}, \ldots, w_{n}$ be as described in the Introduction. If $n=1$, the function f is obtained by a rotation. For $n=2$, first rotate D mapping z_{1} to w_{1}. Let z_{2}^{\prime} be the image of z_{2} under this rotation. The constructon above with $m=2, \zeta_{1}=w_{1}, \zeta_{2}=w_{2}$, and $\zeta^{\prime}=z_{2}^{\prime}$ yields a function g such that the composition of the rotation with' g gives a suitable function f.

Suppose that the theorem holds for $n=N$. We will show that it holds for $n=N+1$. Let $z_{1}, z_{2}, \ldots, z_{N+1}$ and $w_{1}, w_{2}, \ldots, w_{N+1}$ be the given sets of points. There is a function f_{N} satisfying the theorem for the sets of points $z_{1}, z_{2}, \ldots, z_{N}$ and $w_{1}, w_{2}, \ldots, w_{N}$. In particular this provides a suitable neighborhood A of $\left\{z_{1}, z_{2}, \ldots, z_{N}\right\}$. Also A contains a disk $\{z$: $\left.\left|z-z_{N}\right|<\varepsilon\right\}$, for some $\varepsilon>0$, which does not contain $z_{1}, z_{2},, z_{N-1}, z_{N+1}$ and such that $w_{k} \notin f_{N}\left[\left\{z:\left|z-z_{N}\right|<\varepsilon\right\}\right]$ for $1 \leqslant k \leqslant N+1$ and $k \neq N$. Let $z_{N+1}^{\prime}=e^{i x^{\prime}}$ be a point in $\left\{z:\left|z-z_{N}\right|<\varepsilon\right\}$ with $\alpha_{N}<\alpha^{\prime}<\alpha_{N+1}$ (where $z_{N}=e^{i x_{N}}$ and $\left.z_{N+1}=e^{i x_{N}+1}\right)$. Let $w_{N+1}^{\prime}=f_{N}\left(z_{N+1}^{\prime}\right)$.

The earlier argument gives a function h_{1} which is analytic and univalent in the union of D and a neighborhood of $\left\{w_{1}, w_{2}, \ldots, w_{N}, w_{N+1}^{\prime}\right\}$ such that $h_{1}\left(w_{k}\right)=w_{k}$ for $k=1,2, \ldots, N$ and $h_{1}\left(w_{N+1}^{\prime}\right)=w_{N+1}$. Since f_{N} is analytic and univalent in $D \cup A$, it also has these properties in $D \cup B$, where B is a smaller neighborhood consisting of open disks centered at z_{1}, z_{2}, \ldots, z_{N}, z_{N+1}^{\prime} so that f_{N} maps these disks into the neighborhood of $\left\{w_{1}, w_{2}, \ldots\right.$, $\left.w_{N}, w_{N+1}^{\prime}\right\}$ above.

The earlier argument also gives a function h_{2} which is analytic and univalent in the union of D and a neighborhood of $\left\{z_{1}, z_{2}, \ldots, z_{N+1}\right\}$ such that $h_{2}\left(z_{k}\right)=z_{k}$ for $k=1,2, \ldots, N$ and $h_{2}\left(z_{N+1}\right)=z_{N+1}^{\prime}$. Some smaller neighborhood of $\left\{z_{1}, z_{2}, \ldots, z_{N+1}\right\}$ is mapped by h, into B.

The properties of h_{1} and h_{2} imply that $f=h_{1} \circ f_{N} \circ h_{2}$ satisfies the conclusions of the theorem associated with the points $z_{1}, z_{2}, \ldots, z_{N+1}$ and $w_{1}, w_{2}, \ldots, w_{N+1}$.

3. Proof of Theorem 2

The proof of Theorem 2 depends on interpolation and approximation reslts about polynomials and is set up by the following lemmas.

Lemma 1. Suppose $a<b, c<d$, and $0<\varepsilon<(d-c) /(b-a)$. There is a cubic polynomial f such that $f(a)=c, f(b)=d, f^{\prime}(a)=f^{\prime}(b)=\varepsilon$ and $\min \left\{f^{\prime}(x): a \leqslant x \leqslant b\right\}=\varepsilon$.

Proof. A translation of variables implies that there is no loss of generality to assume that $a=c=0$. Let $t>\varepsilon$ and let g be the quadratic polynomial such that $g(0)=\varepsilon, g(b / 2)=t$, and $g(b)=\varepsilon$. Define f by $f(x)=$ $\int_{0}^{x} g(s) d s$. Then $f(0)=0, f^{\prime}(0)=f^{\prime}(b)=\varepsilon$, and $f^{\prime}(x)=g(x) \geqslant \varepsilon$ for $0 \leqslant x \leqslant b$. Since $\int_{0}^{b}(g(s)-\varepsilon) d s \rightarrow 0$ as $t \rightarrow \varepsilon$, it follows that $f(b) \rightarrow \varepsilon b$ as $t \rightarrow \varepsilon$. Also, $f(b) \rightarrow \infty$ as $t \rightarrow \infty$. The condition $0<\varepsilon<d / b$ and the continuity of f assure that there is a value of t for which $f(b)=d$.

Lemma 2. Suppose $a<x_{1}<x_{2}<\cdots<x_{n}<b$ and $y_{1}<y_{2}<\cdots<y_{n}$. There is a function f defined and continuously differentiable on $[a, b]$ such that $f\left(x_{k}\right)=y_{k}$ for $k=1,2, \ldots, n$ and $\min \left\{f^{\prime}(x): a \leqslant x \leqslant b\right\}>0$. (Here and later, derivatives at end points are one-sided limits.)

Proof. Choose y_{0} and y_{n+1} such that $y_{0}<y_{1}$ and $y_{n+1}>y_{n}$ and let $x_{0}=a$ and $x_{n+1}=b$. Choose ε such that $0<\varepsilon<\min \left\{\left(y_{k+1}-y_{k}\right) /\right.$ $\left.\left(x_{k+1}-x_{k}\right): k=0,1, \ldots, n\right\}$. Lemma 1 implies that there is a cubic polynomial in each of the intervals $\left[x_{k}, x_{k+1}\right]$ for $k=0,1, \ldots, n$ which piecewise defines a function f on $[a, b]$ which is continuously differentiable. Also, $\min \left\{f^{\prime}(x): a \leqslant x \leqslant b\right\}=\varepsilon>0$.

Lemma 3. Suppose $a<x_{1}<x_{2}<\cdots<x_{n}<b$ and $y_{1}<y_{2}<\cdots<y_{n}$. There is a polynomial p such that $p\left(x_{k}\right)=y_{k}$ for $k=1,2, \ldots, n$ and $\min \left\{p^{\prime}(x): a \leqslant x \leqslant b\right\}>0$.

Proof. Let f satisfy Lemma 2 and let $\varepsilon=\min \left\{f^{\prime}(x): a \leqslant x \leqslant b\right\}$. Given $\delta>0$, then by [4, p. 113] there is a polynomial q such that

$$
\begin{equation*}
\max \{|f(x)-q(x)|: a \leqslant x \leqslant b\}<\delta \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\max \left\{\left|f^{\prime}(x)-q^{\prime}(x)\right|: a \leqslant x \leqslant b\right\}<\delta . \tag{6}
\end{equation*}
$$

Let r be the polynomial which interpolates the values $f\left(x_{k}\right)-q\left(x_{k}\right)$ for $k=1,2, \ldots, n$. Then r can be expressed

$$
\begin{equation*}
r(x)=\sum_{k=1}^{n}\left[f\left(x_{k}\right)-q\left(x_{k}\right)\right] P_{k}(x) \tag{7}
\end{equation*}
$$

where P_{k} is the polynomial of degree at most n such that $P_{k}\left(x_{j}\right)=0$ for $j \neq k \quad$ and $\quad P_{k}\left(x_{k}\right)=1$. Let $M_{k}=\max \left\{\left|P_{k}^{\prime}(x)\right|: a \leqslant x \leqslant b\right\} \quad$ and let $M=\sum_{k=1}^{n} M_{k}$. Equations (5) and (7) imply that $r^{\prime}(x) \geqslant-\delta M$ for $a \leqslant x \leqslant b$.

The polynomial $p=r+q$ satisfies $p\left(x_{k}\right)=f\left(x_{k}\right)=y_{k}$ for $k=1,2, \ldots, n$. If $a \leqslant x \leqslant b$ then (6) and the lower bound on r^{\prime} imply $p^{\prime}(x)=r^{\prime}(x)+q^{\prime}(x)>$ $f^{\prime}(x)-\delta-\delta M \geqslant \varepsilon-\delta-\delta M$. Therefore $\min \left\{p^{\prime}(x): a \leqslant x \leqslant b\right\}>0$ for sufficient small δ.

Remark. No claim is made in Lemma 3 about the degree of p. In general, the Lagrange solution of the interpolation $p\left(x_{k}\right)=y_{k}$ with the conditions of Lemma 3 is not necessarily increasing on $\left[x_{1}, x_{n}\right]$. This suggests the problem of determining whether there are upper bounds on the degrec of p which depend on n and/or the "spread" of the points x_{k}, y_{k}.

Proof of Theorem 2. Let p be a polynomial given by Lemma 3. We will show that there is a neighborhood (in the plane) of $[a, b]$ in which p is univalent. On the contrary, assume there is no such neighborhood. This implies there are two sequences $\left\{z_{k}\right\}$ and $\left\{z_{k}^{\prime}\right\}$ with $z_{k} \neq z_{k}^{\prime}$ and $p\left(z_{k}\right)=$ $p\left(z_{k}^{\prime}\right)$ for $k=1,2, \ldots$, and each sequence has an accumulation point in $[a, b]$. Consideration of subsequences implies that we may assume that $z_{k} \rightarrow x_{0}$ and $z_{k}^{\prime} \rightarrow x_{0}^{\prime}$ with x_{0} and x_{0}^{\prime} in $[a, b]$. Thus $p\left(x_{0}\right)=p\left(x_{0}^{\prime}\right)$, and since p is strictly increasing on $[a, b]$, this requires $x_{0}=x_{0}^{\prime}$. However, $p^{\prime}\left(x_{0}\right) \neq 0$, and therefore p is univalent in some neighborhood (in the plane) of x_{0}. This contradicts $p\left(z_{k}\right)=p\left(z_{k}^{\prime}\right)$ for sufficiently large k.

4. Proof of Theorem 3

We first note that Theorem 1 has an equivalent formulation for suitable domains which are conformally equivalent to D. For R, this is obtained by the introduction of a Möbius transformation and applies to two sets of n complex numbers on $\{\zeta: \operatorname{Re} \zeta=0\}$ in the same conformal order.

In the case S is unbounded, first consider a mapping $\zeta \rightarrow 1 /\left(\zeta-\zeta^{\prime}\right)$ which sends S to a bounded set T in R any complex number ζ^{\prime} with $\operatorname{Re} \zeta^{\prime}=0$ and $\zeta^{\prime} \neq \zeta_{k}$ for $k=1,2, \ldots, n$. In particular, $T \subset\{\zeta: 0<\operatorname{Re} \zeta<M\}$ for some M. Let $\zeta_{k}^{\prime}=1 /\left(\zeta_{k}-\zeta^{\prime}\right)$. Theorem 1 implies that for each ρ with $0<\rho<1$ there is a function g_{ρ} which maps $\{\zeta: 0<\operatorname{Re} \zeta<M\}$ into itself and is analytic at $\rho \zeta_{k}^{\prime}$. Also, $g_{\rho}\left(\rho \zeta_{k}^{\prime}\right)=\zeta_{k}^{\prime}$ for $k=1,2, \ldots, n$ and $g_{\rho}(0)=0$. The function g_{ρ} with $\rho M<\varepsilon$ satisfies the conditions on f in the theorem. In the case S is bounded, the auxiliary mapping $\zeta \mapsto 1 /\left(\zeta-\zeta^{\prime}\right)$ is not needed.

References

1. L. Brickman, T. H. MacGregor, and D. R. Wilken, Convex hulls of some classical families of univalent functions, Trans. Amer. Math. Soc. 156 (1971), 91-107.
2. D. G. Cantor and R. R. Phelps, An elementary interpolation theorem, Proc. Amer. Math. Soc. 16 (1965), 523-525.
3. J. G. Clunie, D. J. Hallenbeck, and T. H. MacGregor, A peaking and interpolation problem for univalent functions, J. Math. Anal. Appl. 111 (1985), 559-570.
4. P. J. Davis, "Interpolation and Approximation," Ginn (Blaisdell), Waltham, MA, 1963.
5. P. L. Duren, "Univalent Functions," Springer-Verlag, New York, 1983.
