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Abstract

Based on the concept of an epiderivative for a set-valued map introduced in J. Nanchang U
(2001) 122–130, in this paper, we present a few necessary and sufficient conditions for a He
cient solution, a globally proper efficient solution, a positive properly efficient solution, anf -efficient
solution and a strongly efficient solution, respectively, to a vector set-valued optimization pr
with constraints.
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1. Introduction

More and more attention has been paid to sufficient and necessary conditions
efficient solution in vector set-valued optimization. As early as in 1981, the concep
contingent derivative of a set-valued map was firstly introduced by Aubin [1]. With
concept of a contingent derivative, Aubin and Ekeland [2], Corley [3], and Luc [4] de
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sufficient and necessary conditions for a strongly efficient solution, a weakly efficient
tion and a locally efficient solution, respectively. But Aubin and Ekeland [2] made a s
assumption that the graph ofF is convex, and Corley [3] did not unify the necessary a
sufficient optimality conditions. To overcome those disadvantages, Jahn and Rauh
troduced a contingent epiderivative of a set-valued map and derived the corresp
optimality conditions. Subsequently, a generalized contingent epiderivative of a set-
map was introduced by Chen and Jahn [6]. Based on a vector variational inequality a
concept of a contingent epiderivative of a set-valued map introduced in Jahn and Ra
Liu and Gong [7] obtained a necessary and sufficient condition for some kinds of pro
efficiency in vector set-valued optimization. Gong and Dong [8] simplified the opti
ity conditions for properly efficient solutions of an unconstrained optimization prob
in term of a radial contingent derivative of a set-valued map introduced in [9]. In
of the notions of a contingent epiderivative in [5] and a radial contingent derivativ
set-valued map in [9], Song et al. [10] introduced a new concept of epiderivative for
valued map and obtained a few necessary and sufficient conditions for a weakly e
solution, a strongly efficient solution, a Henig efficient solution, a super-efficient sol
and a Benson efficient solution respectively in unconstrained vector set-valued opt
tion.

Meanwhile, many authors studied vector set-valued optimization problems with
straints. Corley [3] gave optimality conditions for an efficient solution and a weakly
cient solution of a constrained problem in terms of the Clarke derivative and the cont
derivative. Luc [4] presented necessary conditions for a local weakly efficient solutio
sufficient conditions for a locally efficient solution of a constrained problem in term
the contingent derivative when the functions are upper semi-differentiable. Amahro
Taa [11] gave sufficient conditions for a locally efficient solution to a constrained p
lem with g-paraconvex data in term of the contingent derivative. Taa [9] derived se
necessary conditions for a local weakly efficient solution, and sufficient condition
weakly efficient solution and an efficient solution of a constrained problem in term
radial contingent derivative. Ling [12] got some necessary and sufficient conditions
super-efficient solution to a constrained problem under the assumption that the or
cone has a bounded base in terms of contingent derivatives. Gätz and Jahn [13] p
a few necessary and sufficient conditions for a weakly efficient solution to a constr
problem in terms of contingent epiderivatives.

It is well known that weak efficient solution is a kind of extremely efficient soluti
in vector optimization. The concepts of proper efficient solutions are of great impor
in vector optimization (see [19–23]). In this paper, based on the concept of an ep
ative for a set-valued map introduced in [10], we present a few necessary and su
conditions for a Henig efficient solution, a globally proper efficient solution, anf -efficient
solution and a strongly efficient solution, respectively, to a vector set-valued optimiz
problem with constraints. The paper is organized as follows. The next section reviews
concepts. Section 3 presents a number of optimality conditions for a vector set-valu
timization problem with constraints.
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2. Preliminaries and definitions

Throughout this paper, letX andY be two real normed spaces,Y ∗ be the topologica
dual space ofY , andC be a closed convex pointed cone inY . The coneC induces a
partially ordering ofY . LetC∗ be the dual cone of coneC, defined by

C∗ := {
f ∈ Y ∗: f (y)� 0 for all y ∈ C

}
.

Denote the quasi-interior ofC byC�, i.e.,

C� := {
f ∈ Y ∗: f (y) > 0 for all y ∈C\{θ}}.

Denote the cone hull ofA by

cone(A) :=
⋃

{λA: λ� 0}.
Denote the closure ofA by cl(A) and the interior ofA by int(A).
A nonempty convex subsetB of the convex coneC is called a base ofC if C = cone(B)

andθ /∈ cl(B).
We know thatC� �= ∅ if and only if C has a base (see [14]).
In fact, ifC� �= ∅, then we can choosef ∈ C�. It is easy to see that set{y ∈C: f (y)= 1}

is a base ofC. If B is a base ofC, since 0/∈ cl(B), by a known separation argument the
exists somef ∈ C� (see [15]).

Denote the closed unit ball ofY by U . Suppose thatC has a baseB. Let δ :=
inf{‖b‖: b ∈B} and

Cε(B) := cone(B + εU) for all 0< ε < δ.

It is clear thatδ > 0, cl(Cε(B)) is a closed convex pointed cone andC\{θ} ⊂ intCε(B)

for all 0< ε < δ (see [16]).
Let F :X → 2Y be a set-valued map, i.e.,F(x) is a set inY for eachx ∈X. The set

dom(F ) := {
x ∈X, F(x) �= ∅}

is called the domain ofF . The set

graph(F ) := {
(x, y) ∈X× Y : x ∈ dom(F ), y ∈ F(x)

}
is called the graph ofF . The set

epi(F ) := {
(x, y) ∈X × Y : x ∈ dom(F ), y ∈ F(x)+C

}
is called the epigraph ofF .

Let us recall some concepts.

Definition 2.1. LetA be a nonempty subset ofX andx0 ∈A. The contingent coneT (A,x0)

to A at x0 is the set of allh ∈ X for which there exist a sequence{tn} of positive real
numbers and a sequence{xn} in A such that

lim
n→∞ xn = x0 and lim

n→∞ tn(xn − x0)= h.
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Definition 2.2. Let A be a nonempty subset ofX andx0 ∈A. The radial coneR(A,x0) to
A atx0 is the set of allh ∈X for which there exist a sequence{tn} of positive real number
and a sequence{xn} in A such that

lim
n→∞ tn(xn − x0)= h.

Definition 2.3. Let A be a nonempty subset ofX andx0 ∈ A. The Clarke tangent con
C(A,x0) to A at x0 is the set of allh ∈ X, for which for every sequence{xn} in A con-
verging tox0 and for every sequence{tn} of positive real numbers converging to 0, there
a sequence of elements{vn} in X converging toh such that

xn + tnvn ∈A for all n.

Remark 2.1 (see [3]). (a)T (A,x0) is a closed cone.
(b)C(A,x0) is a closed convex cone.
(c)C(A,x0)⊂ T (A,x0)⊂R(A,x0).
(d) If A is convex, then the three sets in (c) coincide andA− x0 ⊂ T (A,x0).

To simplify optimality conditions, Song et al. [10] introduced the following concep
an epiderivative which differentiates from the contingent epiderivative introduced by

Definition 2.4. Let (x0, y0) ∈ graph(F ). The contingent epiderivativeDF(x0, y0) of F at
(x0, y0) is a set-valued map fromX to Y defined by

graph
(
DF(x0, y0)

) = T
(
epi(F ), (x0, y0)

)
.

According to Definition 2.1,y ∈ DF(x0, y0)(x) if and only if there exist a sequenc
{(xn, yn)} in epi(F ) and a sequence{tn} of positive real numbers such that

lim
n→∞(xn, yn)= (x0, y0) and lim

n→∞ tn(xn − x0, yn − x0)= (x, y).

The contingent epiderivative introduced by [5] is single-valued and its epigraph e
to the contingent cone to epigraph ofF at(x0, y0), while the above contingent epiderivati
is set-valued and its graph equals to the contingent cone to epigraph ofF at (x0, y0).

Definition 2.5. Let (x0, y0) ∈ graph(F ). The Clarke tangent epiderivativeCF(x0, y0) of F
at (x0, y0) is the set-valued map fromX to Y defined by

graph
(
CF(x0, y0)

) = C
(
epi(F ), (x0, y0)

)
.

Definition 2.6. Let (x0, y0) ∈ graph(F ). The radial epiderivativeRF(x0, y0) of F at
(x0, y0) is the set-valued map fromX to Y defined by

graph
(
RF(x0, y0)

) =R
(
epi(F ), (x0, y0)

)
.

Due to Definition 2.2,y ∈RF(x0, y0)(x) if and only if there exist a sequence{(xn, yn)}
in epi(F ) and a sequence{tn} of positive real numbers such that

lim
n→∞ tn(xn − x0, yn − x0)= (x, y).
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Definition 2.7. Let (x0, y0) ∈ graph(F ). TheY -epiderivativeYF(x0, y0) of F at (x0, y0)

is the set-valued map fromX to Y defined byy ∈ YF(x0, y0)(x) if there exist a sequenc
{(xn, yn)} in epi(F ) and a sequence{tn} of positive real numbers such that

lim
n→∞ yn = y0 and lim

n→∞ tn(xn − x0, yn − x0)= (x, y).

Suppose thatS ⊂X is a convex subset of dom(F ). Thus,F isC-convex onS if, for any
x1, x2 ∈ S andλ ∈ [0,1],

λF(x1)+ (1− λ)F (x2)⊂ F
(
λx1 + (1− λ)x2

) +C.

It is well known that ifF is C-convex onS, then epi(F ) is a convex subset inX× Y .

Remark 2.2. Let (x0, y0) ∈ graph(F ).
(a) The set-valued mapsDF(x0, y0), CF(x0, y0), RF(x0, y0), andYF(x0, y0) are pos-

itive homogeneous with closed graphs.
(b) graph(CF(x0, y0)) ⊂ graph(DF(x0, y0)) ⊂ graph(YF (x0, y0)) ⊂ graph(RF(x0,

y0)).
(c) Whenever epi(F ) is starshaped at(x0, y0), the four sets in (b) coincide. Especial

whenF is C-convex, the four sets in (b) coincide.
(d) The set-valued mapCF(x0, y0) is a close convex process (see [2]).

The following proposition is crucial in the sequel.

Proposition 2.1. Let (x0, y0) ∈ graph(F ). Then

(i) S − x0 ⊂ domRF(x0, y0) for all S ⊂ dom(F );
(ii) F(x)− y0 ⊂RF(x0, y0)(x − x0) for all x ∈ dom(F ).

Proof. It suffices to prove (ii). Since(x0, y0) ∈ graph(F ), dom(F ) �= ∅. Forx ∈ dom(F ),
let y ∈ F(x). Settn = 1, xn = x, yn = y. So,

tn(xn − x0, yn − y0)= (x − x0, y − y0).

Since(xn, yn)= (x, y) ∈ graph(F )⊂ epi(F ), by Definition 2.6, we have

y − y0 ⊂RF(x0, y0)(x − x0).

Hence, (ii) holds. ✷
Now we consider the following constrained vector set-valued optimization pro

(SVOP):

min F(x)

s.t. x ∈ S, G(x)∩ −D �= ∅,
where dom(F ) = S, G is a set valued map fromX to Z, andD is a nonempty pointe
closed convex cone in real linear normed spaceZ. The coneD introduces a partial orde
in Z.
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A= {
x ∈ S: G(x)∩ −D �= ∅}

and F(A)=
⋃{

F(x): x ∈A
}
.

Definition 2.8. A triple (x, y, z) ∈ S × Y ×Z is said to be feasible ifx ∈ domF ∩ domG,
y ∈ F(x), andz ∈G(x)∩ −D.

In the following definitions, we always assume thatx0 ∈A andy0 ∈ F(x0).

Definition 2.9 (see [16]). Suppose thatC has a baseB. A pair (x0, y0) is called a Henig
efficient pair of (SVOP) if for some 0< ε < δ,(

F(A)− y0
) ∩ − intCε(B)= ∅.

Definition 2.10. Let f ∈ C∗\{θY ∗}. A pair (x0, y0) is called anf -efficient pair of (SVOP)
if

f
(
F(x)− y0

)
� 0 for all x ∈A.

Definition 2.11. A pair (x0, y0) is called a strongly efficient pair of (SVOP) if

F(A)⊂ y0 +C.

Definition 2.12. A pair (x0, y0) is called a super-efficient pair of (SVOP) if there exist
constantM > 0 such that

cone
(
F(A)− y0

) ∩ (U −C)⊂MU.

Definition 2.13 (see [18]). A pair(x0, y0) is called a globally proper efficient pair o
(SVOP) if there exists a pointed convex coneH ⊂ Y with C\{θ} ⊂ intH , such that(

F(A)− y0
) ∩ −H = {θ}.

Definition 2.14. A pair (x0, y0) is called a positive properly efficient pair of (SVOP)
there isf ∈C� such that

f
(
F(x)− y0

)
� 0 for all x ∈A.

3. Set-valued epiderivative and optimality conditions

In this section, by using the concept of a set-valued epiderivative introduced in [10
give optimality conditions for various kinds of properly efficient pairs to (SVOP).

In the sequel, couple(F,G) is a set valued map fromX into Y ×Z defined by

(F,G)(x)= (
F(x)×G(x)

)
.

We make an assumption (C): For anyu ∈D∗\{θZ∗}, there existsx ∈A such that

u
(
G(x)

) ∩ −intR+ �= ∅,
whereR+ = {r ∈ R: r � 0} andA= {x ∈ S: G(x)∩ −D �= ∅}.
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Remark 3.1. It is easy to show that assumption (C) is weaker than the Slater cons
condition.

Now we give optimality conditions for a Henig efficient solution to (SVOP). Firs
a necessary condition is given in a general setting.

Theorem 3.1. Suppose thatB is a base ofC and intD �= ∅. Let (x0, y0) ∈ graph(F ) and
δ := inf{‖b‖: b ∈ B}. If (x0, y0) is a Henig efficient pair of(SVOP), then for some0<

ε < δ and for anyz0 ∈G(x0)∩ −D,[
Y (F,G)(x0, y0, z0)(x)+ (θ, z0)

] ∩ − int
(
Cε(B)×D

) = ∅ (1)

for all x ∈ domY (F,G)(x0, y0, z0).

Proof. Suppose that(x0, y0) is a Henig efficient pair of (SVOP); then there exists 0<

ε < δ such that(
F(A)− y0

) ∩ − intCε(B)= ∅. (2)

If, for ε above, there existx ∈ domY (F,G)(x0, y0, z0) and(y, z) ∈ Y ×Z such that

(y, z+ z0) ∈ [
Y (F,G)(x0, y0, z0)(x)+ (θ, z0)

] ∩ − int
(
Cε(B)×D

)
, (3)

then(y, z) ∈ Y (F,G)(x0, y0, z0)(x) andy ∈ − intCε(B).
By Definition 2.7, there exist a sequence{(xn, yn, zn)} in epi(F,G) and a sequence{tn}

of positive real numbers such that

lim
n→∞(yn, zn)= (y0, z0) and lim

n→∞ tn(xn − x0, yn − x0, zn − z0)= (x, y, z).

Sincetn > 0 andCε(B) is a cone, there existsN1 such that

yn − y0 ∈ − intCε(B) for all n�N1.

Similarly, sinceD is a cone,z+ z0 ∈ − intD and limn→∞ tn(zn − z0)= z, there existsN2
such that

tn(zn − z0)+ z0 ∈ − intD for all n�N2. (4)

Moreover, there existsN � max(N1,N2) such thattN > 1. Otherwise, because limn→∞ yn
= y0 and limn→∞ tn(yn − y0)= θ = y, it contradictsy ∈ − intCε(B). It follows from (4)
that

tN (zN − z0)+ z0 = tN

(
zN −

(
1− 1

tN

)
z0

)
∈ − intD,

and hence,zN − (1− 1/tN)z0 ∈ − intD. SincetN > 1 andz0 ∈ −D, (1− 1/tN)z0 ∈ −D.
Thus,

zN ∈ −D − intD = − intD.

Since(xn, yn, zn) ∈ epi(F,G) for all n ∈ N , there arey ′
n ∈ F(xn) with yn ∈ y ′

n + C and
z′
n ∈G(xn) with zn ∈ z′

n +D. Thus,

y ′
N ∈ yN −C ⊂ y0 − intCε(B)−C = y0 − intCε(B)
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z′
N ∈ zN −D ⊂ − intD −D = − intD.

Hence,(xN, y ′
N, z

′
N) is a feasible triple, buty ′

N ∈ y0 − intCε(B), which contradicts (2)
Therefore, (1) holds. ✷

LetC be a convex cone with baseB. Denote

C∆(B)= {
f ∈ C∗: inf

{
f (b): b ∈B

}
> 0

}
.

By the separation theorem,C∆(B) �= ∅. Clearly (see [17,25]),

C� ⊃ C∆(B)⊃ C∗ +C∆(B).

To obtain necessary and sufficient conditions for a Henig efficient solution to (SV
we give the following lemma.

Lemma 3.1. For anyε ∈ (0, δ), Cε(B)
∗\{θY ∗} ⊂ C∆(B).

Proof. For anyf ∈Cε(B)
∗\{θY ∗},

f (c) > 0 for all c ∈ intCε(B).

SinceC\{θ} ⊂ intCε(B), f (b) > 0 for all b ∈ B.
Let η = inf{f (b) | b ∈ B}. Suppose thatη � 0; then there existsbn ∈B with

f (bn) <
1

n
for everyn ∈N.

Fixedu ∈U with f (u) > 0, then

f (bn − εu)= f (bn)− εf (u) < 0 for sufficiently largen ∈N.

But f ∈ Cε(B)
∗\{θY ∗} andbn − εu ∈ B + εU ∈ Cε(B), thusf (bn − εu) � 0. This is a

contradiction. Hence,η > 0. Therefore,f ∈ C∆(B). ✷
Lemma 3.2. For anyf ∈C∆(B), there exists0< ε < δ with f ∈ Cε(B)

∗\{θY ∗}.

Proof. Let f ∈C∆(B). Thus,η = inf{f (b) | b ∈ B}> 0. Sof �= θY ∗ .
Let ε ∈ (0,min(η/(2‖f ‖), δ)), Cε(B) = cl(cone(B + εU)), andV = B + εU . Then,

for anyy ∈ V , there existb ∈ B andu ∈ U such thaty = b + εu. So,

f (y)= f (b)+ εf (u)� f (b)− ε‖f ‖ � η

2
> 0.

Hence,f (y)� 0 for ally ∈Cε(B), that is,f ∈Cε(B)
∗. Therefore,f ∈ Cε(B)

∗\{θY ∗}. ✷
Lemma 3.3. (i) intC∗ ⊂ C∆(B), whereintC∗ is the interior ofC∗ in Y ∗ with respect to
the norm ofY ∗.

(ii) If B is bounded, thenintC∗ = C∆(B).

Now, we can give a Fritz John type necessary condition for a Henig efficient solut
(SVOP) in a general setting.
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Proposition 3.1. LetB be a base ofC andintD �= ∅. If (x0, y0) is a Henig efficient pair o
(SVOP), then, for anyz0 ∈G(x0) ∩ −D, there existf ∈C∆(B)∪ {θY ∗} andu ∈D∗, both
dependent onz0 and not both being zero functionals, such that

u(z0)= 0 and f (y)+ u(z)� 0

for all x ∈ domC(F,G)(x0, y0, z0) and(y, z) ∈ C(F,G)(x0, y0, z0)(x).

Proof. Let z0 ∈G(x0)∩ −D and define

Q=
[ ⋃
x∈Ω

C(F,G)(x0, y0, z0)(x)+ (θ, z0)

]
,

whereΩ = domC(F,G)(x0, y0, z0).
We first show thatQ is convex by showing thatQ1 = Q − (θ, z0) is convex. Let

(y1, z1), (y2, z2) ∈Q1. Then, there existx1, x2 ∈Ω such that

(yi, zi ) ∈C(F,G)(x0, y0, z0)(xi), i = 1,2,

and thus,

(xi, yi, zi) ∈C
(
epi(F,G), (x0, y0, z0)

)
, i = 1,2.

ButC(epi(F,G), (x0, y0, z0)) is a convex cone, therefore,

λ(x1, y1, z1)+ (1− λ)(x2, y2, z2) ∈ C
(
epi(F,G), (x0, y0, z0)

)
for all λ ∈ [0,1], that is,(

λy1 + (1− λ)y2, λz1 + (1− λ)z2
) ∈C(F,G)(x0, y0, z0)

(
λx1 + (1− λ)x2

)
for all λ ∈ [0,1]. It follows thatQ1 and its translateQ are convex.

By Theorem 3.1 and Remark 2.2(b), it is easy to show thatQ∩ − int(Cε(B)×D)= ∅.
By the separation theorem, there existf ∈ Y ∗ andu ∈Z∗, not both zero functionals, and
real numberξ such that

f (y)+ u(z)� ξ for all (y, z) ∈Q (5)

and

f (y)+ u(z) < ξ for all (y, z) ∈ − int
(
Cε(B)×D

)
. (6)

But since(y, z) ∈ − int(Cε(B)×D) can be made as close as possible to(θ, θ), from (6),
the continuity off andu leads to thatξ � 0. Sincez can be made as close as possible tθ

in (6), by the continuity ofu, we have

f (y)� ξ for all y ∈ − intCε(B).

SinceCε(B) is a cone,f (y)� 0 for all y ∈ − intCε(B). Thus,f (y)� 0 for all y ∈Cε(B),
that is,f ∈Cε(B)

∗. Similarly, we can easily get thatu ∈D∗.
By Lemma 3.1,f ∈C∆(B)∪ {θY ∗}.
From (5) and the fact(θ, z0) ∈ Q, we getu(z0) � 0. But z0 ∈ −D andu ∈ D∗, so

u(z0) � 0. Thus,u(z0) = 0. Let x ∈ domC(F,G)(x0, y0, z0) and (y, z) ∈ C(F,G)(x0,
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y0, z0)(x). SinceC(F,G)(x0, y0, z0)(x)+ (θ, z0)⊂ Q andu(z0)= 0, from (5), we know
thatf (y)+ u(z)� 0.

This completes the proof.✷
Let FA andGA denoteF andG restricted onA, respectively.
The following theorem is a sufficient condition involving multiplier functional fo

Henig efficient solution of (SVOP).

Theorem 3.2. Let (x0, y0) ∈ graph(F ) andB be a base ofC. If there existz0 ∈ G(x0) ∩
−D, f ∈ C∆(B), andu ∈D∗ such that

u(z0)= 0 and f (y)+ u(z)� 0

for all x ∈ domR(FA,GA)(x0, y0, z0) and(y, z) ∈ R(FA,GA)(x0, y0, z0)(x), then(x0, y0)

is a Henig efficient pair of(SVOP).

Proof. Sincef ∈ C∆(B), by Lemma 3.2, there existsε ∈ (0, δ) such thatf ∈ Cε(B)
∗\

{θY ∗}. Then(y0 − intCε(B)) ∩ F(A) = ∅. Otherwise, there existx ′ ∈ A andy ′ ∈ F(x ′)
such that

y ′ − y0 ∈ − intCε(B).

Sincex ′ ∈A, there existsZ′ ∈G(x ′)∩ −D. By Proposition 2.1, we have

(y ′ − y0, z
′ − z0) ∈ R(FA,GA)(x0, y0, z0)(x

′ − x0).

Thus,

f (y ′ − y0)+ u(z′ − z0)� 0. (7)

Sincey ′ − y0 ∈ − intCε(B) andf ∈ Cε(B)
∗\{θY ∗}, f (y ′ − y0) < 0. Sincez′ ∈ G(x ′) ∩

−D, u(z0) = 0, andu ∈ D∗, u(z′ − z0) � 0. Thus,f (y ′ − y0) + u(z′ − z0) < 0, which
contradicts (7). Hence,(x0, y0) is a Henig efficient pair of (SVOP).✷

The following corollary gives a necessary and sufficient conditions for a Henig effi
solution of (SVOP) whenG satisfies assumption (C).

Corollary 3.1. Let (x0, y0) ∈ graph(F ), B be a base ofC and intD �= ∅. Suppose thatF
isC-convex andG isD-convex. IfG satisfies assumption(C), then(x0, y0) is a Henig effi-
cient pair of (SVOP)if and only if there existz0 ∈G(x0)∩ −D,f ∈ C∆(B), andu ∈D∗,
such that

u(z0)= 0 and f (y)+ u(z)� 0 (8)

for all x ∈ domD(F,G)(x0, y0, z0) and(y, z) ∈D(F,G)(x0, y0, z0)(x).

Proof. Suppose that(x0, y0) is a Henig efficient pair of (SVOP). Thus,G(x0)∩ −D �= ∅.
Let z0 ∈ G(x0) ∩ −D. By Proposition 3.1 and Remark 2.2(c), there existf ∈ C∆(B) ∪
{θY ∗} andu ∈D∗, which satisfy (8) and are not both zero functionals.
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If f = θY ∗ , thenu ∈ D∗\{θZ∗}. SinceG satisfies assumption (C), there existsx ∈ A

such thatu(G(x))∩ − intR+ �= ∅, that is, there existsz ∈G(x) with u(z) < 0.
Sincex ∈A, there existsy ∈ F(x). By Proposition 2.1,

(y − y0, z− z0) ∈D(F,G)(x0, y0, z0)(x − x0).

So, u(z − z0) � 0, that is,u(z) � 0, which is a contradiction. Hence,f �= θY ∗ , that is,
f ∈C∆(B).

Conversely, it follows directly from Theorem 3.2 and Remark 2.2.✷
For simplicity, we denote the set of super-efficient points ofE byES(E,C) and the se

of all Henig efficient points ofE byEH(E,C).
To give optimality conditions for a super-efficient solution to (SVOP), let us recal

following lemma.

Lemma 3.4. If C has a bounded baseB and if A is a nonempty subset ofX, then
ES(F (A),C) =EH(F(A),C).

Under the assumption thatC has a bounded baseB, the super-efficiency equals to th
Henig efficiency. Hence, we can also give a necessary and sufficient condition for a
efficient solution of (SVOP).

Corollary 3.2. Let (x0, y0) ∈ graph(F ). Suppose thatC has a bounded baseB and
intD �= ∅. Suppose thatF isC-convex andG isD-convex andG satisfies assumption(C).
Then(x0, y0) is a super-efficient pair of(SVOP)if and only if there existz0 ∈G(x0)∩−D,
f ∈ intC∗, andu ∈D∗ such that

u(z0)= 0 and f (y)+ u(z)� 0

for all x ∈ domD(F,G)(x0, y0, z0) and(y, z) ∈D(F,G)(x0, y0, z0)(x).

The above result is different from Theorems 3.3 and 3.4 in [12] because we u
epiderivative introduced in [10].

Next we give optimality conditions for a globally proper efficient solution to (SVO
Firstly, we provide a necessary condition in a general setting.

Theorem 3.3. Let (x0, y0) ∈ graph(F ) and intD �= ∅. Suppose that(x0, y0) is a glob-
ally proper efficient pair of (SVOP). If H is a pointed convex cone which satisfi
Definition 2.13 (that is, C\{θ} ⊂ intH , and (F (A) − y0) ∩ −H = {θ}), then for any
z0 ∈G(x0)∩ −D,[

Y (F,G)(x0, y0, z0)(x)+ (θ, z0)
] ∩ − int(H ×D)= ∅

for all x ∈ domY (F,G)(x0, y0, z0).

Proof. Suppose that(x0, y0) is a globally proper efficient pair of (SVOP), then there ex
a convex point coneH ⊂ Y , such thatC\{θ} ⊂ intH and(

F(A)− y0
) ∩ −H = {θ}. (9)
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If there existx ∈ domY (F,G)(x0, y0, z0) and(y, z) ∈ Y ×Z such that

(y, z+ z0) ∈ [
Y (F,G)(x0, y0, z0)(x)+ (θ, z0)

] ∩ − int(H ×D), (10)

then(y, z) ∈ Y (F,G)(x0, y0, z0)(x).
By Definition 2.7, there exists a sequence{(xn, yn, zn)} in epi(F,G) and a sequenc

{tn} of positive real numbers with

lim
n→∞(yn, zn)= (y0, z0) and lim

n→∞ tn(xn − x0, yn − x0, zn − z0)= (x, y, z).

By (11),y ∈ − intH . Thus, there existsN1 such that

yn − y0 ∈ − intH for all n�N1,

sincetn > 0 andH is a cone. Similarly, from the proof of Theorem 3.1, there exitsN �N1
such that

zN ∈ − intD.

Since(xn, yn, zn) ∈ epi(F,G) for all n ∈N , there arey ′
n ∈ F(xn) with yn ∈ y ′

n +C and
z′
n ∈G(xn) with zn ∈ z′

n +D. Thus,

y ′
N ∈ yN −C ⊂ y0 − intH −C = y0 − intH

and

z′
N ∈ zN −D ⊂ − intD −D = − intD.

Hence,(xN, y ′
N, z

′
N) is a feasible triple, buty ′

N ∈ y0 − intH , which contradicts (10). So
(9) fulfills. ✷

The following proposition is a Fritz John necessary condition for a globally pr
efficient solution to (SVOP).

Proposition 3.2. Let (x0, y0) ∈ graph(F ) and intD �= ∅. If (x0, y0) is a globally proper
efficient pair of(SVOP), then, for anyz0 ∈ G(x0) ∩ −D, there existf ∈ C� ∪ {θY ∗} and
u ∈D∗, both dependent onz0, but not both being zero functionals, such that

u(z0)= 0 and f (y)+ u(z)� 0

for all x ∈ domC(F,G)(x0, y0, z0) and(y, z) ∈ C(F,G)(x0, y0, z0)(x).

Proof. Suppose that(x0, y0) is a globally proper efficient pair of (SVOP); then there ex
a convex point coneH ⊂ Y , such thatC \ {θ} ⊂ intH and(F (A)− y0)∩ −H = {θ}). Let
z0 ∈G(x0)∩ −D and define

Q=
[ ⋃
x∈Ω

C(F,G)(x0, y0, z0)(x)+ (θ, z0)

]
,

whereΩ = domC(F,G)(x0, y0, z0).
It is not hard to show thatQ is convex.
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We can easily show thatQ∩ − int(H ×D)= ∅, from Theorem 3.3 and Remark 2.2(b
So by the separation theorem, there existf ∈ Y ∗ andu ∈ Z∗, not both zero functionals
and a real numberξ such that

f (y)+ u(z)� ξ for all (y, z) ∈Q (11)

and

f (y)+ u(z) < ξ for all (y, z) ∈ − int(H ×D). (12)

From the proof of Proposition 3.1, we get thatf ∈ H ∗, ξ � 0, andu ∈ D∗. If f �= θY ∗ ,
thenf (y) > 0 for all y ∈ intH . SinceC \ {0} ⊂ intH , f (c) > 0 for all c ∈ C \ {θ}, hence
f ∈C�.

Therefore,f ∈C� ∪ {θY ∗}. Since(θ, z0) ∈Q, from (12) we getu(z0)� 0, butz0 ∈ −D

andu ∈ D∗ so u(z0) � 0. Thus,u(z0) = 0. Finally, letx ∈ domC(F,G)(x0, y0, z0) and
(y, z) ∈ C(F,G)(x0, y0, z0)(x); sinceC(F,G)(x0, y0, z0)(x) + (θ, z0) ⊂ Q andu(z0) =
0, from (12), we know,

f (y)+ u(z)� 0.

This completes the proof.✷
Lemma 3.5 (see [14]).A positive properly efficient pair of(SVOP)must be a globally
proper efficient pair of(SVOP).

By applying Lemma 3.5, we can give a sufficient condition involving multiplier fu
tionals for a globally proper efficient solution of (SVOP).

Theorem 3.4. Let (x0, y0) ∈ graph(F ). Suppose that there existz0 ∈G(x0)∩−D, f ∈ C�,
andu ∈D∗ such that

u(z0)= 0 and f (y)+ u(z)� 0

for all x ∈ domR(FA,GA)(x0, y0, z0) and (y, z) ∈ R(FA,GA)(x0, y0, z0)(x). Then
(x0, y0) is a positive properly efficient pair of(SVOP). Therefore,(x0, y0) is a globally
proper efficient pair of(SVOP).

Proof. Suppose the assumption is satisfied. If(x0, y0) is not a positive proper efficient pa
of (SVOP), then, for anyf ∈C�, there existx ′ ∈A andy ′ ∈ F(x ′) such that

f (y ′ − y0) < 0.

Sincex ′ ∈A, there existsz′ ∈G(x ′)∩ −D. From Proposition 2.1, we have

(y ′ − y0, z
′ − z0) ∈ R(FA,GA)(x0, y0, z0)(x

′ − x0).

Thus,f (y ′ − y0)+ u(z′ − z0)� 0. Therefore,

u(z′ − z0) > 0. (13)

Sincez′ ∈G(x ′)∩ −D, u(z0)= 0, andu ∈D∗, u(z′ − z0)� 0, which contradicts (14)
Thus, there isf ∈ C� such thatf (F (x)− y0)� 0 for all x ∈A.
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Hence,(x0, y0) is a positive proper efficient pair of (SVOP). Therefore,(x0, y0) is a
globally proper efficient pair of (SVOP).✷

The following corollary gives a necessary and sufficient condition for a globally pr
efficient solution of (SVOP).

Corollary 3.3. Let (x0, y0) ∈ graph(F ) and intD �= ∅. Suppose thatF is C-convex,G is
D-convex, andG satisfies assumption(C). Then,(x0, y0) is a globally proper efficient pai
of (SVOP)if and only if there existz0 ∈G(x0)∩ −D, f ∈C�, andu ∈D∗ such that

u(z0)= 0 and f (y)+ u(z)� 0 (14)

for all x ∈ domD(F,G)(x0, y0, z0) and(y, z) ∈D(F,G)(x0, y0, z0)(x).

Proof. Suppose that(x0, y0) is a globally proper efficient pair of (SVOP). Thus,G(x0) ∩
−D �= ∅. Let z0 ∈ G(x0) ∩ −D. By Proposition 3.2 and Remark 2.2(c), there existf ∈
C� ∪ {θY ∗} andu ∈D∗, which satisfy (14) and are not both zero functionals.

If f = θY ∗ , thenu ∈ D∗\{θZ∗}. SinceG satisfies assumption (C), there existsx ∈ A

such thatu(G(x))∩ − intR+ �= ∅. So, there existsz ∈G(x) with u(z) < 0.
Sincex ∈A, there existsy ∈ F(x). By Proposition 2.1,

(y − y0, z− z0) ∈D(F,G)(x0, y0, z0)(x − x0).

Hence,u(z− z0)� 0, that is,u(z)� 0, which is a contradiction. Therefore,f �= θY ∗ , that
is, f ∈C�.

Conversely, it follows directly form Theorem 3.4 and Remark 2.2.✷
The concept of anf -efficient solution is of great importance in scalarization of vec

set-valued optimization (see [24]). The following theorem gives a necessary conditi
anf -efficient solution to (SVOP) in a general setting.

Let I be the identical mapping fromZ intoZ, i.e.,I (z)= z for all z ∈Z.

Theorem 3.5. Let (x0, y0) ∈ graph(F ) and intD �= ∅. Suppose that(x0, y0) is an f -
efficient pair of(SVOP). Then for anyz0 ∈G(x0)∩ −D,

(f, I)
[
Y (F,G)(x0, y0, z0)(x)+ (θ, z0)

] ∩ − int(R+ ×D)= ∅ (15)

for all x ∈ domY (F,G)(x0, y0, z0).

Proof. If (15) does not hold, then there existx ∈ domY (F,G)(x0, y0, z0) and (y, z) ∈
Y ×Z such that

(f, I)(y, z+ z0) ∈ − int(R+ ×D) and (y, z) ∈ Y (F,G)(x0, y0, z0)(x),

that is,f (y) < 0 andz+ z0 ∈ − intD.
By Definition 2.7, there exist a sequence{(xn, yn, zn)} in epi(F,G) and a sequence{tn}

of positive real numbers such that

lim (yn, zn)= (y0, z0) and lim tn(xn − x0, yn − x0, zn − z0)= (x, y, z).

n→∞ n→∞
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By f (y) < 0 and the continuity off , there existsN1 such that

f
(
tn(yn − y0)

)
< 0 for all n ∈N1.

Because oftn > 0 and the linearity off , we have

f (yn − y0) < 0 for all n�N1,

that is,f (yn)− f (y0) < 0 for all n � N1. Similarly, sinceD is a cone,z + z0 ∈ − intD
and limn→∞ tn(zn − z0)= z, there existsN2 such that

tn(zn − z0)+ z0 ∈ − intD for all n�N2. (16)

Similarly, from the proof of Theorem 3.1, there exitsN � max(N1,N2) such that

zN ∈ − intD.

Since(xn, yn, zn) ∈ epi(F,G) for all n ∈ N , there arey ′
n ∈ F(xn) with yn ∈ y ′

n + C and
z′
n ∈G(xn) with zn ∈ z′

n +D. Thus,

y ′
N ∈ yN −C

and

z′
N ∈ zN −D ⊂ − intD −D = − intD.

So,f (y ′
N) � f (yN) < f (y0). But (xN , y ′

N, z
′
N) is a feasible triple. Therefore,(x0, y0)

is not anf -efficient pair of (SVOP) which is a contradiction.✷
The following proposition gives a Fritz John necessary condition for anf -efficient so-

lution to (SVOP).

Proposition 3.3. Let (x0, y0) ∈ graph(F ), f ∈ C∗\{θY ∗}, and intD �= ∅. If (x0, y0) is an
f -efficient pair of(SVOP), then, for anyz0 ∈G(x0)∩ −D, there existα � 0 andu ∈D∗,
both dependent onz0, but not both being zero functionals, such that

u(z0)= 0 and αf (y)+ u(z)� 0

for all x ∈ domC(F,G)(x0, y0, z0) and(y, z) ∈ C(F,G)(x0, y0, z0)(x).

Proof. Let z0 ∈G(x0)∩ −D and define

Q=
[ ⋃
x∈Ω

C(F,G)(x0, y0, z0)(x)+ (θ, z0)

]
,

whereΩ = domC(F,G)(x0, y0, z0).
It can be shown thatQ is convex.
We can easily show thatQ∩− int(R+ ×D)= ∅, from Theorem 3.5 and Remark 2.2(b

Since the continuity and the linearity off andI , (f, I)Q is a convex set. So by the sep
ration theorem, there existα ∈R andu ∈ Z∗, not both zero functionals, and a real num
ξ such that

αf (y)+ u(z)� ξ for all (y, z) ∈Q (17)
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and

αβ + u(z) < ξ for all (β, z) ∈ − int(R+ ×D). (18)

But since(β, z) ∈ − int(R+ ×D) can be made arbitrarily close to(θ, θ), the continuity of
f andu give from (18) thatξ � 0. z in (18) can be arbitrarily close toθ , by the continuity
of u; then

αβ � ξ for all β ∈ − intR+.

SinceR+ is a cone, we haveα � 0. Similarly, we can easily get thatu ∈D∗.
Since (θ, z0) ∈ Q, from (17) we getu(z0) � 0. But z0 ∈ −D and u ∈ D∗, so

u(z0) � 0. Thus, u(z0) = 0. Finally, let x ∈ domC(F,G)(x0, y0, z0) and (y, z) ∈
C(F,G)(x0, y0, z0)(x); sinceC(F,G)(x0, y0, z0)(x)+ (θ, z0) ⊂ Q andu(z0) = 0, from
(17), we know that

αf (y)+ u(z)� 0.

This completes the proof.✷
The following theorem is a sufficient condition involving multiplier functional for

f -efficient solution of (SVOP).

Theorem 3.6. Let f ∈ C∗\{θY ∗} and (x0, y0) ∈ graph(F ). Suppose that there existz0 ∈
G(x0)∩ −D andu ∈D∗ such that

u(z0)= 0 and f (y)+ u(z)� 0

for all x ∈ domR(FA,GA)(x0, y0, z0) and (y, z) ∈ R(FA,GA)(x0, y0, z0)(x). Then
(x0, y0) is anf -efficient pair of(SVOP).

Proof. If (x0, y0) is not anf -efficient pair of (SVOP), then there existx ′ ∈ A andy ′ ∈
F(x ′) such that

f (y ′ − y0) < 0.

Sincex ′ ∈A, there existsz′ ∈G(x ′)∩ −D. By Proposition 2.1, we have

(y ′ − y0, z
′ − z0) ∈ R(FA,GA)(x0, y0, z0)(x

′ − x0).

Thus,f (y ′ − y0)+ u(z′ − z0)� 0. Therefore,

u(z′ − z0) > 0. (19)

Sincez′ ∈ G(x ′) ∩ −D, u(z0) = 0, andu ∈ D∗, u(z′ − z0) � 0, which contradicts (19)
Hence,(x0, y0) is anf -efficient pair of (SVOP). ✷

The following corollary is a necessary and sufficient condition for anf -efficient solu-
tion to (SVOP) whenG satisfies assumption (C).



348 X.-H. Gong et al. / J. Math. Anal. Appl. 284 (2003) 332–350

sts

OP),
Corollary 3.4. Let f ∈ C∗\{θY ∗}, (x0, y0) ∈ graph(F ) and intD �= ∅. Suppose thatF is
C-convex,G is D-convex andG satisfies assumption(C). Then(x0, y0) is anf -efficient
pair of (SVOP)if and only if there existz0 ∈G(x0) ∩ −D andu ∈D∗ such that

u(z0)= 0 and f (y)+ u(z)� 0

for all x ∈ domD(F,G)(x0, y0, z0) and(y, z) ∈D(F,G)(x0, y0, z0)(x).

Proof. Suppose that(x0, y0) is anf -efficient pair of (SVOP). Thus,G(x0)∩−D �= ∅. Let
z0 ∈ G(x0) ∩ −D. By Proposition 3.3 and Remark 2.2(c), there existα � 0 andu′ ∈ D∗,
not both zero functionals, such that

u′(z0)= 0 and αf (y)+ u′(z)� 0 (20)

for all x ∈ domD(F,G)(x0, y0, z0) and(y, z) ∈D(F,G)(x0, y0, z0)(x).
Assume thatα = 0. Thenu′ ∈D∗\{θZ∗}. SinceG satisfies assumption (C), there exi

x ′ ∈A such thatu′(G(x ′))∩ − intR+ �= ∅, that is, there existsz′ ∈G(x ′) with

u′(z′) < 0. (21)

Sincex ′ ∈A, there existsy ′ ∈ F(x ′). By Proposition 2.1,

(y ′ − y0, z
′ − z0) ∈D(F,G)(x0, y0, z0)(x

′ − x0).

So,u′(z′ − z0)� 0, that is,u′(z′)� 0, which contradicts (21). Hence,α �= 0, that is,α > 0.
Therefore, dividingα in two sides of (20), we have

f (y)+ u′(z)� 0 and
u′(z0)

α
= 0.

Let u= u′/α. We have

u(z0)= 0 and f (y)+ u(z)� 0

for all ∈ domD(F,G)(x0, y0, z0) and(y, z) ∈D(F,G)(x0, y0, z0)(x).
Conversely, it follows directly form Theorem 3.6 and Remark 2.2.✷
To obtain necessary and sufficient conditions for a strongly efficient solution to (SV

we give the following lemma.

Lemma 3.6. Let (x0, y0) ∈ graph(F ). Then(x0, y0) is a strongly efficient pair of(SVOP)
if and only if(x0, y0) is anf -efficient pair of(SVOP)for anyf ∈ C∗\{θY ∗}.

Proof. Suppose that(x0, y0) is a strong efficient pair of (SVOP), i.e.,

F(A)− y0 ⊂ C.

For anyf ∈C∗ \ {θY ∗}, we have (see [15])

f
(
F(x)− y0

)
� 0 for anyx ∈A.

That is, (x0, y0) is an f -efficient pair of (SVOP). Conversely, for anyf ∈ C∗ \ {θY ∗},
(x0, y0) is anf -efficient pair of (SVOP), i.e.,

f
(
F(x)− y0

)
� 0 for anyx ∈A.
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From the duality ofC, we have

F(x)− y0 ⊂ C for anyx ∈A.

Hence,(x0, y0) is a strong efficient pair of (SVOP).✷
As a direct consequence of Corollary 3.4 and Lemma 3.6, we can easily get the f

ing result.

Corollary 3.5. Let (x0, y0) ∈ graph(F ) and intD �= ∅. Suppose thatF is C-convex,G
is D-convex, andG satisfies assumption(C). Then(x0, y0) is a strongly efficient pair o
(SVOP)if and only if for anyf ∈ C∗\{θY ∗}, there existz0 ∈G(x0)∩−D andu ∈D∗ such
that

u(z0)= 0 and f (y)+ u(z)� 0

for all x ∈ domD(F,G)(x0, y0, z0) and(y, z) ∈D(F,G)(x0, y0, z0)(x).

It should be mentioned that each type of properly efficient solutions to a vecto
valued optimization problem with constraints can be characterized by the correspo
positive functional. With the approach used in this paper, we can derive several othe
mality conditions for constrained vector set-valued optimization.
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