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Abstract

Based on the concept of an epiderivative for a set-valued map introduced in J. Nanchang Univ. 25
(2001) 122-130, in this paper, we present a few necessary and sufficient conditions for a Henig effi-
cient solution, a globally proper efficient solution, a positive properly efficient solutioyi;&fficient
solution and a strongly efficient solution, respectively, to a vector set-valued optimization problem
with constraints.
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1. Introduction

More and more attention has been paid to sufficient and necessary conditions for an
efficient solution in vector set-valued optimization. As early as in 1981, the concept of a
contingent derivative of a set-valued map was firstly introduced by Aubin [1]. With the
concept of a contingent derivative, Aubin and Ekeland [2], Corley [3], and Luc [4] derived
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sufficient and necessary conditions for a strongly efficient solution, a weakly efficient solu-
tion and a locally efficient solution, respectively. But Aubin and Ekeland [2] made a strong
assumption that the graph #fis convex, and Corley [3] did not unify the necessary and
sufficient optimality conditions. To overcome those disadvantages, Jahn and Rauh [5] in-
troduced a contingent epiderivative of a set-valued map and derived the corresponding
optimality conditions. Subsequently, a generalized contingent epiderivative of a set-valued
map was introduced by Chen and Jahn [6]. Based on a vector variational inequality and the
concept of a contingent epiderivative of a set-valued map introduced in Jahn and Rauh [5],
Liu and Gong [7] obtained a necessary and sufficient condition for some kinds of properly
efficiency in vector set-valued optimization. Gong and Dong [8] simplified the optimal-
ity conditions for properly efficient solutions of an unconstrained optimization problem
in term of a radial contingent derivative of a set-valued map introduced in [9]. In light
of the notions of a contingent epiderivative in [5] and a radial contingent derivative of
set-valued map in [9], Song et al. [10] introduced a new concept of epiderivative for a set-
valued map and obtained a few necessary and sufficient conditions for a weakly efficient
solution, a strongly efficient solution, a Henig efficient solution, a super-efficient solution
and a Benson efficient solution respectively in unconstrained vector set-valued optimiza-
tion.

Meanwhile, many authors studied vector set-valued optimization problems with con-
straints. Corley [3] gave optimality conditions for an efficient solution and a weakly effi-
cient solution of a constrained problem in terms of the Clarke derivative and the contingent
derivative. Luc [4] presented necessary conditions for a local weakly efficient solution and
sufficient conditions for a locally efficient solution of a constrained problem in terms of
the contingent derivative when the functions are upper semi-differentiable. Amahroq and
Taa [11] gave sufficient conditions for a locally efficient solution to a constrained prob-
lem with g-paraconvex data in term of the contingent derivative. Taa [9] derived several
necessary conditions for a local weakly efficient solution, and sufficient condition for a
weakly efficient solution and an efficient solution of a constrained problem in terms of
radial contingent derivative. Ling [12] got some necessary and sufficient conditions for a
super-efficient solution to a constrained problem under the assumption that the ordering
cone has a bounded base in terms of contingent derivatives. Géatz and Jahn [13] provided
a few necessary and sufficient conditions for a weakly efficient solution to a constrained
problem in terms of contingent epiderivatives.

It is well known that weak efficient solution is a kind of extremely efficient solutions
in vector optimization. The concepts of proper efficient solutions are of great importance
in vector optimization (see [19-23]). In this paper, based on the concept of an epideriv-
ative for a set-valued map introduced in [10], we present a few necessary and sufficient
conditions for a Henig efficient solution, a globally proper efficient solutiony afficient
solution and a strongly efficient solution, respectively, to a vector set-valued optimization
problem with constraints. The paper is organized as follows. The next section reviews some
concepts. Section 3 presents a number of optimality conditions for a vector set-valued op-
timization problem with constraints.
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2. Preliminaries and definitions

Throughout this paper, Iet andY be two real normed spaceB; be the topological
dual space ofr, andC be a closed convex pointed cone ¥n The coneC induces a
partially ordering ofY . Let C* be the dual cone of cor@, defined by

C*:={fer* f(y)=0forallyeC}.
Denote the quasi-interior af by C*, i.e.,

CP:={feY* f(y)>O0forallyeC\{8}}.
Denote the cone hull of by

CON€A) := U{AA: A >0}

Denote the closure of by cl(A) and the interior ofA by int(A).

A nonempty convex subsét of the convex con€ is called a base af if C = cond&B)
andé ¢ cl(B).

We know thatC* = ¢ if and only if C has a base (see [14]).

In fact, if C* # @, then we can choosg e C?. Itis easy to see that st € C: f(y) =1}
is a base o’. If B is a base ot’, since O¢ cl(B), by a known separation argument there
exists somef e C* (see [15]).

Denote the closed unit ball of by U. Suppose thaC has a baseB. Let § :=
inf{||5||: b € B} and

Ce.(B):=condB +¢U) forall0<e <.

Itis clear thats > 0, cl(C.(B)) is a closed convex pointed cone afi§{6} C int C.(B)
forall 0 < ¢ < § (see [16]).
Let F: X — 2 be a set-valued map, i.65(x) is a set inY for eachx € X. The set

dom(F) := {x € X, F(x) #0}
is called the domain of'. The set

graph(F) :=={(x,y) € X x Y: x edom(F), y € F(x)}
is called the graph of. The set

epi(F) :={(x,y) € X x Y: x edom(F), y € F(x) + C}
is called the epigraph af'.

Let us recall some concepts.

Definition 2.1. Let A be a nonempty subset &fandxg € A. The contingentcong(A, xo)
to A at xg is the set of allz € X for which there exist a sequen¢g} of positive real
numbers and a sequenfog } in A such that

lim x,=x0 and lim #,(x, — xg) = h.
n—>oo n—>oo
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Definition 2.2. Let A be a nonempty subset &f andxg € A. The radial coneR(A, xo) to
A atxg is the set of alk € X for which there exist a sequenfig} of positive real numbers
and a sequende;,,} in A such that

lim #,(x, — x0) = h.
n—>oo

Definition 2.3. Let A be a nonempty subset &f andxg € A. The Clarke tangent cone
C(A, xp) to A at xg is the set of allz € X, for which for every sequende;,} in A con-
verging toxg and for every sequendeg,} of positive real numbers converging to O, there is
a sequence of elements, } in X converging to: such that

Xn +t,v, € A foralln.
Remark 2.1 (see [3]). (&)T (A, xo) is a closed cone.
(b) C(A, xo) is a closed convex cone.

(c) C(A, x0) C T (A, x0) C R(A, x0).
(d) If A is convex, then the three sets in (c) coincide dnd xo C T (A, xp).

To simplify optimality conditions, Song et al. [10] introduced the following concept of
an epiderivative which differentiates from the contingent epiderivative introduced by [5].

Definition 2.4. Let (xo, yo) € grapi(F). The contingent epiderivativ® F (xg, yo) of F at
(x0, y0) is a set-valued map frork to Y defined by
graph(DF (x0, y0)) = T (€pi(F), (xo, y0))-
According to Definition 2.1y € DF(xo, yo)(x) if and only if there exist a sequence
{(xn, yn)} in epi(F) and a sequende,} of positive real numbers such that
lim (Xn, yn) = (x0, yo) and lim 7, (xn — x0, yn — x0) = (x, y).
n—00 n—00

The contingent epiderivative introduced by [5] is single-valued and its epigraph equals
to the contingent cone to epigraphiofat (xo, yo), while the above contingent epiderivative
is set-valued and its graph equals to the contingent cone to epigraphtafco, yo).

Definition 2.5. Let (xo, yo) € grapi(F). The Clarke tangent epiderivati@(xo, yo) of F
at (xo, yo) is the set-valued map frold to Y defined by

grapi{CF(xo, y0)) = C(epi(F), (xo. y0)).

Definition 2.6. Let (xo, yo) € graph(F). The radial epiderivativeR F (xg, yo) of F at
(x0, yo) is the set-valued map froki to Y defined by

graphRF (xo, yo)) = R(epi(F), (xo, y0)).

Due to Definition 2.2y € RF (xo, yo)(x) if and only if there exist a sequenég:,, y,)}
in epi(F) and a sequendg, } of positive real numbers such that

lim #,(x, — xo, Yn — x0) = (x, y).
n—00
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Definition 2.7. Let (xg, yo) € grapi F). TheY-epiderivativeY F (xo, yo) of F at (xo, yo)
is the set-valued map frotki to Y defined byy € Y F(xo, yo)(x) if there exist a sequence
{(xn, yn)} in epi(F) and a sequendg, } of positive real numbers such that

lim y,=yo and lim#,(x, — x0, y» — x0) = (x, y).
n—o0 n—o0

Suppose thaf C X is a convex subset of daiff). Thus,F is C-convex onS if, for any
x1,x2 € Sanda € [0, 1],

AF(x1) + (1= A)F(x2) C F(hx1+ (1—Mx2) + C.

Itis well known that if F is C-convex onS, then epiF) is a convex subset i x Y.

Remark 2.2. Let (xg, yo) € graph(F).

(a) The set-valued maf@3F (xo, yo), C F(xo0, yo), RF (xo0, yo), andY F (xg, yo) are pos-
itive homogeneous with closed graphs.

(b) grapRC F(xo, yo)) C graphDF (xo, yo)) C graphY F(xo, yo)) C grapi(RF (xo,
Y0))-

(c) Whenever eiF) is starshaped dtg, yo), the four sets in (b) coincide. Especially,
whenF is C-convex, the four sets in (b) coincide.

(d) The set-valued ma@ F (xg, yo) is a close convex process (see [2]).

The following proposition is crucial in the sequel.
Proposition 2.1. Let (xo, yo) € grapi(F). Then

(i) §—xpC domRF (xg, yo) forall S c dom(F);
(i) F(x)— yo C RF(xp, yo)(x — xo) for all x e dom(F).

Proof. It suffices to prove (ii). Sincéxg, yo) € graph(F), dom(F) # @. Forx € dom(F),
lety e F(x). Setr, =1,x,=x, y, =y. S0,

tn(Xp — X0, Yn — y0) = (X — x0, ¥ — y0).
Since(x,, yn) = (x, y) € grapi(F) C epi(F), by Definition 2.6, we have

¥y — y0 C RF (x0, yo)(x — x0).
Hence, (ii) holds. O

Now we consider the following constrained vector set-valued optimization problem

(SVOP):

min  F(x)

st. xeS, Gx)N—D #0,

where doniF) = S, G is a set valued map fro¥ to Z, and D is a nonempty pointed
closed convex cone in real linear normed spZcdhe coneD introduces a partial order
in Z.
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Set
A={xes: Gx)N-D##} and F(A)=|J{F(x): xeA}.

Definition 2.8. A triple (x,y,z) € S x Y x Z is said to be feasible if e domF NndomgG,
y € F(x),andz e G(x) N —D.

In the following definitions, we always assume that A andyg € F(xp).

Definition 2.9 (see [16]). Suppose thé&t has a bas&. A pair (xg, yo) is called a Henig
efficient pair of (SVOP) if for some & ¢ < 4,

(F(A) — yo) N —intC,(B) = 0.
Definition 2.10. Let f € C*\{6y+}. A pair (xo, yo) is called anf-efficient pair of (SVOP)
if

f(F(x)—y0) >0 forallx e A.
Definition 2.11. A pair (xo, yo) is called a strongly efficient pair of (SVOP) if

F(A) Cyo+C.
Definition 2.12. A pair (xg, yo) is called a super-efficient pair of (SVOP) if there exists a
constantM > 0 such that

cone(F(A) — yo) N (U —C) C MU.
Definition 2.13 (see [18]). A pair(xo, yo) is called a globally proper efficient pair of
(SVOP) if there exists a pointed convex calie- Y with C\{#} C int H, such that

(F(A) = yo) N —H = {6}.
Definition 2.14. A pair (xg, yo) is called a positive properly efficient pair of (SVOP) if
there isf e C* such that

f(F(x)—y0) >0 forallxeA.

3. Set-valued epiderivative and optimality conditions

In this section, by using the concept of a set-valued epiderivative introduced in [10], we
give optimality conditions for various kinds of properly efficient pairs to (SVOP).
In the sequel, coupléF, G) is a set valued map frok into Y x Z defined by

(F,G)(x)= (F(x) X G(x)).
We make an assumption (C): For am¢ D*\{6z+}, there existx € A such that
u(G(x)) N —intR4 # ¥,
whereR; ={reR: r>20andA={xe S: G(x)N—D #@}.
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Remark 3.1. It is easy to show that assumption (C) is weaker than the Slater constraint
condition.

Now we give optimality conditions for a Henig efficient solution to (SVOP). Firstly,
a necessary condition is given in a general setting.

Theorem 3.1. Suppose thaB is a base ofC andint D # @. Let (xo, yo) € graph(F) and
§ :=inf{||b||: b € B}. If (xg, yo) is a Henig efficient pair o SVOP) then for somé <
& < 8 and for anyzg € G(xo) N —D,

[Y(F, G)(x0, y0,z0)(x) + (0, zo)] n— int(Ce(B) X D) =0 (1)
forall x e domY (F, G)(xo, yo, z0).

Proof. Suppose thatxo, yo) is a Henig efficient pair of (SVOP); then there exists0
& < 8 such that

(F(A) — yo) N —intC,(B) = 0. (2)
If, for ¢ above, there exist e domY (F, G)(xo, o0, z0) and(y, z) € Y x Z such that
(v.2+20) € [Y(F. G)(x0, y0.20) (x) + (6., z0)] N —int(Cs(B) x D), 3)

then(y, z) € Y(F, G)(xo0, Yo, z0)(x) andy € —intC¢(B).
By Definition 2.7, there exist a sequence;,, y,, z,)} in epi(F, G) and a sequende, }
of positive real numbers such that

lim (yu,z0) = (yo.z0) and  lim #,(x, — xo, y» — X0, Zn — 20) = (X, ¥, 2).
n—>oo n—oo
Sincet,, > 0 andC(B) is a cone, there exisf¥; such that
yn—yo € —intCe(B) foralln > Ni.

Similarly, sinceD is a conez + zo € —int D and lim,_, o0 t, (2, — z0) = z, there existsVa
such that

th(zn —20) +z0€ —intD foralln > N». (4)

Moreover, there existy > max(N1, N») such thaty > 1. Otherwise, because ljm « v,
=yo and lim,— o0 1, (¥, — yo) = 6 =y, it contradictsy € —intC.(B). It follows from (4)
that

1 .
IN(ZN —z20) +z0=1IN <ZN — <1— t—)zg) e —intD,
N

and hencezy — (1—1/ty)zo € —intD. Sincety > 1 andzoe —D, (1 —1/ty)z0 € —D.
Thus,

ZzN € =D —intD=—intD.

Since(x,, yx. z») € epi(F, G) for all n € N, there arey, € F(x,) with y, € y, + C and
z,, € G(x,) With z, € z;, + D. Thus,

yy €yv — C Cyo—intCe(B) — C = yo — intCs(B)
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and
Zy€zn—DC—intD—D=—intD.
Hence,(xy, yy, zly) is a feasible triple, bup), € yo — intC.(B), which contradicts (2).
Therefore, (1) holds. O
Let C be a convex cone with bage Denote
CA(B)={f eC* inf{f(b): be B} >0]}.
By the separation theorer@? (B) # . Clearly (see [17,25]),
C*>CA(B) > C*+C4(B).
To obtain necessary and sufficient conditions for a Henig efficient solution to (SVOP),
we give the following lemma.

Lemma 3.1. For anys € (0, 8), Co(B)*\{0y+} C CA(B).

Proof. Foranyf € C.(B)*\{0y+},
f()>0 forallceintCq(B).
SinceC\{#} CintC.(B), f(b) > 0forallb e B.
Letn =inf{ f(b) | b € B}. Suppose that < 0; then there exists, € B with

fby) < % foreveryn e N.
Fixedu € U with f(u) > 0, then

f(by —eu) = f(by) —ef(u) <0 for sufficiently larger € N.
But f € C:(B)*\{0y+} andb,, — eu € B + ¢U € C¢(B), thus f (b, — eu) > 0. This is a
contradiction. Hence; > 0. Therefore,f € C4(B). O

Lemma 3.2. For any f € C4(B), there exist® < ¢ < § with f € C.(B)*\{0y+}.

Proof. Let f € CA(B). Thus,n =inf{f(b) | b e B} > 0. S0 f # Oy+.
Let £ € (0,min(n/2| 1), 8)), Ce(B) =cl(con&B + ¢U)), andV = B + ¢U. Then,
foranyy € V, there exisb € B andu € U such thaty = b + cu. So,

FO) = f®) +ef @ > fB) =&l f1 >3 >0.
Hence,f(y) > Oforally € C,(B), thatis,f € C.(B)*. Thereforef € C.(B)*\{0y+}. O
Lemma 3.3. (i) int C* ¢ C4(B), whereintC* is the interior ofC* in Y* with respect to

the norm oft *.
(i) If B is bounded, theint C* = C4(B).

Now, we can give a Fritz John type necessary condition for a Henig efficient solution to
(SVOP) in a general setting.
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Proposition 3.1. Let B be a base o€ andint D # @. If (xg, yo) is a Henig efficient pair of
(SVOP) then, for any;g € G(xg) N —D, there existf € C4(B) U {fy+} andu € D*, both
dependent ogp and not both being zero functionals, such that

u(zo)=0 and f(y)+u(z)=>0
for all x e domC (F, G)(xo, yo, z0) and(y, z) € C(F, G)(xo, Yo, 20)(x).

Proof. Letzg € G(xg) N —D and define

0= [ | C(F. G)(x0. yo, 20 (x) + (9,Zo)i|,

xef

where2 = domC(F, G)(xo, yo, 20)-
We first show thatQ is convex by showing thaD1 = Q — (0, zp) is convex. Let
(y1, z1), (2, z2) € Q1. Then, there existy, x» € £2 such that

(yi.zi) € C(F, G)(x0, yo, z0)(xi), =12,
and thus,
(xi, vi» zi) € C(epi(F, G), (xo, y0,20)), i=12.
But C(epi(F, G), (xo, y0, z0)) is @ convex cone, therefore,
A(x1, y1,21) + (1= A)(x2, y2, 22) € C(ePi(F, G), (xo, Yo, 20))
forall A € [0, 1], that is,
(Ay14+ (L= W)y2, Az1+ (1 — A)z2) € C(F, G)(x0, Yo, 20) (Ax1 + (1 — Mx2)

forall A € [0, 1]. It follows that Q1 and its translat&) are convex.

By Theorem 3.1 and Remark 2.2(b), it is easy to show that— int(C.(B) x D) = (.
By the separation theorem, there exfst Y* andu € Z*, not both zero functionals, and a
real numbeg such that

fO) +ux) =& forall(y,z)eQ 5)
and

fO)+u) <& forall (y,z) € —int(C:(B) x D). (6)

But since(y, z) € —int(C¢(B) x D) can be made as close as possibl&t@), from (6),
the continuity of f andu leads to thag > 0. Sincez can be made as close as possiblé to
in (6), by the continuity of:, we have

f(y) <& forallye—intC.(B).

SinceC¢(B) isaconef(y) <0forally e —intC.(B). Thus,f(y) > 0forall y € C.(B),
thatis, f € C.(B)*. Similarly, we can easily get thate D*.

By Lemma3.1,f € CA(B) U {Ay+}.

From (5) and the fact9, zg) € Q, we getu(zp) > 0. Butzp € —D andu € D*, so
u(zo) < 0. Thus,u(zg) = 0. Letx € domC(F, G)(xo, yo, z0) and (y, z) € C(F, G)(xo,
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0, 20) (x). SinceC (F, G)(xo, yo, z0) (x) + (6, z0) C Q andu(zo) = 0, from (5), we know
that f(y) +u(z) > 0.
This completes the proof.O

Let F4 andG 4 denoteF andG restricted on4, respectively.
The following theorem is a sufficient condition involving multiplier functional for a
Henig efficient solution of (SVOP).

Theorem 3.2. Let (xo, yo) € graph(F) and B be a base of. If there existzg € G(xp) N
—D, f e CA(B), andu € D* such that

u(zo)=0 and f(y)+u(z)=>0
forall x € domR(Fa, G a)(xo, Yo, z0) and(y, z) € R(Fa, G a)(xo, Yo, z0)(x), then(xo, yo)
is a Henig efficient pair o{SVOP)

Proof. Since f € C4(B), by Lemma 3.2, there existse (0, 8) such thatf € C.(B)*\
{0y=}. Then(yg — intC.(B)) N F(A) = @. Otherwise, there exist’' € A andy’ € F(x')
such that

vy — yo € —intCq(B).
Sincex’ € A, there exist&Z’ € G(x’) N —D. By Proposition 2.1, we have
(' = y0, 7' — 20) € R(Fa, G 4)(x0, 0, 20) (x" — x0).
Thus,
SO =y0) +u@ —z0)>0. 7

Sincey’ — yo € —intC.(B) and f € C.(B)*\{0y+}, f(' — yo) < 0. Sincez’ € G(x") N
—D, u(zo) =0, andu € D*, u(z’ — z0) < 0. Thus, f(y" — yo) + u(z" — z0) < 0, which
contradicts (7). Hencéxo, yo) is a Henig efficient pair of (SVOP).O

The following corollary gives a necessary and sufficient conditions for a Henig efficient
solution of (SVOP) wher@ satisfies assumption (C).

Corollary 3.1. Let (xo, yo) € graph(F), B be a base o€ andint D # ¢. Suppose thaf
is C-convex and; is D-convex. IfG satisfies assumptiqi€), then(xo, yo) is a Henig effi-
cient pair of (SVOP)if and only if there existo € G(xo) N —D, f € CA(B), andu € D*,
such that

u(zo)=0 and f(y)+u(z)>0 (8)
for all x e domD(F, G)(xo, yo, z0) and(y, z) € D(F, G)(xo, Y0, 20)(x).
Proof. Suppose thatxg, yo) is a Henig efficient pair of (SVOP). Thu&,(xg) N —D # @.

Let zo € G(xo) N —D. By Proposition 3.1 and Remark 2.2(c), there exist C(B) U
{6y+} andu € D*, which satisfy (8) and are not both zero functionals.
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If f =6y, thenu € D*\{6z+}. SinceG satisfies assumption (C), there existe A
such thau(G(x)) N —int R4 # @, that is, there exists € G (x) with u(z) < 0.
Sincex € A, there existy € F(x). By Proposition 2.1,

(y —y0,z —z0) € D(F, G)(x0, y0, 20) (x — x0).

So,u(z — zg) = 0, that is,u(z) > 0, which is a contradiction. Hencg, # 0y+, that is,
f e CA(B).
Conversely, it follows directly from Theorem 3.2 and Remark 2.2.

For simplicity, we denote the set of super-efficient point€dfy Es(E, C) and the set
of all Henig efficient points oF by Ey (E, C).

To give optimality conditions for a super-efficient solution to (SVOP), let us recall the
following lemma.

Lemma 3.4. If C has a bounded bas8 and if A is a nonempty subset dof, then
Es(F(A),C)=Eu(F(A),C).

Under the assumption that has a bounded bagg, the super-efficiency equals to the
Henig efficiency. Hence, we can also give a necessary and sufficient condition for a super-
efficient solution of (SVOP).

Corollary 3.2. Let (xo, yo) € graph(F). Suppose thaC has a bounded bas& and
int D # . Suppose thak' is C-convex and5 is D-convex and; satisfies assumptidic).
Then(xo, yo) is a super-efficient pair ofSVOP)if and only if there existp € G (xg) N —D,
f €intC*, andu € D* such that

u(zo)=0 and f(y)+u(z)=>0
for all x e domD(F, G)(xo, Yo, z0) and(y, z) € D(F, G)(xo, y0, 20) (x).
The above result is different from Theorems 3.3 and 3.4 in [12] because we use the
epiderivative introduced in [10].

Next we give optimality conditions for a globally proper efficient solution to (SVOP).
Firstly, we provide a necessary condition in a general setting.

Theorem 3.3. Let (xo, yo) € graph(F) and int D # (. Suppose thatxo, yo) is a glob-
ally proper efficient pair of (SVOP) If H is a pointed convex cone which satisfies
Definition 2.13 that is, C\{#} C intH, and (F(A) — yo) N —H = {6}), then for any
z0€ G(xg)N—D,

[Y(F, G)(x0. y0. 20)(x) + (6, 20) | N —int(H x D) =
for all x e domY (F, G)(xo, y0, z0)-
Proof. Suppose thatxo, yo) is a globally proper efficient pair of (SVOP), then there exists
a convex point coné/ C Y, such thalC\{0} c int H and

(F(A) —yo) N —H = {6}. 9)



X.-H. Gong et al. / J. Math. Anal. Appl. 284 (2003) 332—-350 343

If there existx € domY (F, G)(xo, y0, z0) and(y, z) € Y x Z such that
(v, 2+ 20) € [Y(F, G)(x0, y0,20)(x) + (8, z0) | N —int(H x D), (10)

then(y, z) € Y(F, G)(xo0, Yo, z0) (x).
By Definition 2.7, there exists a sequene,, y,, z,)} in epi(F, G) and a sequence
{t,} of positive real numbers with

lim (yn,zn) = (yo,z0) and  lim #,(x, — x0, yu — X0, 20 — 20) = (¥, ¥, 2).
n—0o0 n—oo
By (11),y € —int H. Thus, there exist&1 such that
ya—yo€—intH foralln> Ny,

sincet,, > 0 andH is a cone. Similarly, from the proof of Theorem 3.1, there eXits N1
such that

ZN € —intD.

Since(xy, yn, zn) € €pi(F, G) forall n € N, there arey,, € F(x,) with y, € y, + C and
2z, € G(x,) With z,, € z;, + D. Thus,

ywEyw—CCyo—intH—C=yo—intH
and
Zy€zy—DC—intD—D=—intD.
Hence,(xy, yy. z)y) is a feasible triple, but), € yo — int H, which contradicts (10). So,

(9) fulfills. O

The following proposition is a Fritz John necessary condition for a globally proper
efficient solution to (SVOP).

Proposition 3.2. Let (xo, yo) € grapi(F) andintD # @. If (xo, yo) is a globally proper
efficient pair of(SVOP) then, for anyzg € G(xg) N —D, there existf € C* U {fy«} and
u € D*, both dependent o, but not both being zero functionals, such that

u(zo)=0 and f(y)+u(z)=>0
for all x e domC (F, G)(xo, Yo, z0) and(y, z) € C(F, G)(xo, Y0, z0) (x).

Proof. Suppose thatxg, yo) is a globally proper efficient pair of (SVOP); then there exists
a convex pointconél C Y, suchthatC \ {6} CintH and(F(A) — yo) N —H = {#}). Let
z0 € G(xg) N —D and define

0= [ | C(F. G)(x0. yo, 20 (x) + (9,Zo)i|,

xef

where$2 = domC (F, G)(xg, Yo, z0)-
It is not hard to show thap is convex.
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We can easily show thg® N —int(H x D) =@, from Theorem 3.3 and Remark 2.2(b).
So by the separation theorem, there exXist Y* andu € Z*, not both zero functionals,
and a real number such that

f()+ux) =& forall(y,z)e Q (11)
and
fO)+uizx) <& forall (y,z) e —int(H x D). (12)

From the proof of Proposition 3.1, we get thate H*, £ > 0, andu € D*. If f # Oy~
then f(y) >0 forall y eintH. SinceC \ {0} CintH, f(c) > 0forallce C\ {6}, hence
fect,

Therefore f € C* U {0y+}. Since(8, zo) € Q, from (12) we gei(zg) > 0, butzg € —D
andu € D* sou(zg) < 0. Thus,u(zg) = 0. Finally, letx € domC(F, G)(xo, yo, z0) and
(¥, 2) € C(F, G)(x0, yo, z0) (x); since C(F, G)(xo, yo, z0)(x) + (8, z0) C Q andu(zo) =
0, from (12), we know,

f(y)+u(z) >0.
This completes the proof.O

Lemma 3.5 (see [14]).A positive properly efficient pair ofSVOP) must be a globally
proper efficient pair of(SVOP)

By applying Lemma 3.5, we can give a sufficient condition involving multiplier func-
tionals for a globally proper efficient solution of (SVOP).

Theorem 3.4. Let (xo, yo) € graph(F). Suppose that there exigt e G (xo)N—D, f € Ct,
andu € D* such that
u(zo)=0 and f(y)+u(z)>0

for all x € domR(Fa, Ga)(x0, y0,z0) and (y,z) € R(Fa, Ga)(x0, o, z0)(x). Then
(x0, yo) is a positive properly efficient pair ofSVOP) Therefore,(xo, yo) is a globally
proper efficient pair of(SVOP)

Proof. Suppose the assumption is satisfiedxlf, yo) is not a positive proper efficient pair
of (SVOP), then, for anyf € C?, there exisk’ € A andy’ € F(x’) such that

fO'=yo) <0.
Sincex’ € A, there existg’ € G(x’) N —D. From Proposition 2.1, we have
(V' = y0, 7' — 20) € R(Fa, G 4)(x0, 0, 20) (x" — x0).
Thus, f(y' — yo) + u(z’ — zo0) > 0. Therefore,
u(z' —z0) > 0. (13)

Sincez’ € G(x’) N —D, u(z0) =0, andu € D*, u(z’ — zo0) < 0, which contradicts (14).
Thus, there isf € C? such thatf (F(x) — yo) > 0 for all x € A.
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Hence,(xo, yo) is a positive proper efficient pair of (SVOP). Therefoteg, yo) is a
globally proper efficient pair of (SVOP).O

The following corollary gives a necessary and sufficient condition for a globally proper
efficient solution of (SVOP).

Corollary 3.3. Let (xg, yo) € grapi(F) andint D # (. Suppose thaf" is C-convex,G is
D-convex, and; satisfies assumptiqi€). Then,(xg, yo) is a globally proper efficient pair
of (SVOP)if and only if there existg € G(xg) N —D, f € C*, andu € D* such that

u(zo)=0 and f(y)+u(z)>0 (14)
for all x e domD(F, G)(xo, yo, z0) and(y, z) € D(F, G)(xo, Y0, 20) (x).

Proof. Suppose thatxo, yo) is a globally proper efficient pair of (SVOP). Thug(xo) N
—D #@. Let z0 € G(x0) N —D. By Proposition 3.2 and Remark 2.2(c), there exist
C* U {6y~} andu € D*, which satisfy (14) and are not both zero functionals.

If f =6y, thenu € D*\{62+}. SinceG satisfies assumption (C), there existg A
such thau(G(x)) N —int R4 # @. So, there exists € G (x) with u(z) < 0.

Sincex € A, there existy € F(x). By Proposition 2.1,

(y — y0,z — z0) € D(F, G)(x0, yo, z0) (x — x0).

Henceu(z — zo) > 0, that is,u(z) > 0, which is a contradiction. Thereforg, 6y+, that
is, f e Ch.
Conversely, it follows directly form Theorem 3.4 and Remark 2.2.

The concept of ary-efficient solution is of great importance in scalarization of vector
set-valued optimization (see [24]). The following theorem gives a necessary condition for
an f-efficient solution to (SVOP) in a general setting.

Let I be the identical mapping from into Z, i.e.,I(z) =z forallz € Z.

Theorem 3.5. Let (xo, yo) € grapRF) and int D # (. Suppose thatxo, yo) iS an f-
efficient pair of(SVOP) Then for any;g € G(x0) N —D,

(f» D[Y (F. G)(x0. y0.20)(x) + (6. z0)| N —iNt(R} x D) =0 (15)
for all x e domY (F, G)(xo, yo, z0)-
Proof. If (15) does not hold, then there existe domY (F, G)(xo, yo, zo0) and(y, z) €
Y x Z such that

(f, D(y,z+z0) € —int(Ry x D) and (y,z) € Y(F, G)(xo, yo, z0)(x),

thatis, f(y) <0 andz + zp € —int D.
By Definition 2.7, there exist a sequence;,, y,, z,)} in epi(F, G) and a sequende, }
of positive real numbers such that

lim (yu,z0) = (yo,z0) and  lim #,(x, — x0, y» — X0, Zn — 20) = (X, ¥, 2).
n—oo n—oo
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By f(y) < 0 and the continuity off, there existgV; such that
f(ta(yn — y0)) <0 foralln € Ni.

Because of,, > 0 and the linearity off, we have
fn—y0) <0 foralln> Ny,

thatis, f (y,) — f(yo) < O for all n > N1. Similarly, sinceD is a conez + zo € —intD
and lim,_ ~ 1, (zn — z0) = z, there existsV, such that

th(zn —20) +z0€ —intD foralln > N». (16)
Similarly, from the proof of Theorem 3.1, there exNs> max(N1, N2) such that

Zzy € —intD.
Since(x,, yn, zn) € €pi(F, G) for all n € N, there arey), € F(x,) with y, € y, + C and
z,, € G(x,) With z,, € z;, + D. Thus,

yy €y —C
and

Zy€zn—DC—intD—D=—intD.

So, f(yy) < f(yn) < f(yo). But (xn, yy. 2)y) is a feasible triple. Thereforéxo, yo)
is not anf-efficient pair of (SVOP) which is a contradictionO

The following proposition gives a Fritz John necessary condition fof afficient so-
lution to (SVOP).

Proposition 3.3. Let (xo, yo) € grapi(F), f € C*\{6y+}, andint D # @. If (xo, yo) IS an
[ -efficient pair of(SVOP) then, for any;g € G(xo) N — D, there existr > 0 andu € D*,
both dependent ofy, but not both being zero functionals, such that

u(zo)=0 and af(y)+u(z) >0
for all x e domC (F, G)(xo, yo, z0) and(y, z) € C(F, G)(xo, yo, 20)(x).

Proof. Letzg € G(xg) N —D and define

0= [ |J C(F. G)(x0. yo, 20 (x) + (9,Zo)i|,
xef
where2 = domC(F, G)(xo, Yo, z0)-

It can be shown thap is convex.

We can easily show th@ N —int(R4+ x D) =@, from Theorem 3.5 and Remark 2.2(b).
Since the continuity and the linearity gfand!, (f, I)Q is a convex set. So by the sepa-
ration theorem, there existe R andu € Z*, not both zero functionals, and a real number
& such that

af(y)+uz) =& forall (y,z) e 0 a7



X.-H. Gong et al. / J. Math. Anal. Appl. 284 (2003) 332—-350 347

and
af+u(z) <& forall (B,z) e —int(Ry x D). (18)

But since(8, z) € —int(R4 x D) can be made arbitrarily close 6, 6), the continuity of
f andu give from (18) that > 0. z in (18) can be arbitrarily close #, by the continuity
of u; then

af <& forallBe—intR,.

SinceR, is a cone, we have > 0. Similarly, we can easily get thate D*.

Since (0, z0) € Q, from (17) we getu(zo) > 0. But z0 € —D and u € D*, so
u(zo) < 0. Thus, u(zo) = 0. Finally, let x € domC(F, G)(xg, yo,z0) and (y,z) €
C(F, G)(x0, yo, z0)(x); sinceC(F, G)(xo, yo, z0)(x) + (6, z0) C Q andu(zo) = 0, from
(17), we know that

af (y)+u(z) =0.

This completes the proof.O0

The following theorem is a sufficient condition involving multiplier functional for an
f-efficient solution of (SVOP).

Theorem 3.6. Let f € C*\{0y+} and (xo, yo) € graph(F). Suppose that there exigg €
G(xg) N —D andu € D* such that

u(zo)=0 and f(y)+u(z)=>0
for all x € domR(F4, Ga)(x0,¥0,z0) and (y,z) € R(Fa, G a)(xo0, yo,z0)(x). Then
(x0, yo) is an f-efficient pair of(SVOP)

Proof. If (xg, yo) is not an f-efficient pair of (SVOP), then there existe A andy’ €
F(x") such that

FO' =y <0.
Sincex’ € A, there existg’ € G(x’) N —D. By Proposition 2.1, we have

(v = y0,2" = z0) € R(Fa, G a)(x0, Yo, 20) (x" — x0).
Thus, f (¥ — yo) +u(z’ — z0) > 0. Therefore,

u(z' —z0) > 0. (19)
Sincez’ € G(x') N =D, u(zo) = 0, andu € D*, u(z’ — z0) < 0, which contradicts (19).

Hence,(xo, yo) is an f-efficient pair of (SVOP). O

The following corollary is a necessary and sufficient condition forfagfficient solu-
tion to (SVOP) wherG satisfies assumption (C).
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Corollary 3.4. Let f € C*\{0y+}, (x0, yo) € grapi(F) andint D # . Suppose thaf' is
C-convex,G is D-convex ands satisfies assumptiofC). Then(xo, yo) is an f-efficient
pair of (SVOP)if and only if there existo € G(xg) N —D andu € D* such that

u(zo)=0 and f(y)+u(z)>0
for all x e domD(F, G)(xo, yo, z0) and(y, z) € D(F, G)(x0, Y0, 20)(X).
Proof. Suppose thatxo, yo) is an f-efficient pair of (SVOP). ThusG (xg) N —D # @. Let

z0 € G(xg) N —D. By Proposition 3.3 and Remark 2.2(c), there exist 0 andu’ € D*,
not both zero functionals, such that

u'(z0)=0 and af(y)+u'(z) >0 (20)

forall x e domD(F, G)(xo, yo, z0) and(y, z) € D(F, G)(xo, y0, 20)(X).
Assume thatt = 0. Thenu’ € D*\{6z+}. SinceG satisfies assumption (C), there exists
x" € A such thau/(G(x")) N —int Ry # @, that is, there existg € G(x’) with

u' (7)) <O. (21)
Sincex’ € A, there existg’ € F(x'). By Proposition 2.1,
(y/ — Y0, Z/ - ZO) S D(F7 G)(.XO, Yo, ZO)(-X/ - .X'O).

So,u/(z/ — zo0) = 0, thatisu’(z") > 0, which contradicts (21). Hence # 0, that is,« > 0.
Therefore, dividingr in two sides of (20), we have

u'(z0)

f+u'(z)>0 and =0.

Letu =u'/a. We have
u(zo)=0 and f(y)+u(z)>0
for all € domD(F, G)(xo, yo0, zo) and(y, z) € D(F, G)(xo, y0, 20) (x).
Conversely, it follows directly form Theorem 3.6 and Remark 2.2.

To obtain necessary and sufficient conditions for a strongly efficient solution to (SVOP),
we give the following lemma.

Lemma 3.6. Let (xg, yo) € graph(F). Then(xo, yo) is a strongly efficient pair ofSVOP)
if and only if (xo, yo) is an f -efficient pair of(SVOP)for any f € C*\{0y+«}.
Proof. Suppose thatxg, yo) is a strong efficient pair of (SVOP), i.e.,
F(A)—yoCC.
Foranyf € C*\ {fy+}, we have (see [15])
f(F(x)—yo) >0 foranyx € A.

That is, (xo, yo) is an f-efficient pair of (SVOP). Conversely, for anf € C* \ {0y+},
(x0, y0) is an f-efficient pair of (SVOP), i.e.,

f(F(x)—yo) >0 foranyx e A.
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From the duality ofC, we have
F(x)—yoc C foranyxe A.
Hence,(xo, yo) is a strong efficient pair of (SVOP).0O

As a direct consequence of Corollary 3.4 and Lemma 3.6, we can easily get the follow-
ing result.

Corollary 3.5. Let (xg, yo) € grapi(F) andint D # @. Suppose thafF is C-convex,G
is D-convex, ands satisfies assumptiof€). Then(xo, yo) is a strongly efficient pair of
(SVOP)if and only if for anyf € C*\{0y+}, there existg € G(xg) N —D andu € D* such
that

u(zo)=0 and f(y)+u(z)=>0
for all x e domD(F, G)(xo, Yo, z0) and(y, z) € D(F, G)(xo, y0, 20) (x).

It should be mentioned that each type of properly efficient solutions to a vector set-
valued optimization problem with constraints can be characterized by the corresponding
positive functional. With the approach used in this paper, we can derive several other opti-
mality conditions for constrained vector set-valued optimization.
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