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1. INTRODUCTION 

Let D = {z E C: 1: 1 < 1 }, and suppose that z,, zz, . . . . z,, and IV,, w2, . . . . w, 
are two collections of distinct points on 8o arranged in counterclockwise 
order. Let Z~ = r’“’ and uak = &Ok, where a,<cc,<...<a,<cc,+2rt and 
/I, < p2 < ... </?,, </I, + 27~. We are interested in functions f which are 
analytic and univalent in D and satisfy the boundary interpolation f(zp) = 
~~,fork=l,2 ,..., n. 

In particular we prove the following theorem. 

THEOREM 1. There is a function f which is analytic and univalent in the 
union of D and a neighborhood of (z,, z2, . . . . z,} and continuous on d such 
thatf(z,)=w,fork=1,2,...,n. Furthermore, If(z iflzl=l andzis 
sufficiently near any of the points 7 ‘k. 

Theorem 1 is related to considerations in the recent paper [3], where the 
following theorem about simultaneous peaking and interpolation is proved. 

THOEREM A. (Clunie, Hallenbeck, and MacGregor). There is a 
function f that is analytic and univalent in D and satisfies 1 f (z)l < 1 for 
/z I < 1 and z # zk (k = 1, 2, . . . . n) and f (zk) = wk for k = 1, 2, . . . . n. 
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The proof of Theorem A is rather long and in several places non-con- 
structive. The main steps in the argument rely on the following ideas: a 
peaking result for polynomials [ 1, p. IO1 1; an interpolation result for finite 
Blaschke products [2]; a starlike mapping having suitable properties [3, 
Lemma 11; and an application of the Riemann mapping theorem for a 
domain formed from a disk by adding “channels.” 

Theorem 1 can be used to give a somewhat simpler and more construc- 
tive proof of Therem A. The argument relies on the following reslt, which is 
cntained in [3, Sect. 31 and is a weakened version of Theorem A. The 
proof of this result is elementary and provides a step by step procedure for 
obtaining the function from the given points. This function is a com- 
position of a finite number of functions which are power functions, 
exponentials, or Mobius transformations. The argument for Theorem 1 
also relies of properties of explicit functions which map D onto the com- 
plement of spirals. 

THEOREM B. There is a function f that is analytic and univalent in D and 
satisfies 1 f(z)1 < 1 for IzI 6 1 and z #zk (k = 1, 2, . . . . n) and 1 f(zk)l = 1 for 
k = 1, 2, . . ., n. 

Our proof of Theorem A is as follows. Let g be a function given by 
Theorem B and let ck = g(zk) for k = 1, 2, . . . . n. Let h be a function given by 
Theorem 1 for the two collections of points, [, , c2, . . . . [, and w,, w2, . . . . w,. 
Then f = h 0 g satisfies Theorem A. 

We also prove the following similar results. 

THEOREM 2. Suppose a<x,<x,<-..<x,,<b and y,<y,<...<y,,. 
There is a real-valued polynomial p which is univalent in a domain containing 
[a, b] such that p(xk) =yk for k = 1,2, . . . . n. 

THEOREM 3. Let R = {c E @: Re [ > 0} and let S be a subset of R such 
that dS n aR = {c,, iz, . . . . [,,>. Given E > 0, there is a function f that is 
analytic and univalent in a neighborhood of Su {[, , t2, . . . . [,}, and con- 
tinuous in S such that ,f (ck) = ck for k = 1,2, . . . . n and f(S) c { [ : 0 < 
Re[<e}. 

Stated briefly, Theorem 3 provides mappings which keep ck fixed while 
“squashing” the set S toward the imaginary axis. We ask whether 
Theorem 3 can be improved to include the conclusion f(S) c { [ : m - E < 

Im [ < M + E}, where m = min, Im ik and M= maxk Im ck. Such a result 
may have implications when combined with Theorem 2 or similar facts. 
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2. PROOF OF THEOREM 1 

The proof of Theorem 1 depends on the following construction of a map 
of D onto a set consisting of D less a finite number of slits. 

Suppose that m is an integer, m > 2, and let ik = eiYr for k = 1, 2, . . . . m, 
where Y,<~~<...<~~<Y,+~Tc. Assume that [‘=e’7’, where y,,-,<y’< 
;‘, + 271. We will obtain a function h which in particular is analytic in D and 
at 5,, iz, . . . . i, ,, i’ such that h(ck)=ck for k = 1, 2, . . . . m- 1 and 
A(<‘) = [, 

If [’ = [,,, then the identity function serves for h. Otherwise, define y” by 

y” = i 

tb,, I + r,,,L if y’>y, 
g-y,,, + y 1 + 27c), if y’ < y,,. (‘1 

This gives a point [” = eiYw so that on the counterclockwise arc on 8D from 
i,, ~ , to [, , [,,, is between [’ and [‘I. For I z I < 1, let 

“I - ’ 1 + [, z 
p(z)=-& c 

,=, =cp’ 

and define CY by 1 c( 1 < 7112 and 

tan a = ’ ycot (“1”‘). 
m-1 ,=, 

Also, let the function g be defined by the differential equation 

d(z) 
-=e’“[(cosU)P(z)+isincc] 
g(z) 

(2) 

(3) 

and the conditions g(0) = 0 and g’(0) = 1. Since Rep(z) > 0 for 1 z 1 < 1 and 
p(O) = 1, it follows from [S, p. 521 that g is E-spiral-like. The function g 
maps D one-to-one onto the plane slit along m - 1 Jordan arcs (spirals) 
connected only at infinity. 

Let C, , CZ, . . . . C,. , denote the circular arcs on 8D which correspond to 
the individual slits comprising @\g(D). On each arc Ci there is a unique 
point 5, mapping to the tip of the corresponding slit. Equations (2), (3), 
and (4) imply that g’(e”“) = 0, and therefore t,,.. , = r”. 

Let aj = g( t,) for j = 1, 2, . . . . m - 1, and for t > 0 let G, denote the subset 
of @ defined by w#ai exp[-e’“s] for O<s<t and j=l, 2,..., m-l. 
Properties of a-spiral-like functions imply that G, c g(D). Thus the function 
g, defined by g,(z) = g -- ’ [ { exp( - e’?) } g(z)] for t > 0 is analytic in D. Also 
g, maps D one-to-one onto a subset of D formed by removing m - 1 
Jordan slits joined to aD at the points t,, t2, . . . . t,+, . Each point z with 
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lzl=l and z#[, (j=1,2 ,..., m - 1) is mapped by (exp[ -e”t]} g onto 
another (finite) point on the spiral containing g(z) or on the extension of 
that spiral toward the origin. Therefore, g,([,) = ii forj= 1, 2, . . . . m - 1. The 
function g, is continuous in t for each z in D, and if 1 z 1 6 1 and z # [, 
(j= 1, 2, . . . . m - 1) then g,(z) + 0 as t -+ m. This implies that g,,([‘) = [,,, 
for some t, > 0. The function g,, is analytic in D and is continuous in 6. 
Also, ) g,,(z)] = 1 if I z I = 1 and z is sufficiently near any of the points 
Y ” 
4 I2 i2, . ..> 4, , , i’. The reflection principle implies that g,, is analytic at 
[, , cz, . . . . [,,, , , c’ and the reflection also shows that g,, is univalent in the 
union of D and a neighborhood of { [, , c2, . . . . i,,- , , [’ }. 

This obtains h =g,“. Geometrically stated, for each t, g, fixes c,, 12, . . . . 
[,,, ~, as g,([‘) moves along CJD (which monotone argument) until it reaches 
i,,, for the value t = t,. The slit at [” effectively pulls [’ toward c,,,. 

We now prove Theorem 1. Let z,, z2, . . . . z,, and w,, wZ, . . . . ,v, be as 
described in the Introduction. If n = 1, the function f is obtained by a 
rotation. For n = 2, first rotate D mapping z, to u’, . Let z; be the image of 
z2 under this rotation. The constructon above with m = 2, (, = w, , iz = wz, 
and c’=z; yields a function g such that the composition of the rotation 
with’g gives a suitable function ,J 

Suppose that the theorem holds for n = N. We will show that it holds for 
n=N+ 1. Let z,,z ,,..., zN+, and w,, wz ,..., We+, be the given sets of 
points. There is a function ,fN satisfying the theorem for the sets of points 
-?I,-?2 )...) ZN and u’, , M’~, . . . . ivy. In particular this provides a suitable 
neighborhood A of {z,, z2, . . . . z,}. Also A contains a disk {z: 
lz-zNI <E}, for some e>O, which does not contain z,,z2, ,zNP,,zN+, 
and such that wk$fN[(-7: lz-zNI <E}] for 1 <k<N+ 1 and k#N. Let 
?.’ 
‘N+Ize “’ be a point in {z: Iz-zNI <E} with c(~< a’<~,~+, (where 
? -N=e ‘x.% and 7 

‘Nfl =r “A + I). Let wh + , = fN( zh + , ). 
The earlier argument gives a function h, which is analytic and univalent 

in the union of D and a neighborhood of {MI,, ,,I~, . . . . wN, wl,, , } such that 
h,(w,) = ,,I~ for k = 1, 2, . . . . N and h,(w~+ ,) = wN + , Since fN is analytic 
and univalent in D u A, it also has these properties in D u B, where B is a 
smaller neighborhood consisting of open disks centered at z, , z2, . . . . 
zN, z;+ , so that fN maps these disks into the neighborhood of {w,, w2, . . . . 
w  N, wh + , } above. 

The earlier argument also gives a function h, which is analytic and 
univalent in the union of D and a neighborhood of {z,, z2, . . . . zN+, ) such 
that h,(z,) = zk for k = 1, 2, . . . . N and h,(z,+ ,) = zl,, ,. Some smaller 
neighborhood of {z,, z2, . . . . zN + , } is mapped by h, into B. 

The properties of h, and h, imply that f= h, ofNo h, satisfies the con- 
clusions of the theorem associated with the points z,, z2, . . . . zN+, and 
u’I > w2, . . . . wN+ I 
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3. PROOF OF THEOREM 2 

The proof of Theorem 2 depends on interpolation and approximation 
reslts about polynomials and is set up by the following lemmas. 

LEMMA 1. Suppose a<h, c<d, and O<&<(d-c)/(h-a). There is a 
cubic polynomial f such that ,f(a) = c, f(b) = d, f’(a) =f’(b) =E and 
min { f’(x) : a 6 x ,< h} = E. 

Proof: A translation of variables implies that there is no loss of 
generality to assume that a = c=O. Let t >E and let g be the quadratic 
polynomial such that g(0) = E, g(h/2) = t, and g(b) = E. Define ,f by f(x) = 
s; g(s) ds. Thenf(0) = O,f’(O) =f’(b) = E, and,f’(x) = g(x) 3 E for 0 6 x < h. 
Since 1; (g(s) - E) d. 7-0 as t +E, it follows that f(b)-+~h as t -+E. Also, 
f(h) + cc as t + x. The condition 0 < E < d/h and the continuity off assure 
that there is a value of t for which J‘(h) = d. 

LEMMA 2. Suppose a<x,<x,<...<x,,<h and y,<y2<...<yn. 
There is a function f defined and continuously differentiable on [a, b] such 
that f (xk) = y, ,for k = 1, 2, . . . . n and min { f ‘(x): a <x < b} > 0. (Here and 
later, derivatives at end points are one-sided limits.) 

Proqf: Choose y0 and y, + , such that y, < y, and y, + , > y, and let 
xO=a and x,+, =b. Choose E such that O<c<min{(y,+,-yk)/ 
t-x k+, -xk): k=O, l,..., n}. Lemma 1 implies that there is a cubic 
polynomial in each of the intervals [x,, xk+ ,] for k = 0, 1, . . . . n which 
piecewise defines a functionf on [a, b] which is continuously differentiable. 
Also, min{f’(x): a<x<b} =E>O. 

LEMMA 3. Suppose a<x,<x,<...<x,,<b and y,<y,<...<y,. 
There is a polynomial p such that p(xk) = y, .for k = 1, 2, . . . . n and 
min{p’(x): adxdb} >O. 

Proof. Let f satisfy Lemma 2 and let E = min { f ‘(x): a < x 6 b}. Given 
6 > 0, then by [4, p. 1131 there is a polynomial q such that 

and 
max{If(x)-q(x)l:a<xdb)<6 (5) 

max { ) ,f’(x) - q’(x)1 : a < x < b } < 6. (6) 

Let r be the polynomial which interpolates the values f(xk) -q(xk) for 
k = 1, 2, . . . . n. Then r can be expressed 

r(x)= f Cf (xJ - dxk)l Pk(xL 
k=l 

(7) 
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where P, is the polynomial of degree at most n such that P,(x~) = 0 for 
j#k and P,(x,)=l. Let M, = max { 1 P;(x)1 : a d x < 6) and let 
M = C; =, M,. Equations (5) and (7) imply that T’(X) 2 -6M for 
a 6 x 6 6. 

The polynomial p = r + q satisfies p(xk) =f(x,) = y, for k = 1,2, . . . . n. If 
a 6 x < b then (6) and the lower bound on r’ imply p’(x) = r’(x) + q’(x) > 
,f’(x)-6-6M>,s-6-6M. Therefore min{p’(x): a<x<b}>O for 
sufficient small 6. 

Remark. No claim is made in Lemma 3 about the degree of p. In 
general, the Lagrange solution of the interpolation p(xk)= y, with the 
conditions of Lemma 3 is not necessarily increasing on [x,, x,]. This 
suggests the problem of determining whether there are upper bounds on 
the degree of p which depend on n and/or the “spread” of the points xk, y,. 

Proof of Theorem 2. Let p be a polynomial given by Lemma 3. We will 
show that there is a neighborhood (in the plane) of [a, b] in which p is 
univalent. On the contrary, assume there is no such neighborhood. This 
implies there are two sequences {zk} and {z;} with zk #zK and p(zk) = 
p(z;) for k = 1, 2, . . . . and each sequence has an accumulation point in 
[a, b]. Consideration of subsequences implies that we may assume that 
7 + x0 and z; + xb with x0 and xb in [a, b]. Thus p(xO) =p(xb), and since 
yis strictly increasing on [a, b], this requires x0 = xb. However, p’(x,) # 0, 
and therefore p is univalent in some neighborhood (in the plane) of x0. 
This contradicts p(zk) =p(z;) for sufficiently large k. 

4. PROOF OF THEOREM 3 

We first note that Theorem 1 has an equivalent formulation for suitable 
domains which are conformally equivalent to D. For R, this is obtained by 
the introduction of a Mobius transformation and applies to two sets of n 
complex numbers on { [ : Re [ = 0} in the same conformal order. 

In the case S is unbounded, first consider a mapping c + l/([ - [‘) which 
sends S to a bounded set T in R any complex number [’ with Re [’ = 0 and 
[’ # ck for k = 1, 2, . . . . n. In particular, Tc { [ : 0 < Re c < M} for some M. 
Let [; = l/(ck - [‘). Theorem 1 implies that for each p with 0 < p < 1 there 
is a function gp which maps { [ : 0 < Re [ < M} into itself and is analytic at 
pi;. Also, g,(p[;) = ch for k = 1, 2, . . . . n and g,(O) = 0. The function g, 
with pM < E satisfies the conditions on f in the theorem. In the case S is 
bounded, the auxiliary mapping [ H l/([ - [‘) is not needed. 
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