
JOURNAL OF COMBINATORIAL THEORY, Series A 59, 285-308 (1992) 

Combinatorics of Hall Trees and Hall Words 

GUY MELANCON 

DPpartemenr de Mathkmatiques et d’lnformatique, 
UniversitP du Quebec ci Montr&al, C.P. 8888 WCC. A, Montrkal, Qukbec. Canada H3C3P8 

Communicated by Gian-Carlo Rota 

Received May 30, 1990 

We present combinatorial properties of Hall trees and Hall words. We give new 
proofs of the unique factorisation of w.ords into decreasing products of Hall words. 
An order cH on the free monoid is then constructed upon the unique factorisation 
of words. When the Hall set is the set of Lyndon words, the order cH coincides 
with the lexicographical order (with which Lyndon words are defined). Motivated 
by this fact, we give combinatorial properties of Hall words, related to the order 
c,,, which generalize known properties of Lyndon words to Hall words. 0 1992 

Academic Press, Inc. 

INTRODUCTION 

Bases of the free Lie algebra appeared for the first time in an article by 
M. Hall [4], although they were implicit in the work of P. Hall [6] and 
Magnus [9] on the commutator calculus in free groups. Known as “Hall 
bases,” they inspired many authors and led to many generalizations: 
Meier-Wunderli [lo], Schiitzenberger [ 121, Shirshov [ 141, Gorchakov 
[3], and Ward [16]. Lyndon [8] introduced bases which were originally 
thought to be different. 

Viennot gave a generalization of all these constructions and showed that, 
in a sense, it was optimal [ 15, Theorem 1.21. He also showed that this 
generalization was equivalent to Lazard’s elimination process. It is the 
bases considered by Viennot that we call “Hall bases.” 

The construction of these bases relies on the construction of trees and 
words. We call these trees and words, Hall trees and Hall words. They are 
defined using certain inequalities. The set of Hall words form a factorisa- 
tion of the free monoid, as defined by Schiitzenberger [ 131. The major part 
of Viennot’s work [ 151 is the study of the relation between bases of the free 
Lie algebra and factorisations of the free monoid. 

Our objective is twofold. On the one hand, we give new combinatorial 
proofs of the unique factorisation of words in Hall words, different from 
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Viennot’s [15]. Our approach is nearer to Schiitzenberger [12], in that we 
use a rewriting system and its properties: convergence, confluence, and 
inversibility. The algorithm provided by the rewriting system is similar to 
the collecting process of P. Hall, although it is more general and generalizes 
the algorithm presented in [ 1 ] on Lyndon words. Unicity of the factorisa- 
tion also results from a subtle property of the factorisation of Hall trees 
into their subtrees, which generalizes the “dkcomposition normale gauche” of 
L-121. 

On the other hand, once we define an adequate order on the free 
monoid, we show that properties of Lyndon words generalize to Hall 
words. Lyndon bases are defined directly from Lyndon words, which are 
obtained by considering some inequalities relative to the lexicographical 
order (see [2, 73 for a presentation). It is this order we generalize: given a 
set H of Hall words, we define a total order cH on the free monoid. This 
order coincides with the lexicographical order when H is the set of Lyndon 
words. We show that Hall words satisfy the same properties as Lyndon 
words. They are caracterised, relatively to this order, by the equivalent 
conditions : 

(i) they are minimal in their conjugacy class, 

(ii) they are strictly smaller than any of their proper right factors. 

Furthermore, as is the case with Lyndon words, the standard factorisation 
of a Hall word, and the factorisation of a word into Hall words are 
obtained by choosing the minimal right factor. 

Section 1 contains basic definitions and notations and the set H of Hall 
trees is defined. Hall words are obtained from Hall trees by ignoring their 
tree structure. Lemma 2.1 is the focal point of Section 2. We deduce from 
it that Hall trees and Hall words are in bijection. We are then free to work 
with trees or words as we please. A rewriting system working on standard 
sequences of Hall words is defined in Section 3. It provides us with an 
algorithm to calculate the factorisation of a word into a decreasing product 
of Hall words. It may be used to recover the tree structure when applied 
to a Hall word. Convergence, confluency and inversibility of the rewriting 
system are proved and used to obtain the unicity of factorisation of words. 
Lemma 2.1 also provides a second proof of the unicity. Section 4 and Sec- 
tion 5 are entitled ‘Properties a la Lyndon for Hall words’. In Section 4, we 
introduce an order cH, on the free monoid using the unique factorisation 
of words into decreasing products of Hall words. Further properties of the 
rewriting system along with a circular version of it opens the way to our 
first characterisation of Hall words. They are the minimal representatives of 
primitive conjugacy classes (relative to the order cH). In Section 5, 
Lemma 2.1 is again used to compare Hall words with their right factors. A 



HALLTREESAND HALL WORDS 287 

second characterisation of Hall words is given: a word is a Hall word if 
and only if it is strictly smaller than any of its proper right factors. The 
other results in Section 5 may be used to formulate alternative algorithms 
to calculate the unique factorisation of words into Hall words, as well as 
to recover the tree structure of Hall words. 

1. DEFINITIONS AND NOTATIONS 

Let A be a set; we call the elements of A fetters and A itself an alphabet. 
Let M(A) denote the free magma over the alphabet A, that is, the set of all 
binary trees whose leaves are labelled with letters of A. The degree of a tree 
t is the number of its leaves; we denote it by 1 t I. The trees of degree one 
are identified with the letters of the alphabet A. Each tree of degree at least 
two may be written as t = [t’, t”], where t” (resp. t’) is its immediate right 
subtree (resp. immediate left subtree). A right subtree of t is defined to be 
either t” itself or a right subtree of t’ or of t”; an extreme right subtree of 
t is defined to be either t” itself or, recursively, an extreme right subtree of 
t”. Left and extreme left subtrees of t are defined in a similar manner. A 
subtree of t is a right or left subtree of t, or t itself. For example, let 
A = {a, b}; consider the tree representation of the element [[a b] [ [a b] b]] 
of M(A) shown in Fig. 1.1. For this element, [a b] is seen to be both its 
immediate left subtree and a left subtree; its immediate right subtree is 
CCa bl bl. 

The immediate left and right subtrees of a tree will be denoted using the 
’ and N notations, respectively. For instance, if t = [t’, t”] is a tree then (t’)” 
and (t”)” are the immediate right subtrees of t’ and t”, respectively. 

We also need to consider the free monoid A* over A; the elements 
of A* we call words. The product on A* is the concatenation product. 
That is, if u=al . . . a, and u = b, . . . b, then their product is the word 
uv=a,..-a,b, .. . b,. There is a canonical mapping from M(A) onto A* 
defined by f(a)=a if aEA and f(t)=f(t’) f(t”) if t= [t’, t”] is of degree 
at least 2. We call f(t) the foliage of t. For example, the foliage of the tree 
in Fig. 1.1 is f([[a b][ [a b] b]]) = ababb. As the length of the word 
w  =f( t) is equal to the degree of the tree t, we denote it, too, by 1 WI. 

FIGURE 1.1 
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Let H be a subset of M(A) supplied with a total order < satisfying: 

t < t”, for every tree t = [t’, t”] of degree > 2. (1.1) 

This subset H is called a Hull set if, in addition, it contains the alphabet 
A and is such that any tree of degree 22, h = [A’, A”], is a HaN tree (i.e., 
h E H) if and only if the two following conditions are satisfied: 

h’ and h” are Hall trees and h’ -=c h”, (1.2) 

either h’ is a letter or h’ = [k’, k”] and then k” 3 h”. (1.3) 

The second case of (1.3) may be expressed by saying that if h = [A’, A”] 
then (h’)” 2 h”. 

It is important to note that any subtree of a Hall tree is also a Hall tree. 
Hall trees of degree one are the letters, and by (1.2) Hall trees of degree 
two are of the form [a 61 with a, bg A and a < 6. Here is a list, in 
ascending order, of Hall trees of degree 65 of a potential Hall set on 
A={a,b} with a<b: 

CCCCablalalal, CCC~bl~lC~bll~ [Cablal> 

CCCablalal, CubIt CCablCCablbll, CCCablblal, 

CCablbl, CLCCablblalal, a, C4-CC~blblblll~ 

CCCablblbl, [CICablblblbl, 6, . . . . 

1.4. LEMMA. Let h = [h’, h”] be a Hall tree, If h”, is a right subtree of 
h, then h”, > h”. 

Prooj We proceed by induction on the degree of h. By definition, h”, 
is either h” itself, or a right subtree of h’ or a right subtree of h”. In the first 
case, we have h”r 2 A”. In the second case we obtain by induction 
h”r > (h’)“; and in the third case we obtain h”, 2 (k’)“. Since by (1.1) we 
have (K’)” > h” and by (1.3) we have (K)” > A”, in all cases we obtain 
h”, > h”. 1 

2. FACTORISATIONS OF RIGHT AND LEFT FACTORS OF HALL WORDS 

We now focus on right and left factors of Hall words. We will show that 
the mapping f is injective, and this will eventually lead us to the unicity of 
factorisation of words over the set of Hall words. The following lemma is 
crucial. 

2.1. LEMMA. Let h be a HaN tree and w = f (h) be its foliage. Suppose we 
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have a factorisation of w into non-empty words, w = uv. Then there exist Hall 
trees k,, . . . . k,, h,, . . . . h, such that 

u=f(k,)...f(L), u =f(h,) . ..f(h.)> 

and k,, . . . . k,<h,, h,>, ... >h,ah”. 

ProoJ We prove the lemma, along with the supplementary condition 
that h i, . . . . h, be right subtrees of h. Let h = [h’, h”]; by definition, we have 
f(h) = f(h’) f(h”). By hypothesis, we also have f(h)= UV. It may happen 
that u = f(h’) and v = f(h”), in which case we take m = n = 1, k, = h’, and 
hl = h”. Then (1.2) gives us k, < h, and we are done, since h” is the 
immediate right subtree of h. Otherwise, we consider two cases and argue 
by induction on the degree of h. 

Case 1. f (h’) = UX, v = xf (h”), with x non-empty (see Fig. 2.1). By 
induction, applied to h’, there exist Hall trees k,, . . . . k,, h,, . . . . h,- 1 such 
that 

u=f(k,)...f(L), x=f(h,)...f(h,-,)> 

and k,, . . . . k,<h,, h,> . . . >h,-,B(h’)“, where h, ,..., h,-, are right 
subtrees of h’. As h’ is the immediate left subtree of h, h, ,‘..., h, _ 1 are right 
subtrees of h. We have (h’)” > h”, by virtue of (1.3). If we now take h, = h”, 
we obtain u=xf(h”)=f(h,)...f(h,-,) f(hn) and we are done. 

Case 2. u = f(h’)x, f(h”) = xv, with x non-empty (see Fig. 2.2). By 
induction, applied to h”, there exist Hall trees k,, . . . . k,, h,, . . . . h, such that 

x=f(kd...f(U, v=f(h,)...f(h,), 

and kZ, . . . . k,<h,, h,2 ... > h, > (h”)“, where h,, . . . . h, are right subtrees 
of h”. As h” is the immediate right subtree of h, hl, . . . . h, are right subtrees 
of h. Now, by (1.1) we have that (h”)” > h” and by virtue of (1.2), h’ < h”; 
combining these inequalities we find h’ <h” < (h”)” <h,. So in this case 
we take k, = h’ and obtain everything as desired with u = f (h’)x = 
f(kl)f(k2)~~~f(U and v=f(h,).a.f(h,). I 

f(h’) , fW 
u ! j v 

‘W 
X 

FIGURE 2.1 
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fW , f(h ‘7 
u; 1 v 

‘i-2 
x 

FIGURE 2.2 

2.2. Remark, This factorization of the right factor o may be calculated by 
following each step of the induction. In particular, if Case 1 is encountered 
at least once then u =f(h,) . . .f(h,) with n 22, and hi a(K)“. Note that 
Case 1 is encountered at the first step if JuI > (VI. If Case 2 is encountered 
at the first step, then v=f(h,)...f(h,) with h,> . . . >h,>(h”)“, since, in 
this case, v is a right factor of h”. Note also that if at each step we only 
encounter Case 2, then we are sure that u reduces to the foliage of an 
extreme right subtree of h. In other words, if u does not reduce to the 
foliage of an extreme right subtree of h, then at least two factors occur in 
this factorisation of v. These observations will be needed in Section 5. 

Lemma 2.1 has an interesting geometric interpretation shown on Fig. 2.3. 
The factorisation of the left factor u and the right factor u may be found 
by cutting the tree at each of its nodes (including the root) encountered 
along the unique path from the root to the leaft which is the first letter of 
the right factor u. All subtrees falling to the right of this leaf (including the 
one it is attached to) form the factorisation of u into a decreasing product 
of foliage of Hall trees. All subtrees falling to the left of this leaf form the 
factorisation of u as a product of foliage of Hall trees satisfying the 
indicated condition. 

From now on, we call a HaZZ word a word that is obtained from a Hall 
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tree along the mapping f: We show in the next lemma that the mapping f 
is injective. Let H, denote the set of Hall trees having degree at most d. 
Note that if h E Hd+ i then h’, h” E H,. 

2.3. THEOREM. Each Hall word is the image of a unique Hall tree. If a 
Hall word, w = f(h), may be written as a product of Hall words: 

w=f(h,)...f(h,) with h, > ... >h,, 

then we have n = 1. 

Proof We prove the theorem by induction on d, the degree of trees. 
The case d= 1 is trivial. Suppose it true for d and let t = [t’, t”] be a Hall 
tree of degree d + 1 such that 

f(t) =./IO f(t”) =f(hl) . ..f(hJ. with h, 2 ... > h,. (2.4) 

We now show that n = 1 and distinguish three cases according to the 
relative lengths of t” and h,. 

Case 1. 1 t”l = Jh,l. As f preserves length, we have by (2.4), 
f(h,) . ..f(h.,-,) = f(t) and f(hn) =f(t”). Induction applied to the first 
equality forces h, = t’ and n - 1 = 1, hence n = 2; induction applied to the 
second equality gives h, = t”. But since t’ < t” by ( 1.2) and h, > hz by 
hypothesis, we have a contradiction. So Case 1 must be excluded. 

Case 2. )t”) > Ih,l. Again by (2.4) we have f(t”)=uf(h,+,)..-f(h,), 
where u is a right factor of f(hi) for some i < n. Observe that the word u 
is nonempty: suppose on the contrary that we have f(t”) = 
f(hi+ i) . . .f(h,); then by induction, this factorisation off (t”) contains only 
one factor so that i + 1 = n, which contradicts the strict inequality 
Jf”J > Jh,J. As IJ is a proper right factor of f(hj), we deduce from Lemma 2.1 
that o=f(k,) . ..f(k.,,) for some Hall trees k,, . . . . k, with k, 2 . . . 2 
k, 2 h”j. Using (1.1) and the fact that hi>, hi+, we obtain k, > . . . >, k, > 
hi+,> ... 3 h, ; hence we have 

This product contains at least two factors since i < n and m 2 1. But this 
factorisation of t” results in a contradiction with the induction hypothesis 
made on t”. So Case 2 is also impossible. 

Case 3. It”1 < jh,J. Again by (2.4) we have f(h,)=uf(t”), where u is a 
right factor of t’. The strict inequality It”\ < Ih,,l forces o to be non-empty. 



292 GUYMELANCON 

Now, if n > 1 then u must be a proper right factor of t’ and Lemma 2.1 
provides us with Hall trees k,, . . . . k, such that 

u=f(k,)..-f&n), with k, >, ... ak,>(t’)“. 

Since by (1.3) we have (t’)” > t”, f(hi) factorises into 

f(h,)=f(k,)...f(k,)f(t”), with k,> ... >k,Zt”. (2.5) 

Note also that n > 1 implies h, E H,; so the induction hypothesis applies 
to h,. But, as in Case 2, the result is a contradiction, since at least two 
factors figure in the factorisation (2.5). 

So the only possibility we are left with is that n = 1. 
We still have to show that if h and k are Hall trees of degree d+ 1 with 

f(h)=f(k) then h= k. Write h = [h’h”], k= [k’k”] so that f(h)= 
f(h’) f(h”) =f(k’) f(k”) =f(k). We may suppose that lh”l 2 (k”l. If 
lh”j = jk”l then we have f(h’)=f(k’) and f(h”)=f(k”), so by induction 
h’= 22 and h” = k” and, finally, h = k. If Jh”l > Ik”l then f(h”)= vf(k”), 
where Y is a proper right factor of k’. By Lemma 2.1, u factorises into 

where r,, . . . . r,,, are Hall trees satisfying r, 2 ... >, r, 2 (k’)“. By (1.3), 
(k’)” > k”, so we have 

f(h”)=f(r,)...f(r,)f(k”), with r,>, ... >r,>k”. 

At least two factors figure in this factorisation. We reach a contradiction, 
since by induction f(h”) may not be written as a decreasing product of 
foliage of two or more Hall trees. 1 

Theorem 2.3 permits us to identify a Hall word with the unique Hall tree 
whose foliage is this word. So we denote also by H the set of Hall words 
in A*. This set is therefore totally ordered by the order < on the Hall set 
in M(A). 

3. A REWRITING SYSTEM ON SEQUENCES OF HALL WORDS 

Conditions (l.l), (1.2), and (1.3) migrate to the set H of Hall words. Let 
h be a Hall word and t be the unique Hall tree such that f(t) = h. If h is 
not a letter then t = [It’, t”]; let h’ =f(t’) and f(Y) = h”. Thus h = h’h”; we 
call this factorisation of h its standard factorisation. Standard factorisations 
of Hall words will be denoted using the ’ and fl notation. We note several 



HALL TREES AND HALL WORDS 293 

inequalities on Hall words which are immediate consequences of (1.1 ), 
(1.2), and (1.3). 

Let h be a Hall word with standard factorisation h = h’h”. Then 

h < h”, (3.1) 

h’ < h”. (3.2) 

Let k be another Hall word with h < k. Then hk is a Hall word with 
standard factorisation (hk)’ = h and (hk)” = k if and only if 

either h is a letter or h” Z k. (3.3) 

We now consider sequences of Hall words: 

s = (h,, . . . . h,), h,, . . . . h, E H. 

Such a sequence will be termed a standard sequence if for all i = 1, . . . . n: 

either hi is a letter or hi = Fi Vi and then /z”~ B hi+ i, . . . . h,. (3.4) 

Note that a sequence of letters is standard, as is a decreasing sequence of 
Hall words; that is, s = (h,, . . . . h,) with h, > . . . > h,. Indeed if hi= Ki Vi, 
then by (3.1) h”,>hi; hence /~“~>h~+~, . . . . h,. 

A rise of the sequence s = (h, , . . . . h,) is a couple of two consecutive words 
(hi,hi+,) such that /~~<h~+~. Let s be a standard sequence which is not 
decreasing; a legal rise of the sequence s is a rise (hi, hi+ i) such that 

(3.5) 

Then we define two sequences of Hall words s’ and s”: 

S’=(hl,...,hi-l,hjhj+l,hj+2,...,h,), (3.6) 

S”= (h,, ...t hj-ly hi+ 1, hi, hi+27 ‘.a, h,). (3.7) 

In other words, sr is obtained by concatenating the words hi and hi+ 1 and 
s” is obtained by exchanging hi and hi, i. If s = (h,, . . . . h,) is a standard 
sequence the word obtained from s by concatenating its factors, giving 
h, ... h,, will be called the word associated with s. So we see that the words 
associated with s and s’ are equal. 

Remarks. We thus “rewrite” the sequence s into two sequences s’ and 
s”. In [ll], a similar rewriting system has been defined on standard 
sequences of Lyndon words, with one exception, however, that we look 
for the rightmost rise of the sequence. As in this case we have 
hi+,>hj+*2 -. . 2 h,, we need not verify (3.5). 
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In [ 121, the condition h < h’ is added to condition (3.1) for a word h to 
be a Hall word. There also, a rewriting system that works on “legal sequen- 
ces” is defined. A sequence s = (h,, . . . . h,) is termed legal if for all pairs of 
consecutive words (hi, hi+ r), either h, 3 h,, , or hi/z,, is a Hall word. The 
supplementary condition h < h’ is used to prove that working on the 
rightmost rise of a legal sequence produces a legal sequence. 

In [S], sequences of Hall words (with their bracketings) considered as 
commutators in the free group are rewritten using the “collecting process.” 
There we look for a rise hi < h, + , with hi+, maximal amongst the terms of 
the sequence. So (3.5) is verified, since we have h,, l b hi for all j. 

3.8. PROPOSITION. Lets= h,, . . . . h, be a standard sequence of Hall words. 
If (hi, hi+ ,) is a legal rise of s then both s’ and s” are standard sequences. 
Moreover, the standard factorisation of the product hihi+, is (hihi+ ,)’ = hi 
and (hihi+l)“=hi+I. 

Prooj (1) We have hi<hi+, and either hi is a letter or hi = h’j h”i and 
then h”i3hi+l, by (3.4). Hence, by (3.3), hjhj+I is a Hall word written in 
standard form. 

To show that s’ is standard we need to verify that (i) h’> 2 hihi+, for 
j = 1, . . . . i- 1 and (ii) hi+ 1 > hi+2, . . . . h,. Since (hi, hi+ r) is a legal rise of s, 
(ii) is immediate. Now, let h, = h>. h’, be the standard factorisation of h,. 
Then, by (3.4) we have h”, z hi+ I for j < i and by (3.1) we have 
hi+ 1 >hihi+ 1’ Hence, h”j > hihi+ l and s’ is standard. 

(2) To show that s” is standard we need only verify that h”i+, 2 hi. 
But we have hi< hi+ 1, since (hi, hi+,) is a rise of the sequence and 
hi+ r < h”i+ I by (3.1). So h’li+ I > hi and s” is standard. 1 

Remark. In [ 1 l] the rewriting system was used to calculate polyno- 
mials over the Poincart-Birkhoff-Witt basis obtained from the Lyndon 
words. The rewriting system presented here allows for similar calculations 
on the Poincare-Birkhoff-Witt basis obtained from Hall words. These 
calculations may be performed by using the rewriting system, since we have 
s = s’ + s”, when sequences are considered as products of Lie polynomials 
associated with Hall words. We shall not consider this aspect here, but we 
will only consider factorisation of words. Consequently, our attention will 
mainly be focused on the sequence s’. 

The next result was found by many authors with varying degrees of 
generality (relatively to the order on H). See [7, 151. We give it a new 
proof. 
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3.9. FACTORISATION THEOREM. Every word, w E A*, may be written in a 
unique way as a decreasing product of Hall words: 

w=h, .-.h, with h,> . . . ah, 

First we give a lemma needed in the proof of Theorem 3.9 and in subse- 
quent proofs. 

3.10. LEMMA. Letw=h,..-h,,h,> ... ah,, beadecreasingproductof 
foliages of Hall trees and let v be a proper right factor of h,. If v = rI . . . r,,, 
is a factorisation of v given by Lemma 2.1, then rm > hi, 1 and the word 

vhi+ 1 . . . h, may be written as a decreasing product of Hall words: 
vhi+l...h,=rl...r,hi+I...h,. 

Proof. If v is empty there is nothing to prove. If v is non-empty then let 
v = r1 ... r, be its factorisation as given by Lemma 2.1. That is, r,, . . . . r,,, E H 
and r,> ... >,r,>h”,. Then, h”,>h, by condition (1.1) and h,>,hi+l by 
hypothesis, so r,,, > hi+ 1 and we may write vhi+ , ... h, as a decreasing 
product of Hall words: 

vhi+l ... h,=rl...r,hi+l . ..h.. 1 

Proof of Theorem 3.9. Existence. The rewriting system provides us 
with an algorithm to calculate a factorisation of a word w  into a decreasing 
product of Hall words. That is, we may calculate successive standard 
sequences so, s, = s’~, s2 = s’~, . . . . sP = s’~-, with sP = (h,, . . . . h,), 
h, > ... ah,, and w=h,...h,. 

If w=a, . . . a,,, with ai E A then s = (a,, . . . . a,) is a standard sequence. So 
we take so = (a,, . . . . a,,,) and calculate s1 =s’~, s2 =s’,, and so on. We 
ultimately reach a decreasing sequence sP = (h,, . . . . h,). By (3.6), w  is equal 
to the product of the words appearing in si, for each i = 1,2, . . . . p. So, in 
particular, w  = h, . . . h,, and the existence of the factorisation is proved. 

Unicity. Suppose that the word w  has more than one factorisation: 

where the kls and his are Hall words with k, 2 . . . 2 k, and hI 3 . . . 3 h,. 
We argue by contradiction. By virtue of Theorem 2.3, we may assume that 
n> 1 and m > 1. Moreover, we may suppose that Ik,l > Ih,] (since 
jk,] = lh,l implies k, = h, and induction on the length of w  gives m = n 
and ki = hi). 

We have k, = vhi, 1 . . . h,, where i < n and u is a non-empty right factor 
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of hi. Again, by Theorem 2.3, the case v = hi is impossible. So v is a proper 
left factor if hi and by Lemma 3.10, k, factorises into 

k,=vhi+,...h,=rl -r,h,+, . ..h. 

with r,, . . . . r,EH and Y,> ... >r,>h,+la ... >h,. This contradicts 
Theorem 2.3 and ends the proof. 1 

We will prove unicity of factorisation a second time (see Corollary 3.14) 
by using a property of the rewriting system. We define a binary relation, 
denoted +, on the set of standard sequences of Hall words by defining; 
s + t if and only if t = s’, where s’ is given by (3.6). In other words, s + t 
if and only if t is obtained from s by concatenating two consecutive words 
of a legal rise of s. If s + t then we say that t is derivedfrom s. 

3.11. PROPOSITION. The relation -+ is confluent. That is, ifs, and s2 are 
two standard sequences derived from s then there exists a standard sequence 
t such that s, --+ t and s2 -+ t. 

Proof Let 

s = (h,, . . . . h,) 

and let s1 and s2 be obtained from s by working on legal rises (h,, hi+ ,) 
and (hi, h, + 1), respectively: 

SI = (h,, ...) h,-1, hihi+l, hi+13 ...y hn), 

S2=th,,...,hj-1,hjhj+,,hj+*,...,h,). 

We may assume i< j. In fact, we have i+ 1 < j. If on the contrary we sup- 
pose that j= i+ 1, we obtain a contradiction: h,+l < hi+z, since (h,, hi+ 1) 
is a rise and hi+l >hi+zr since (hi, hi + 1 ) is a legal rise. Hence i + 1 < j. 

So (hi, hi+,) is a rise of the sequence s2, as is (h,, hi+,) for si. The rise 
(hi, hi+ 1) is si is legal since it takes place to the right of hi+ 1. This is also 
the case for (hi, hi+ 1) in s2. In fact, by Proposition 3.8, the word hjhj+, has 
its standard factorisation (hjhj+ 1)’ = hi and (hjhj+ 1)” = hj+, . We had 
hi+,ahj+, and, since by (3.1) h,+,>h,h,+,, we have hi+I>hjhi+I. So 
the rise (hi, hi+,) is a legal rise of s2. 

As i+ 1 <j, the legal rises (hi, h,,,) and (hi, hi+,) do not overlap in s. 
So, working on the rises (hj, h,, 1) and (hi, hi+ 1) in s, and s2 respectively 
produces the same standard sequence t: 

t=(hl, ...) hi-13 hih;+l, ..., hjhj+l, hj+zy ...) h,). I 

We now define S to be the reflexive and transitive closure of +. Ifs 5 t 
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we still say that. t is derived from s. If s i; t is the chain 
s = sO --)r s1 + . . . + s, = t then we say that the derivation s % t has length 
n. A simple induction on the length of derivations, using Proposition 3.11, 
gives the next result. 

3.12. COROLLARY. The relation f% is confluent. 

Sequences of letters are standard sequences. So, by Proposition 3.8, any 
sequence derived from a sequence of letters is standard. We now show that 
any standard sequence is obtained in this way. 

3.13. PROPOSITION. Let t = (h 1, . . . . h,) be a standard sequence. If not all 
words hi are letters then there exists a standard sequence s such that s + t. 

Proof Let hi be a word in s such that if h, is not a letter then h’lj 2 h”i, 
for all j= 1, . . . . i- 1. Such one word hi exists since we can take hi to be the 
leftmost word in s which does not reduce to a letter. We wish to prove that 
s = (h,, . . . . hip I, h’i, h”i, hi+ 1, . . . . h,) is standard and that (h’i, h”j) is a legal 
rise of s. 

We have (h”i)“> h”j by (3.1), (h’i)“2 h”i by (3.3), and h”i> hj for all 
j= i+ 1, . . . . n, since t is standard. So (h’li)“, (hli)” 3 hi for all j= i + 1, . . . . n. 
Since h’i > hrri for all j = 1, . . . . i- 1, by hypothesis, and h”i > h’i by (3.2) we 
have h”j> h”i, h’i for all j= 1, . . . . i - 1. This proves that s is standard. 
Because t is standard, the rise (h’i, h”i) is legal, since h”i 2 hi+ 1, . . . . h,. So 
t may be derived from s. 1 

3.14. COROLLARY (Second proof of Theorem 3.9). 

Proof: First, let s = (h,, . . . . h,) be a standard sequence and 
w=hl...h,=a, . .. ap (ai E A) be the word associated with s. Then, by 
applying Proposition 3.13 often enough we find a derivation (a,, . . . . ap) f5 s. 

Now suppose that w  = a, .. . a, has two factorisations into decreasing 
products of Hall words: 

w=h, . . . h,=k,...k, with h,>, ... ah,,,, k,> ... >k,. 

As we noted earlier, the sequences s1 = (h,, . . . . h,) and s2 = (k,, . . . . k,) are 
both standard sequences since they are decreasing. So there exist two 
derivations (a,, . . . . ap) 5 s1 and (a,, . . . . ap) f s2. By Corollar 3.12, there 
exists a standard sequence t such that s1 5 t and s2 5 t. Since s1 and s1 are 
both decreasing sequences, the only sequences we may derive from them 
are themselves, so they must be equal, s, = t = s2. That is, m = n and hi = ki 
for i= 1, . . . . n. 1 
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4. PROPERTIES “Li la Lvndon” FOR HALL WORDS. I. Conjugacy 

A word w  E A* is said to be primitive if it is not a power of another word; 
that is, w  is primitive if it is not empty and if MJ = z” implies n = 1 and w  = z. 
For example, the word ababb is primitive but abbabb is not since abbabb = 
(abb)*. Hall words will be seen to be primitive. 

Two words MI and z of A* are said to be conjugate if and only if there 
exists words U, v of A* such that w  = uv and z = uu. For example, the words 
ababb and abbab are conjugates of one another; we may take, in this case, 
u = ab and v = abb. This is an equivalence relation on A*, since w  is con- 
jugate to z if and only if z can be obtained from w  by a cyclic permutation 
of the letters of w. The conjugacy class of a word M’ may be viewed as a 
circular word. The members of the conjugacy class of w  are then obtained 
by reading the circular word, starting from each of its letters. For example, 
the circular word associated with the conjugacy class of w = ababb is shown 
in Fig. 4.1. 

Thus, the conjugacy class of w = ababb is {ababb, babba, abbab, bbaba, 
babab }. If w  and z are conjugate, then w  is primitive if and only if z is 
primitive. Suppose now that a word w  is not primitive; that is, w  = zn with 
z non-empty and v 2 2. Then, if we take u = zi and v = .zi with i + j = n, we 
see that not all conjugates of NJ are distinct from u’ since VU = zjz’ = zn = w. 
For more details the reader is referred to [7]. 

Let H be a fixed Hall set in A*. We now introduce a total order cH on 
A*, using the unique factorisation of words over H. Let w  and z be two 
words in A* and consider their factorisations as decreasing products of 
Hall words : 

w=k,k,...k,, z=h,h*...hn. 

We say that w is smaller than z, and we write w  cH z if and only if one 

of the following two conditions is satisfied: either 

m<n and ki=h, for i = 1, . . . . m, 

or there exists a subscript i such that 

k, = h,, . . . . kip, = hip 1 and ki<h,, 

b 

FIGURE 4.1 
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where the two Hall words ki and hi are compared using the order < on 
the set of Hall words. 

Remark. We now momentarily turn our attention to Lyndon words. 
They form an important example of Hall words. We will show that the 
order cL obtained from this particular set of Hall words coincide with the 
lexicographic order < lex, upon which the Lyndon words are constructed. 
This fact has been the main motivation for finding the results in Section 4 
and Section 5. They generalize properties known for Lyndon words to an 
arbitrary set of Hall words. 

For details on what is discussed below, the reader is refered to [7]. 
Denote by clex the lexicographical order on A*. That is, a total order < 
is given on the alphabet A and is extended to words in the following way: 
w  clex z if and only if either w  is a left factor of z or there exist words s, 
t, t’ E A* and letters a, b E A such that 

w = sat, z = sbt’ > a -c b. 

The set of Lyndon words, L, is the set of words that are strictly smaller 
than any of their proper right factors, for the order <rex. One can show 
that, equivalently, Lyndon words are the minimum words of primitive con- 
jugacy classes. Now, if UE L and if y is the longest proper right factor of 
u that is in L, then u = xy, x is also a Lyndon word, and x <rex xy clex y. 
This factorisation of u is called its standard factorisation. We may show 
that if u is another Lyndon word such that u clex u then uv is a Lyndon 
word and the factorisation uu is standard if and only if y alex u. So Lyndon 
words satisfy conditions (3.1), (3.2), and (3.3). The standard factorisation 
of Lyndon words is used to associate to each Lyndon word a tree in M(A). 
One can show that the set of Lyndon trees, with the order xlex, is a Hall 
set. 

So, by virtue of Theorem 3.9, any word may be uniquely factorised into 
a decreasing product of Lyndon words and we may consider on A* the 
order cr. 

We wish to prove that the order cL coincides with the lexicographical 
order on A*. Note that w  <rex z if and only if uw <rex uz for any word 
u E A *. We proceed by induction on 1 WI + IzI to show that w  cL z implies 
w  cr. z. This will prove that the two orders are the same. 

When w  and z are letters the implication is clear. Suppose now that 
w  <r. z. That is, 

582a/59/2-10 
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with Ui, VjEL, ~~~~~~~~~ alexu,, v~>,~~... >lex~n andeither 

(i) m<n, u,=v ,,..., u,=v, or 

(ii) u1 = VI) . ..) uk&l=vk&l> Uk<lexVk. 

In the first case, we obtain from the definition of clex that w  clex z. So we 
need only consider the second case. If uk is not a left factor of vk, or if uk 
is a left factor of rk and k = m, then we conclude easily that w  clex z. So we 
are left with the case where uk is a proper left factor of ok and k < m. We 
have uk = ukx with x non-empty. Let x = h, . . . h, with hi alex.. alex h, be 
the factorisation of x into a decreasing product of Lyndon words. Since 
Lyndon words are strictly smaller than their proper right factors, we have 
h, ‘vex vk. This provides us with the factorisation of xvp+ , . . . v, = 
h, -.hpVk+, ... v, into a decreasing product of Lyndon words. Now we use 
the order cr to compare the words uk+ I ... u, and xvk+ r . . .v,. Since 
xvk+l ... v,=h,...h,v,+, . . . vn and h,21,,h~>,exvk>lelt~k~lex~k+l, we 

see that uk+l “‘u,<Lxvk+, “‘0,. By induction, this implies 
Uk+l ..~U,<,exXvk+l.~~vnr which in turn implies 

We are now ready to show that Hall words are representatives of 
primitive conjugacy classes of words, each Hall word being the minimum 
of its conjugacy class for the order cH we just defined. The rewriting 
system will be used to calculate factorisation of words. Two lemmas must 
first be established. The first lemma is part (i) of Lemma 2 of [ 111, adapted 
to our rewriting system on sequences of Hall words. We give the (short) 
proof for the sake of completeness. 

4.1. LEMMA. Let s = (h,, h,, . . . . h,) be a standard sequence of Hall words 
of length at least two such that h, is maximal, h, 2 hZ, . . . . h,. Then any 
sequence derived from s is of length at least two and has h, as its first term. 

Proof: By hypothesis (h,, h2) is not a rise of the sequence so s’ is of 
length at least two and is equal to 

with 26i6n. We have h,>h,+, and, by virtue of (3.1), hi+, >hihi+,, so 

s’ satisfies the hypothesis of the lemma. This allows us to conclude by 
induction on the length of the derivations. 1 

4.2. LEMMA. Let s= (h,, hz, ..,, h,) be a sequence of Hall words of length 
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at least two such that h, is maximal, hI > hZ, . . . . h,. It is possible to find a 
standard sequence t = (k, , k,, . . . . k,) such that 

h,h,... h,,=k,k,...k,, h, =k,, k, > k,, . . . . k,. 

Proof. We define the disparity 6(s) of a sequence s = (h,, hZ, . . . . h,) to 
be the difference between its total degree and the number of its terms: 
6(s) = \hll + ... + Ih,l --n. We show the lemma by induction on the dis- 
parity of sequences. The sequences of disparity zero are sequences of letters 
and are surely standard. Nevertheless a sequence may be standard without 
having disparity zero. 

Let s=(h,,h, ,..., h,) be a sequence satisfying the hypothesis of the 
lemma. If s is already standard there is nothing to do. If s is not standard 
then there exist i and j such that 

i< j, hi is not a letter and h’li < h,. 

We know i > 1 since hrrl > h, , by (3.1), and h, 2 h,, . . . . h,, by assumption. 
The sequence 

t = (h,, . . . . hi- 1) h’i, h”i, hi+ 1) .*.) h,) 

has a disparity equal to d(t) = S(s) - 1. Furthermore, t satisfies the 
hypothesis of the lemma. Indeed, we have h’i -C hrri by (3.2), so 

Since h,h,.~~hiVV.h,,=hlh, . . . h’; h”i.. . h,, we may conclude by induc- 
tion. 1 

We can now prove one half of an important characterisation of Hall 
words. 

4.3. THEOREM. Let w E A* be a word. Then w is a Hall word if and only 
if for any factorisation of w into non-empty words, w = uv, we have w <H vu. 

Proof: We prove the “only if” part. The proof of the “if” part is delayed 
until the end of Section 4. 

Let w  be a Hall word. We transfer the results of Lemma 2.1 to the set of 
Hall words. Let w  = uv with u, v non-empty; we obtain 

u=q1 “‘qm, v=r,...rnr 

where 

qi,rjEH, q1 ,..., q,,,<r,, r,2 ... >rnaw”. (4.4) 
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So we have w=uv=q, . ..q.,,rl “.r,; consequently the conjugate uu of w  
may be written as 

Now we wish to calculate the factorisation of uu into a decreasing product 
of Hall words in order to compare it to w. Using inequalities (4.4) we see 
that the sequence 

s = (rlr . . . . rnr ql, . . . . 4J 

satisfies the hypothesis of Lemma 4.2. So we find a standard sequence 

t = (k,, . . . . kp) 

such that vu=rl...rnql..,qm=kl.,.kp, 

rl = k, , and k, > k,, . . . . k,. (4.5) 

Now, to obtain the factorisation of uu into a decreasing product of Hall 
words, we may use the rewriting system on the standard sequence 
t = (k,, . . . . kp). By (4.5), the sequence t satisfies the hypothesis of 
Lemma 4.1. Consequently, any sequence we derive from t has length at 
least two and begins with k,. So we know that at least two Hall words 
figure in the factorisation of vu and that the first one is k,. That is, 

vu=h,h,...h, with d>2 and h, =k,. (4.6) 

To compare vu to w  we must compare the first factor in the factorisation 
of vu to w. That is, we must compare h, to w. But, by (4.4), (4.5), and (4.6), 
we have that h, > w” and (3.1) gives h, > w. By definition of cH we obtain 
h, >H w  and, as a consequence, vu >H w. 1 

4.7. COROLLARY. Let w E A* be a Hall word. Then w is primitive. 

Proof. Suppose on the contrary that w  is not primitive. Then there exist 
words u, v such that w  = uv = vu. Using Theorem 4.3 we obtain w  cH vu = w  
and we reach a contradiction. So w  is primitive. 1 

We will now show that every primitive word is the conjugate of a unique 
Hall word and establish the “if” part of Theorem 4.3. For this we need a 
variation of our rewriting system. 

A sequence of Hall words G = (h,, . . . . h,) is said to be circularly standard 
if for all i= 1, . . . . n, 

either hi is a letter, or hi = h’i hNi, and then hrri > h,, h,, . . . . h,. (4.8) 
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Equivalently, rr is circularly standard if every sequence 

(hi, ...3 hpf, h,, ...) hi- I)? i= 1 f ...? n, 

is standard. For example, words considered as sequences of letters are 
circularly standard. A rise (hi, hi+ r) of a circularly standard sequence will 
be termed legal if hi+ I 2 h,, . . . . h,; that is, the factor hi+ I must be maximal. 
We will admit the rise (h,, h, ) when h, < h, . These two cases can be 
summarized by saying that subscripts are taken mod n. 

Let G be a circularly standard sequence and let (hi, hi+,) be a legal rise 
of rr, the subscripts being taken mod n. We define a new sequence r~‘: 

If i < n then 0’ is defined in the same way as s’, 

0’ = (h,) . ..) h,h,+ 1) . . . . h”). 

If i = n then we define (T’ to be 

fJ’= (h,h,, h,, **., h,l-,). (4.9) 

Contrary to the previous rewriting system, the words associated with the 
sequences 0 and 0’ are no longer equal. But we see easily that the words 
associated with c and rr’ are conjugates of one another. 

4.10. PROPOSITION. Let u = (h,, . . . . h,) be a circularly standard sequence. 
Then G’ is circularly standard. Moreover, the words associated with the 
sequences B and cf belong to the same conjugacy class. 

Proof Let (hi, hi+ i) be the legal rise of 0 on which we operate, the sub- 
scripts being taken mod n. On the one hand, hi+ I is maximal among the 
words of the sequence and, on the other hand, we have (hihi+ 1)” = hi+l, 
by Proposition 3.8. So in either case we have (hihitl)” 2 h,, . . . . hiel, 

hihi+l, hi+*, .*.> h, and o’ is circularly standard. The last part of the state- 
ment is clear. m 

Since the set of Hall words form a factorisation of A* (see Theorem 3.9), 
we know, by Schiitzenberger’s factorisation theorem [13], that each 
conjugacy class is met exactly once by a power of a Hall word. We will 
obtain this result as a corollary of Proposition 4.10, with the aid of the 
“circular version” of our rewriting system. 

4.11. COROLLARY. Every primitive word is the conjugate of a unique Hall 
word. 

ProoJ Observe that the rewriting system operates on a sequence until 
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it is left with a sequence consisting of one word or a repetition of the same 
word, because only these sequences have no rise. 

Now let w  E A * be primitive. We use the rewriting system we just defined 
to calculate successive circularly standard sequences oO, (r, = rYO, 
62 = 6’1, . . . . ep= rslp+i with Go= (h,, . . . . h,) such that w  and h, . ..h., are in 
the same conjugacy class. 

If w  = a, . . . a, with USE A then g = (a,, . . . . a,) is a circularly standard 
sequence. So we take o0 = (a,, . . . . a,) and calculate g, = crIO, o2 = a’], and 
so on. We ultimately reach a sequence up = (A,, . . . . h,) with hi = ... = h,. 
By Proposition 4.10, the words associated with bi and ci+ i are conjugates, 
so w  is a conjugate of h, . . . h,. Now, if a word is primitive, then the same 
is true of all its conjugates. Consequently, we must have n = 1. This shows 
that w  is the conjugate of a Hall word. Since a Hall word is the minimum 
of its conjugacy class (“only if” part of Theorem 4.3) h, is unique. 1 

4.12. COROLLARY. Every word is the conjugate of a power of a unique 
Hull word. 

We now prove the “if” part of Theorem 4.3. 

4.13. COROLLARY. Let w E A* be a word such that for any fuctorisution 
of w into non-empty words, w = uv, we have w cH vu. Then w is a Hull word. 

Proof: Observe that w  is primitive. If, on the contrary, w  was not 
primitive we could find two non-empty words U, v such that w  = uv = VU. 
But this would contradict the strict inequality w  cH UU. So, the corollary is 
an immediate consequence of Corollary 4.11 and the “only if” part of 
Theorem 4.3. 1 

5. PROPERTIES “d- la Lyndon” FOR HALL WORDS. II. Right Factors 

We now give properties of right factors of Hall words related to the 
order KH. 

5.1. PROPOSITION. Let h = h’h” be a Hull word of length at least two. 
Then 

(i) amongst all proper rights factors of h that are Hull words, h” is of 
maximal length, 

(ii) amongst all proper right factors of h, h” is minimal for the order 
<H. 
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Proof. (i) Let u be a right factor of h of length greater than that of h”. 
Let 

v=hl...h,, with h, , . . . . h,EH, h,> ... ah,,, 

be the factorisation of u as given by Lemma 2.1. Then by Remark 2.2, at 
least two factors occur in this factorisation. So u is not a Hall word. 

(ii) Let v be a right factor of h of length greater than that of h”. Then 
by Remark 2.2, we have 

v=h, . ..h. with h,, . . . . h,EH, h,> ... ah,,, 

n 2 2, h, z (h’)“. (5.2) 

Comparing u to h reduces to comparing h, to h. Using (3.1), (3.3), and 
(5.2) we find 

h<h”<(h’)“<h,. 

So h<,v. 
Let u be a right factor of h of length less than that of h”. By Remark 2.2 

again, we have 

u=h,...h, with h 1, . . . . h,EH, h,B ... ah,, 

hI 3 . . . b h, B (h”)“. (5.3 1 

Again, comparing u to h reduces to comparing h, to h. Using (3.1) twice 
and (5.3), we find 

h<h”<(h”)“<h,. 

So h<,v. b 

Remark. Part (i) of Proposition 5.1 is known. A quite different proof 
was given by Viennot [ 151. 

5.4. THEOREM. Let w E A* be a word. Then w is a Hall word if and only 
if it is smaller than any of its proper right factors. 

Proof Suppose first that w  is a Hall word and let v be a proper right 
factor of w. Then by Proposition 5.l(ii), we have w” <H u. Since w  cH w” 
we obtain w  cH v. 

Assume now that w  is smaller than any of its proper right factors. We 
proceed by contradiction. Suppose w  is not a Hall word; then it factorises 
into 

w=h, . ..h. with h,a . . . ah,, n>2. 
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We claim that hi > h,. If on the contrary, h I = . . = h,, then by definition 
of cH we have 

h,...h,<,h, . ..h.=w for i = 2, . . . . n. 

This contradicts the assumption made on w. So h, > h,. But this implies 
that h, cH hi . . . h, = w  which contradicts again the assumption made on w. 
So we must have w  E H. 1 

5.5. PROPOSITION. Let w  E A* be a word and let w  = h, ... h, be its non- 
decreasing factorisation into Hall words. Then 

(i) amongst all right factors of w that are Hall words, h, is of 
maximal length, 

(ii) amongst all right factors of w, h, is minimal for the order < H. 

ProoJ Note that when us is a Hall word, part (i) of the proposition is 
trivial and part (ii) is also true by Theorem 5.4. So we may assume that u’ 
is not a Hall word and that n > 2. Let z be a proper right factor of w: 

If (zj < jh,J then, by Theorem 5.4, we have h,, cH z. 
If Iz( > Jh,J then z = vh,, , . . . h,, where u is a right factor of hi with 

i<n. Either u = hi, or u is a proper right factor of hi, in which case, by 
Lemma 3.10, z factorises into 

z=vhi+, . . . h,=k,...k,hi+I . ..h.,, 

with kl> . . . 3k,>hi+,b . . . ah,. (5. 6) 

In both cases, we see that at least two factors figure in the factorisation of 
z. So z is not a Hall word and part (i) of the Proposition is proved. 

To compare z to h, we need only compare k, to h,. We use (5.6) to find 
that k, > h,; so in this case again we have z >,, h,. 1 

Remark. Duval [ 1 ] has established Proposition 5.5 for Lyndon words. 
He also showed that part (i) of Proposition 5.5 holds true for left factors 
of Lyndon words. That is, he showed that amongst all left factors of a word 
w  that are Lyndon words, h, (the leftmost factor in its factorisation) is of 
maximal length. This is not the case, in general. For example, we may take 
for H, the Hall set described in Section 1. Then w  = abbab factorises into 
w  = hI h2 with h, = abb and h2 = ab. Since abba is a Hall word, we see that 
abb is not the longest left factor of w  to qualify as a Hall word. 

The next result is from Viennot [ 151. It is used to find the standard 
factorisation of a Hall word using the factorisation into Hall words of its 
longest proper right factor. It may be proved twice using parts (i) or parts 
(ii) of Proposition 5.1 and Proposition 5.5. 
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5.7. COROLLARY. Let w E A* be a Hall word of length at least two; that 
is, w = az with a E A and z E A*, 1z1 > 1. Suppose the factorisation of z into 
Hall words is 

z= h, . ..h.,, with h, > ... 2 h,. 

Then we have w” = h,. 

Remarks. 1. The question of characterising the family of orders cH is 
still open. It may prove useful, in this case, to return to Lazard’s elimina- 
tion process, used by Viennot [lS] to formulate his generalization. 

2. The “collecting process” of P. Hall [6] may be generalized to 
work with Viennot’s generalization of Hall bases. The tree structure of a 
Hall word is interpreted as a bracketing, in order to obtain an element of 
the nth term of the lower central series of the free group. We may define 
a rewriting system working on standard sequences of “Hall commutators.” 
Instead of producing, at each step, the two sequences (3.6) and (3.7), we 
produce a single sequence that comprises both. That is, the two factors hi 
and h,+l of a rise are exchanged and are followed by the commutator 
(hi, hi+ r). In doing this, the length of the sequence increases. Again, we 
have confluency and inversibility of the rewriting system. Convergence is 
assured by the fact that we work modulo the nth term of the lower central 
series. Results concerning this rewriting system will be presented elsewhere. 
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