
Journal of Functional Analysis 214 (2004) 155–220
www.elsevier.com/locate/jfa

Distributions and analytic continuation of
Dirichlet series

Stephen D. Millera,∗,1 and Wilfried Schmidb,2

aDepartment of Mathematics, Hill Center-Busch Campus, Rutgers University, 110 Frelinghuysen Road,
Piscataway, NJ 08854-8019, USA

bDepartment of Mathematics, Harvard University, Cambridge, MA 02138, USA

Received 30 June 2003; received in revised form 7 March 2004; accepted 9 March 2004

Communicated by M. Vergne

Abstract

This is the second in a series of three papers; the other two are “Summation Formulas, from
Poisson and Voronoi to the Present" [Progr. Math. 220 (2004) 419–440] and “Automorphic
Distributions, L-functions, and Voronoi Summation forGL(3)" (preprint). The first paper is
primarily expository, while the third proves a Voronoi-style summation formula for the coef-
ficients of a cusp form onGL(3,Z)\GL(3,R). The present paper contains the distributional
machinery used in the third paper for rigorously deriving the summation formula, and also for
the proof of theGL(3) × GL(1) converse theorem given in the third paper. The primary con-
cept studied is a notion of the order of vanishing of a distribution along a closed submanifold.
Applications are given to the analytic continuation of Riemann’s zeta function, degree 1 and
degree 2L-functions, the converse theorem forGL(2), and a characterization of the classical
Mellin transform/inversion relations on functions with specified singularities.
© 2004 Published by Elsevier Inc.
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1. Introduction

Dirichlet series and Fourier series can both be used to encode sequences of complex
numbersan, n ∈ N. Dirichlet series do so in a manner adapted to the multiplicative
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structure ofN, whereas Fourier series reflect the additive structure ofN. Formally
at least, the Mellin transform relates these two ways of representing sequences. In
this paper, we make sense of the Mellin transform of periodic distributions and other
tempered distributions, as a tool for the analytic continuation of variousL-functions
and the derivation of functional equations.
To illustrate what we mean, we sketch a heuristic argument for the functional equation

of the Riemann zeta function. We let�n(x) denote the Dirac delta function at the point
n ∈ Z. The sum

∑
n∈Z �n(x) is a tempered distribution; as such, it has a Fourier

transform:

F(∑
n∈Z

�n(x)
)= ∑

n∈Z
e(nx) (e(x) =def e

2�ix). (1.1)

Here we are using L. Schwartz’ normalization of the Fourier transform,

f̂ (y) =
∫

R
f (x)e(−xy) dy, (1.2)

for f ∈ S(R)=Schwartz space ofR. The Poisson summation formula is equivalent to
the identityF(

∑
n∈Z �n(x))= ∑

n∈Z �n(x), hence

∑
n∈Z

�n(x) =
∑

n∈Z
e(nx), (1.3)

as an equality of tempered distributions. We now formally integrate both sides against
the “even Mellin kernel”|x|s−1 dx, without worrying about convergence. Both�0(x)
and the constant function 1 have Mellin transform zero, in a sense that can be made
precise. Neglecting these two terms and computing formally, one finds

2�(1− s) =
∑

n�=0

∫
R

�n(x)|x|s−1 dx

=
∑

n�=0

∫
R
e(nx)|x|s−1 dx = G0(s)�(s), (1.4)

with G0(s)= ∫
R e(x)|x|s−1 dx =2(2�)−s�(s) cos(�s/2). That is Riemann’s functional

equation.
Our results on the Mellin transform of tempered distributions make the preceding

formal argument perfectly rigorous. The presence of the constant function 1 on the
right-hand side of (1.3) accounts for the simple pole of�(s) at s =1, even though this
term does not affect the functional equation itself. The same reasoning also gives the
analytic continuation and functional equation for DirichletL-functions; details can be
found in Section5.
The use of distributions in the proof of the functional equation of�(s) might seem like

a mere curiosity. However, distributions come up naturally in the study of automorphic
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forms on reductive groups. Classical modular forms and Maass forms onGL(2,R)

have distribution boundary values. These are the so-called automorphic distributions,
periodic distributions� ∈ C−∞(R) which satisfy an equation of the type

�(x) = (sgnx)�|x|�−1�(1/x). (1.5)

The L-function of the modular form or Maass formF is the Dirichlet series formed
from the Fourier coefficients—suitably renormalized—of the automorphic distribution
that corresponds toF . To prove the analytic continuation and functional equation of
such anL-function, we apply the Mellin transform to both sides of Eq. (1.5). This,
too, is worked out in Section5.
These are all known results, of course, and new proofs would not justify the writing

of this paper. Its real purpose is to provide the analytic tools for our program, begun
in [7], to study automorphic representations of higher rank groups from the point of
view of automorphic distributions.
The central idea is a notion of distributions vanishing to a certain order along a

submanifold of the manifold on which the distributions are defined. We introduce this
notion in the next section, where we also deduce the most immediate consequences.
For most of the rest of the paper, the compactified real line will play the role of the
ambient manifold. In Section3, we establish a number of equivalent criteria for the
vanishing of a distribution of one variable at a point. We also define the signed Mellin
transform of tempered distributions which vanish to sufficiently high order at the ori-
gin and the point at infinity, and we show that the Fourier transform�̂ of a tempered
distribution� vanishes to orderk at infinity if � vanishes to orderk at the origin. The
properties of the Mellin transform of tempered distributions, in particular the interaction
between the Mellin transform and the Fourier transform, are the subject of Section4.
The examples we mentioned earlier—the Riemann zeta function, DirichletL-functions,
and L-functions of automorphic forms onGL(2)—are worked out in Section5. In
Section6 we prove certain auxiliary statements for the Voronoi summation formula for
GL(3), which is the main result of [7]. We return to the multi-variable case in the final
section, where we discuss the summation and integration of distributions which vanish
along a submanifold; these results are needed for the proof of the (known) converse
theorem forGL(3) in [7].

2. Definitions and basic properties

In the following,M will denote aC∞ manifold andS ⊂ M a locally closed sub-
manifold. We follow the convention of defining the space of distributionsC−∞(M) as
the dual of the space of compactly supported, smooth measures. Functions and distri-
butions take values inC unless we say otherwise. By means of the integration pairing
between functions and measures, everyC∞ function, and more generally every locally
integrable function, can be regarded as a distribution:

C∞(M) ⊂ L1
loc(M) ⊂ C−∞(M). (2.1)
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Informally speaking, “distributions transform like functions”. We write the tautological
pairing between distributions and compactly supported smooth measures as integration,
since it extends the integration pairing between functions and measures. More generally,
a distribution� can be paired against a smooth measuredm if the intersection of their
supports is compact. These tautological pairings make sense globally on the manifold
M, quite independently of a choice of specific coordinate neighborhoods, but can be
reduced to the analogous pairing on Euclidean space, by means of a suitable partition
of unity.
We use the notationC∞

M for the sheaf ofC∞ functions, C−∞
M for the sheaf of

distributions, andIS ⊂ C∞
M for the ideal sheaf of the submanifoldS ⊂ M. The term

“differential operator” will serve as shorthand for “linear differential operator withC∞
coefficients”. The differential operators constitute a sheaf of algebrasDM over the sheaf
of rings C∞

M . One calls a differential operatorD tangential toS if

DI k
S ⊂ I k

S for every k ∈ N. (2.2)

If D happens to be a vector field, this notion agrees with the usual, geometric notion
of tangentiality: a vector field is tangential toS if its values at all the points ofS lie in
the tangent bundleTS. The differential operators which are tangential toS constitute a
sheaf of subalgebras ofDM , which is generated overC∞

M by the sheaf of vector fields
which are tangential toS; one can verify this assertion by a computation using suitably
chosen local coordinates. We observe:

if a differential operatorD is tangential toS,

then so is its formal adjointD∗, (2.3)

when the formal adjoint is defined relative to any particular Riemannian metric onM.
Because of what was just said, it suffices to establish (2.3) for vector fields, which is
a simple matter.

Definition 2.4. A distribution � ∈ C−∞(M) vanishes to orderk�0 along the subman-
ifold S if every point p ∈ S has an open neighborhoodUp in M with the following
property: there exist differential operatorsDj on Up which are tangential toS �Up,
measurable locally bounded functionshj ∈ L∞

loc(Up), andC∞ functionsfj ∈ C∞(Up)

which vanish to orderk on S, all indexed by 1� j �N , such that

� =
∑

1� j �N
fjDjhj ,

as an identity between distributions onUp. The distribution� vanishes to infinite order
along S if it vanishes to orderk for every k�0.

Let us record some formal consequences. If 0� k1� k, vanishing to orderk implies
vanishing to orderk1. Since the definition does not involve a choice of coordinates,
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the notion of vanishing to orderk�∞ along a submanifold is preserved by diffeomor-
phisms. Vanishing to orderk�∞ alongS is a local condition. Also, if�, � ∈ C−∞(M)

have this property, then so do� + � and the productf� with any f ∈ C∞(M). To put
it more succinctly, the distributions which vanish to orderk�∞ along S constitute a
subsheaf ofC−∞

M , viewed as sheaf ofC∞
M -modules.

Lemma 2.5. If D is a differential operator of degreed, and if� ∈ C−∞(M) vanishes to
order k� d along the locally closed submanifoldS ⊂ M, the distributionD� vanishes
to orderk−d alongS. The distributions which vanish to infinite order alongS constitute
a subsheaf ofC−∞

M , as sheaf of modules over the sheaf of differential operatorsDM .

Proof. We may as well supposed =1, and thatD is a vector field. When we express
� as in Definition2.4,

D� =
∑

1� j �N
(Dfj )Djhj +

∑
1� j �N

fjDDjhj . (2.6)

The functionsDfj vanish to orderk − 1 alongS. The differential operatorsDDj may
not be tangential toS, but can be made tangential by multiplication withC∞ functions
which vanish onS. We shrink the neighborhoodUp, if necessary, so that eachfj can
be factored as a product ofk functions which vanish to order one. We take one of
these factors to makeDDj tangential toS, thereby reducing the order of vanishing of
fj by one. This establishes the first assertion. The second follows formally.�

For some purposes, it is preferable to have presentations of a distribution� as
in Definition 2.4, but with continuous functionshj . One can accomplish that, at the
expense of reducing the integerk:

Remark 2.7. If the distribution � ∈ C−∞(M) vanishes to orderk1 along S, and if
0� k� k1 − 2[dimM/4] − 2, there exist differential operatorsDj on Up tangential
to S �Up, continuous functionshj ∈ C(Up), andC∞ functions fj ∈ C∞(Up) which
vanish to orderk on S �Up, 1� j �N , such that

� =
∑

1� j �N
fjDjhj .

If � vanishes to infinite order alongS, an expression of this type exists for everyk >0.

Indeed, anyL2 function h on anm-dimensional Riemannian manifold can be ex-
pressed locally ash= �r h̃, in terms of a continuous functioñh and the Laplace operator
�, raised to the powerr = [m/4] + 1. From here on one can argue as in the proof of
Lemma 2.5, moving the differential operator�r from right to left instead of left to
right.
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Lemma 2.8. A distribution � which vanishes to orderk�0 along a locally closed
submanifoldS ⊂ M of codimension at least one cannot have its support contained in
S unless� =0.

We should note that vanishing to orderk�1 along an open submanifold implies van-
ishing on the submanifold. In that case, the codimension one hypothesis can be dropped.
A similar lemma plays a crucial role in the proof, by Atiyah and the second named
author, of Harish-Chandra’s regularity theorem for invariant eigendistributions [1].

Proof. This is a local problem. We may as well replaceM by an open neighborhood
Up of somep ∈ S on which� can be expressed as in Definition2.4. ShrinkingUp, if
necessary, we may suppose that there exist local coordinates{x1, . . . , xs, y1, . . . , yn−s}
on Up adapted toS, in the sense that

Up� S = {q ∈ Up | x1(q) = · · · = xs(q) = 0}, (2.9)

and that the fibers of the mapUp → Up � S, (xi, yj ) �→ (0, yj ), correspond to balls
centered at the origin. Assuming that the support of� is contained inUp � S, we must
show that

∫
Up

�� dx1 . . . dxs dy1 . . . dyn−s =0, for all test functions� ∈ C∞
c (Up). Since

� has compact support inUp, we can choose	 ∈ C∞
c (Up) such that

	 ≡ 1 on some neighborhood ofS� supp�. (2.10)

Our hypotheses on the coordinate system ensure that the family of functions

	t ∈ C∞
c (Up), 	t (xi, yj ) = 	(t−1xi, yj ) (0< t �1) (2.11)

is well defined. Each	t inherits property (2.10) from 	, which implies∫
Up

�� dx1 . . . dxs dy1 . . . dyn−s =
∫
Up

�	t� dx1 . . . dxs dy1 . . . dyn−s

=
∑

1� j �N

∫
Up

hjD
∗
j (fj	t�) dx1 . . . dxs dy1 . . . dyn−s; (2.12)

the second step uses the expression for� given in Definition 2.4, and D∗
j denotes

the formal adjoint ofDj with respect to the Euclidean metric. At this point, it suf-
fices to show that

∫
Up

hjD
∗
j (fj	t�) dx1 . . . dxs dy1 . . . dyn−s → 0 as t → 0, or more

specifically, that

vol(supp	t ) sup|hjD∗
j (fj	t�)| → 0 as t → 0, (2.13)

for 1� j �N .
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According to (2.3), D∗
j is tangential toUp � S. Thus, whenD∗

j is expressed as

a linear combination
∑

I,J aI,J
�|I |
�xI

�|J |
�yJ of monomials in the �

�xi
and �

�yj
with C∞

coefficients, eachaI,J must vanish alongS to order equal to the total degree|I | of
normal derivatives. When a normal derivative of order% is applied to	t , the result is
t−% times a bounded function, but partial derivatives of	t in directions tangential to
S are bounded independently oft . As t → 0+, the diameter of the support of	t in
the fibers ofUp → Up � S shrinks down to 0, linearly int , hence

sup{|aI,J (q)| |q ∈ supp	t } = O(t |I |), (2.14)

whereas�, thehj andfj , and all the partial derivatives of� and of thefj are uniformly
bounded on the support of	t . This bounds|hjD∗

j (fj	t�)| independently oft . Since
the volume of the support of	t tends to 0 in proportion tot s , s = codimS�1, estimate
(2.13) follows. �

If the functionshj in (2.12–13) are only locallyL1, one can still bound|D∗
j (fj	t

�)| independently oft . The supports of the	t shrink down toS � supp	, which has
volume 0, so the integrals of the|hj | over the support of	t tend to 0. Thus, even
when hj ∈ L1

loc(Up), � must still vanish onUp. For future reference we record this
slight improvement of the lemma:

Remark 2.15. SupposeS ⊂ M is a closed submanifold of codimension at least one.
If � ∈ C−∞(M) can be represented, locally near eachp ∈ S, as

� =
∑

1� j �N

fjDjhj ,

in terms of locallyL1 functions hj , C∞ functions fj , and differential operatorsDj

which are tangential toS, then� cannot have its support contained inS unless� =0.

When the submanifoldS ⊂ M is not only locally closed but closed, one can restrict
distributions fromM to M −S. In that situation, according to the lemma, a distribution
� ∈ C−∞(M) which vanishes to orderk�0 alongS is completely determined by its
restriction toM − S. This observation motivates the following terminology:

Definition 2.16. A distribution � defined on the complementM − S of a closed sub-
manifold S ⊂ M has a canonical extension acrossS if there exists a—necessarily
unique—distribution� ∈ C−∞(M) that vanishes to infinite order alongS and agrees
with � on M − S.

It may seem strange that we require� to vanish to infinite order alongS since
vanishing to orderk�0 already makes the extension unique. Our definition is motivated
by the applications we have in mind, which involve distributions vanishing to infinite
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order along a submanifold. Saying “� has a canonical extension, and the extension
vanishes to infinite order” would sound too awkward! We shall be careful to distinguish
between distributions vanishing to infinite order alongS, which requires� to be defined
on all of M, and possessing a canonical extension acrossS, which applies when� is
defined on the complement ofS.
Simple but prototypical examples of canonical extensions of distributions arise as fol-

lows. Let�0 be a distribution on the spaceR1+r , with coordinates(x, y)= (x, y1, . . . yr ).
We suppose that�0 is periodic of period 1 in all the variables, and that its Fourier
series involves no terms independent of the variablex:

�0(x, y) =
∑

m�=0

∑
n∈Zr

cm,ne(mx + ny) (e(u) =def e
2�iu); (2.17)

hereny is shorthand for
∑

j nj yj , of course. The distribution

�(x, y) = �0(1/x, y) (2.18)

is well defined on the complement of the hypersurfaceS = {x =0} ⊂ R1+r .

Proposition 2.19. The distribution

�(x, y) =
∑

m�=0

∑
n∈Zr

cm,ne(m/x + ny)

has a canonical extension acrossS. In particular, each of the summandscm,ne(m/x +
ny) extends canonically acrossS. The sum of the canonical extensions of the summands
converges in the strong distribution topology and agrees with the canonical extension
of �.

To put the proposition into perspective, we should remark that vanishing to order
k�∞ along a submanifoldS ⊂ M does not define a closed subspace ofC−∞(M) in
the strong distribution topology, or even in the weak dual topology: the distribution
e(t/x) vanishes to infinite order atx =0 when t �= 0, but converges to 1 in the weak
distribution topology, ast → 0.

Proof. The Fourier coefficientscm,n of the distribution�0 grow at most polynomially
with the indices. Thus, fork sufficiently large,

Fk(x, y) = (2�i)−3k
∑

m�=0

∑
n∈Zr

cm,ne(mx + ny)

mk(‖n‖2 + 1)k
(2.20)

is a continuous periodic function, and

�0(x, y) = �k

�xk
(∑

j

�2

�y2j
− 4�2

)k
Fk(x, y). (2.21)
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An application of the chain rule gives the equation

�(x, y) = xkDkGk(x, y) with Gk(x, y) = Fk(1/x, y)

andDk = x−k
(−x2 �

�x

)k(∑
j

�2

�y2j
− 4�2

)k
. (2.22)

SinceFk(x, y) is bounded and continuous, the functionGk(x, y) is defined, continuous,
and bounded onR1+r − S, hence globally defined asL∞ function onR1+r . Applying
Dk to various powers ofx one finds that this differential operator is smooth even along
S and in fact tangential toS. This shows: fork sufficiently large,� = xkDkGk(x, y) is
an extension of� which vanishes to orderk along S. Because of Lemma2.8, � does
not depend on the choice ofk, and therefore vanishes to infinite order alongS.
If the integerk in (2.18–20) is chosen large enough, the Fourier series forFk(x, y)

converges uniformly. Consequently, the series

Gk(x, y) = (2�i)−3k
∑

m�=0

∑
n∈Zr

cm,ne(m/x + ny)

mk(‖n‖2 + 1)k
(2.23)

converges inL1
loc(R

1+r ), and that in turn implies convergence of the series

�(x, y) =
∑

m�=0

∑
n∈Zr

cm,n

(
xkDk

e(m/x + ny)

mk(‖n‖2 + 1)k(2�i)3k

)
(2.24)

in the strong distribution topology. The expression in parentheses represents the canon-
ical extension ofe(m/x + ny), so the final assertion of the proposition follows.�

For the remainder of this section,f ∈ C∞(M) will denote a real-valued function
which has no critical points on its zero set. Then

S = {p ∈ M | f (p) = 0} (2.25)

is a closed submanifold, of codimension one, andf vanishes onS to exactly first
order. For
,� ∈ C and� ∈ Z/2Z, the function(sgnf )�|f |
(log |f |)� is smooth on the
complement ofS. Thus, for any� ∈ C−∞(M), we may regard(sgnf )�|f |
(log |f |)��
as a well defined distribution onM − S.

Proposition 2.26. If � ∈ C−∞(M) vanishes to orderk along S, and if Re
> −k−1,
(sgnf )�|f |
(log |f |)�� ∈ C−∞(M − S) has an extension� ∈ C−∞(M), such that:
(a) If 0� %<Re
 + k for some integer%, or if � =0 and 0� %�Re
 + k, � vanishes

to order % along S.
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(b) The extension� = �(
,�) depends holomorphically on
 and �,
in the sense that the integral of�(
,�) against any compactly supported smooth
measure is holomorphic in the region{(
,�) ∈ C2 | Re
> −k−1}. The conditions
(a) and (b) determine the extension uniquely. In particular, if � vanishes to infinite
order alongS, (sgnf )�|f |
(log |f |)�� has a canonical extension, which depends
holomorphically on(
,�) ∈ C2.

Proof. This is a local problem, which needs to be verified only near points ofS. Recall
that IS denotes the ideal sheaf ofS. Because of our hypotheses,

for eachn ∈ N, f n generatesIn
S . (2.27)

Given p ∈ S, we choose an open neighborhoodUp of p as in Definition2.4. Since
p is not a critical point off , we can shrinkUp, if necessary, and introduce local
coordinates(x1, . . . , xr ) on Up, such thatx1= f . According to (2.27), the functions
fj in the statement of Lemma 2.4 are divisible byf k = xk1, hence

� = xk1

∑
1� j �N

gjDjhj with gj ∈ C∞(Up), hj ∈ L∞
loc(Up), (2.28)

andDj tangential toS. We temporarily relax the hypothesis on%, requiring only that

0� % < Re
 + k + 1. (2.29)

At least one such integer% exists since Re
> − k − 1. To simplify various formulas,
we set
̃ = 
 + k − %, �̃ = � + k − %. The hypotheses of the proposition require Re
̃�0
or Re
̃>0 depending on whether� =0 or not, but (2.29) allows Re
̃> −1. In either
case, on the complement ofS,

(sgnx1)
�|x1|
(log |x1|)��

= x%1

∑
1� j �N

gjDj ((sgnx1)
�̃|x1|
̃(log |x1|)�hj )

− x%1

∑
1� j �N

gj [Dj, (sgnx1)
�̃|x1|
̃(log |x1|)�]hj ; (2.30)

here [Dj, (sgnx1)�̃|x1|
̃(log |x1|)�] denotes the commutator of the differential operator

Dj with (sgnx1)�̃|x1|
̃(log |x1|)�, viewed as 0th order operator. Since

(sgnx1)
�̃|x1|
̃(log |x1|)�hj ∈


L∞
loc(Up) if Re 
̃ > 0,

L∞
loc(Up) if � = Re
̃ = 0,

L1
loc(Up) if Re 
̃ > −1,

(2.31)
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the first term on the right of (2.30) is a distribution on all ofUp, which vanishes to
order % along S �Up when Rẽ
>0, or when� =0 and Rẽ
�0.
We now examine the second term on the right of (2.30). In terms of the coordinates,

the tangentiality ofDj to S means

Dj =
∑

0� s1,...,sr � d
aj ;s1,...,sr x

s1
1

�s1
�xs11

�s2
�xs22

· · · �sr

�xsrr
, (2.32)

with coefficientsaj ;s1,...,sr ∈ C∞(Up). For computing the commutator, we note that

(sgnx1)�̃|x1|
̃(log |x1|)� commutes with the coefficientsaj ;s1,...,sr and with the deriva-

tives �
�xi

, i >1. On the other hand,

[
xs1

�s

�xs1
, (sgnx1)

�̃|x1|
̃(log |x1|)�
]
hj

=
∑

s′,�′,�
Ps′,�′,�(
̃,�)x

s′
1

�s
′

�xs′1
((sgnx1)

�|x1|
̃(log |x1|)�′
hj ), (2.33)

as can be checked by induction ons; heres′ runs from 0 tos−1, �′ ranges over the set
{�−j | 0� j � s}, � ranges overZ/2Z, andPs′,�′,�(
̃,�) denotes a polynomial function
of 
̃ and�. Most crucially, both sides of the equation involve the same complex power
|x1|
̃. We conclude that the second term on the right of (2.30) has the same appearance
as the first. It, too, represents a distribution onUp. The sum of the two terms defines an
extension of(sgnx1)�|x1|
(log |x1|)�� acrossS �Up; when 0� %<Re
 + k or when
� =0 and 0� %�Re
+k, this extension vanishes to order%�0 alongS �Up. In that
case, Lemma2.8 guarantees the uniqueness of the local extensions, which then define
a global extension of(sgnf )�|f |
(log |f |)�� acrossS. The holomorphic dependence
of (2.30) on 
, which we are about to establish, implies the uniqueness of the local
extensions even without the relaxed hypothesis (2.29). Alternatively, the uniqueness of
the local extensions can be deduced from Remark2.15. In any case, we have extended
(sgnf )�|f |
(log |f |)�� acrossS with the required order of vanishing.
The holomorphic dependence of the extension is again local problem, which needs

to be verified only near pointsp ∈ S. We choose a coordinate neighborhoodUp of
p as in the preceding argument. We must show that the integral of the local exten-
sion against any smooth measure� dx1 . . . dxr , with compact support inUp, depends
holomorphically on
 and�, provided Re
> − k − 1, of course. Formula (2.30), with
%=0, expresses the local extension as a sum of two terms which, as we have argued,
are really of the same type. It therefore suffices to show that

(
̃,�) �→
∫
Up

�gjDj ((sgnx1)
�̃|x1|
̃(log |x1|)�hj ) dx1 dx2 . . . dxr

=
∫
Up

(sgnx1)
�̃|x1|
̃(log |x1|)�hjD∗

j (�gj ) dx1 dx2 . . . dxr (2.34)
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describes a holomorphic function on the region{(
̃,�) ∈ C2 | Re
̃> −1}. Holomorphic
dependence is clear if one integrates only overUp � {|x1|� �}, for any small� > 0.
As � tends to zero, these truncated integrals converge to the complete integral, locally
uniformly in 
̃ and �. This implies the holomorphic nature of integral (2.34). �

Remark 2.35. In the case of a closed submanifoldS ⊂ M of codimension one, one
can formally define the vanishing of a distribution� along S to a negative power: we
say that� vanishes alongS to order−k, k >0, if locally near any pointp ∈ S, f k�
vanishes to order 0 for some, or equivalently anyC∞ function f which vanishes on
S exactly to first order. With this more general definition, the statement and proof of
Proposition2.26 remain valid.

We continue with the hypotheses of Proposition2.26. Sincef vanishes exactly to
first order onS, M is the disjoint union ofS and the two open subsets{f >0} and
{f <0}, both of which must be non-empty unlessS = ∅. Equivalently,M is the union
of the two closed subsets{f �0}, {f �0}, which intersect exactly inS.

Lemma 2.36. If � ∈ C−∞(M) vanishes to orderk�0 alongS, there exist distributions
�f �0 and �f �0, both also vanishing to orderk along S, such that

� = �f �0 + �f �0, supp(�f �0) ⊂ {f �0}, supp(�f �0) ⊂ {f �0}.

These conditions determine�f �0 and �f �0 uniquely.

Proof. Lemma2.8 implies the uniqueness. We may therefore argue locally, on some
open neighborhoodUp of p ∈ S, as in Definition2.4, on which we represent� as

� =
∑

1� j �N
fjDjhj with hj ∈ L∞

loc(Up); (2.37)

the Dj are tangential toS and thefj ∈ C∞(Up) vanish onS to order k. Let f>0
denote the characteristic function of the set{f >0}. Sincef>0 hj is locally bounded,

�f �0 =def

∑
1� j �N

fjDj (f>0 hj ) ∈ C−∞(Up) (2.38)

vanishes to orderk alongS �Up, has support inS � {f �0}, and agrees withf>0 �
on Up − S. We define�f �0 analogously. Then�f �0 + �f �0 = � at least on the
complement ofS, hence on all ofUp. �

As one consequence of the lemma, a distribution� on M − S has an extension
� ∈ C∞(M) which vanishes to order 0� k�∞ along S when it can be extended in
this way “from both sides ofS”. More precisely:

Corollary 2.39. A distribution� ∈ C−∞(M−S) can be extended to a distribution� on
M which vanishes alongS to order 0� k�∞ if and only if eachp ∈ S has an open
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neighborhoodUp on which there exist distributions�p,+, �p,−, both vanishing to order
k alongUp � S, such that� = �p,+ on Up � {f >0} and � = �p,− on Up � {f <0}.
The necessity of this condition is clear. To see the sufficiency, we note that� =

(�p,+)f �0 + (�p,+)f �0 ∈ C−∞(Up) agrees with� on Up − S and vanishes to order
k along Up � S. Lemma 2.4 then implies� = � on all of Up and ensures that the
local extensions define a global distribution� with the required properties.

3. The case of one variable

Many of our applications involve distributions on the real line or the compactified real
line RP1= R � {∞}. For such distributions we shall make the definition of vanishing
to order k�0 more concrete. To simplify the discussion, we consider vanishing at
0 or, occasionally, at∞. By translation, that covers other points, too. Recall that a
distribution vanishes to infinite order at a point if it vanishes to orderk, for everyk�0.

Lemma 3.1. Let I ⊂ R be an open interval containing the origin, andk a non-negative
integer. The following conditions on a distribution� ∈ C−∞(I ) are equivalent:
(a) � vanishes to orderk at the origin.
(b) There exists an open intervalJ , with 0 ∈ J ⊂ I , an integerN �0, and functions
hj ∈ L∞

loc(J ), 0� j �N , such that onJ , � = ∑N
j=0 x

k+j dj

dxj
hj .

(c) There exists an open intervalJ , with 0 ∈ J ⊂ I , an integerN �0, and functions
hj ∈ L∞

loc(J ), 0� j �N , such that onJ , � = ∑N
j=0

dj

dxj
(xk+j hj ).

(d) There exists an open intervalJ , with 0 ∈ J ⊂ I , an integerN �0, and a function
h ∈ L∞

loc(J ), such that onJ , � = xk( d
dx

◦ x)Nh.
If � ∈ C−∞(I ) vanishes to orderk + 1 at the origin, it satisfies the three conditions

(b)–(d) even withhj ∈ C(J ), respectivelyh ∈ C(J ). If k�1, and if � satisfies any of
the conditions(b)–(d),but with hj ∈ L1

loc(J ), respectivelyh ∈ L1
loc(J ), then� vanishes

to order k − 1 at the origin.

Proof. A differential operatorD on the intervalJ is tangential to the codimension one

submanifold{0} ⊂ R if and only if it can be expressed as a sumD = ∑N
j=0 gjx

j dj

dxj
,

with C∞ coefficientsgj . If fj ∈ C∞(J ) vanishes to orderk at 0, the quotientx−kfj
is smooth, so

∑N

j=0
fjgjx

j dj

dxj
= xk

∑N

j=0
g̃j x

j dj

dxj
, with g̃j = x−kfjgj ∈ C∞(J ). (3.2)

The g̃j can be moved across the derivatives, introducing new terms of order less than
N , but with one or more “excessive” power ofx. Those can be moved across the
derivatives, too, until eventually one obtains an expression of the type

∑N

j=0
fjgjx

j dj

dxj
= xk

∑N

j=0
xj dj

dxj
◦ ğj with ğj ∈ C∞(J ). (3.3)
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Thus (a) implies (b). By induction onN , one can show that the linear span of the differ-

ential operatorsxk+j dj

dxj
, for 0� j �N , coincides with the linear span ofd

j

dxj
◦ xk+j ,

0� j �N , and also with the linear span ofxk( d
dx

◦ x)j , 0� j �N . In particular, (b)
is equivalent to (c), and (c) implies the existence of an expression

� =
∑N

j=0
xk
(

d

dx
◦ x
)j

hj , with hj ∈ L∞
loc(J ). (3.4)

The antiderivativeHj of a functionhj ∈ L∞
loc(J ), normalized by the conditionHj(0)=0,

is Hölder continuous of index 1, which makesx−1Hj(x) locally bounded onJ and
continuous onJ −{0}, hence locallyL∞ on J . Repeating this processN−j times, one
can solve the equation( d

dx
◦ x)N−j h̃j =hj for h̃j ∈ L∞

loc(J ). This turns (3.4) into the

equation asserted by (d), withh= ∑
j h̃j , so (c) implies (d). The differential operator

( d
dx

◦ x)N is tangential to{0} ⊂ R, so (d) certainly implies (a). At this point, we have
established the equivalence of (a)–(d).
If � vanishes to orderk + 1 at 0, the condition (b) withk + 1 in place of k

gives the expression� = ∑
j x

k+1+j dj

dxj
hj = ∑

j x
k+j+1 dj+1

dxj+1 Hj , whereHj ∈ C(J )

again denotes an antiderivative ofhj . In other words, we can replace thehj in (b)
by continuous functions if we lower the integerk by 1; this improves on Remark2.7
in the special case of a one-dimensional manifold. The equivalence of (b)–(d) in the
setting of continuous functionshj and h follows from the same arguments as in the
L∞
loc setting.
Every locallyL1 function hj has a continuous antiderivativeHj . Thus, if � satisfies

(b) or (c) with hj ∈ L1
loc(J ), we can write� = xk−1 ∑

j DjHj , with Dj tangential to
{0} andHj continuous, hence locallyL∞. Except for the notation, the condition (d)
with h ∈ L1

loc(J ) can be treated the same way.�

If a distribution � vanishes to orderk�0 at 0, the statement of Lemma3.1 allows
the open intervalsJ to depend on the particular choice ofk. It is not difficult to show
that for J , one can take any bounded intervalJ around the origin whose closure is
contained in the domain of definitionI . More importantly, if� has compact support,
one can express it in terms of compactly supported functionshj :

Lemma 3.5. If � ∈ C−∞
c (I ) vanishes to orderk�0 at 0 ∈ I , there exist presenta-

tions of � as in statements(b) and (c) in Lemma3.1, but with J = I and functions
hj ∈ L∞(I ) which vanish outside some compact subinterval ofI . If � ∈ C−∞

c (I ) van-
ishes to orderk + 1 at 0, there exist presentations as in(b) and (c), with J = I and
hj ∈ Cc(I ).

Proof. We use the notation of the statement and proof of Lemma3.1. Let us observe
first of all that equivalence (b) and (c) works independently of the degree of regularity
of the functionshj and does not affect the size of their supports. We may therefore
concentrate on the condition (b). If� vanishes to orderk at 0, there exists an open
subintervalJ ⊂ I containing 0 on which� can be expressed as in (b). We choose
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	 ∈ C∞
c (J ) such that	(x) ≡ 1 nearx =0. Then� = 	� + (1− 	)�, both summands

have compact support, and(1 − 	)� vanishes near the origin. Since	 has compact
support inJ ,

	� =
∑N

j=0
	 xk+j dj

dxj
hj

=
∑N

j=0
xk+j dj

dxj
(	 hj ) −

∑N

j=0
xk+j

[
dj

dxj
,	
]
hj , (3.6)

as an identity of compactly supported distributions onI , or evenR. The functions

	hj lie in L∞(I ) and vanish outside the support of	. The commutator[ dj

dxj
,	]

can be expressed as a sum
∑ j−1

i=0
di

dxi
◦ �j, i with coefficients�j, i which are linear

combinations of derivatives of	. We can move the “excessive”(j − i)th power of
x to the right, as explained in the proof of Lemma3.1. The upshot is an expression for
	� of the same type as (b), in terms ofL∞ functionshj whose support is contained
in the support of	. If � vanishes to orderk + 1 at the origin, Lemma3.1 allows us
to require the functionshj in (3.6) to lie in C(J ). After the manipulation which was
just described, the redefined functionshj are continuous, and their support still lies in
the support of	. Thus, in either case,	� has been expressed in the form in which�
needs to be expressed.
As a distribution of compact support,(1− 	)� =F (N) has a continuousN th anti-

derivativeF , for every sufficiently large integerN ; F need not have compact support,
of course. Since the origin does not lie in the support of(1−	)�, which is compact and
contained inI , there exists� ∈ C∞

c (I ) such that�(x) ≡ 0 nearx =0 and�(x) ≡ 1
on an open neighborhood of the support of(1− 	)�. Hence

(1− 	)� = �F (N) = xk+N dN

dxN
(x−k−N�F)

− xk+N
[

dN

dxN
, x−k−N�

]
F. (3.7)

Since� has compact support and vanishes nearx =0, x−k−N�F lies in Cc(I ). For the

same reason we can transformxk+N [ dN

dxN
, x−k−N�]F into a sum

∑N−1
j=0 xk+j dj

dxj
Fj

with Fj ∈ Cc(I ). Hence also(1− 	)� has an expression of the required type.�

Because of Lemma2.8, a distribution� ∈ C−∞(I ), defined on an open intervalI ,
and vanishing to orderk�0 at 0∈ I , is completely determined by its restriction to
I −{0}. To make this precise, we choose a cutoff function	 ∈ C∞

c (I ) such that	 ≡ 1
near the origin, and we define	t (x)= 	(x/t), for 0< t �1. Then	t also has compact
support inI , and (1− 	t )� vanishes near the origin—in particular,(1− 	t )� depends
only on the restriction of� to I − {0}.
Lemma 3.8. If � ∈ C−∞(I ) vanishes to orderk�0 at 0 ∈ I , (1 − 	t )� → � as
t → 0, in the strong distribution topology.
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Convergence in the strong distribution topology implies convergence in the weak
dual topology. Hence, for any� ∈ C∞(I ),

∫
I

�(x)�(x) dx = lim
t→0

∫
I

�(x)(1− 	t )(x)�(x) dx, (3.9)

provided� ∈ C−∞(I ) vanishes to orderk�0 at 0∈ I .

Proof. We apply criterion (b) in Lemma3.1, with k =0. For t small enough, the
support of� − (1− 	t )� = 	t� is contained inJ , so

	t� =
∑N

j=0
xj	t

dj

dxj
hj

=
∑N

j=0
dj

dxj
(xj	t hj ) −

∑N

j=0

[
dj

dxj
, xj	t

]
hj . (3.10)

As t tends to 0, the support of	t shrinks down to zero linearly int . Thusxj	t hj → 0
in L1 norm, hence in the strong distribution topology. Differentiation is continuous with
respect to the strong dual topology. This allows us to conclude that the first term on

the right of (3.10) tends to 0 ast → 0. The commutator[ dj

dxj
, xj	t ] can be expressed

as a linear combination

[
dj

dxj
, xj	t

]
=
∑

i�0,%�0
1� i+%� j

ci,%t
−% dj−i−%

dxj−i−%
◦ (xj−i	(%)(x/t)). (3.11)

In the summationj − i� %, and the diameter of the support of	(%)(x/t) is O(t), so
t−%xj−i	(%)(x/t) → 0 in L1 norm. Arguing as in the first case, we see that also the
second term on the right of (3.10) tends to 0 ast → 0. �

Lemma 3.8 implies an analogous statement about distributions defined near∞ in
RP1= R � {∞}. Let I ⊂ RP1 be a connected open neighborhood of∞. We choose a
function 	 ∈ C∞

c (R) as before, i.e., with	 ≡ 1 near 0, and we again define	t (x)=
	(x/t), but this time fort �1. Then	t vanishes near∞, but 	t (x) → 1 ast → ∞,
for any x ∈ R.

Corollary 3.12. If � ∈ C−∞(I ) vanishes to orderk�0 at ∞, 	t� → � as t → ∞,
in the strong distribution topology, and hence also in the weak dual topology.

This follows from Lemma3.8 via the change of coordinatesx�1/x and the sub-
stitution of 	(x) for (1− 	)(1/x).
Just as in the case of Lemma3.8, the proof of Lemma3.8 establishes more than is

claimed by its statement. If the functionshj in (3.9) lie only in L1
loc(J ), we can still
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conclude that bothxj	t hj and t−%xj−i	(%)(x/t)hj tend to 0 inL1 norm ast → 0.
The lemma therefore remains valid in this greater degree of generality:

Remark 3.13. If � ∈ C−∞(I ) can be expressed as� = ∑N
j=0 x

j dj

dxj
hj , with

hj ∈ L1
loc(J ), (1 − 	t )� converges to� as t → 0, in the strong distribution

topology.

Recall the notion of a tempered distribution: a distribution� ∈ C−∞(R) such that
the integration pairingC∞

c (R) � � �→ ∫
R �� dx extends continuously fromC∞

c (R) to
the space of Schwartz functionsS(R). Equivalently, tempered distributions on the real
line can be characterized as those which arise as the%th derivativeh(%)(x), for some
% ∈ N, of a continuous functionh(x) growing at most polynomially as|x| → ∞. Any
distribution which can be extended fromR to a distribution onRP1 necessarily has
this property.
The integration pairing exhibits the space of tempered distributionsS ′(R) as the

continuous dual of the Schwartz spaceS(R). The Fourier transform

S(R) � f (x) �→ f̂ (y) =
∫

R
f (x)e(−xy) dx, (e(u) = e2�iu) (3.14)

sends Schwartz functions to Schwartz functions. Since

f (x) = ̂̂
f (−x) =

∫
R
f̂ (y)e(xy) dy (f ∈ S(R)), (3.15)

by Fourier inversion, the Fourier transform establishes an automorphism ofS(R). This
makes it possible to define the Fourier transform�̂ of a tempered distribution� by the
formula ∫

R
�̂(x)f (x) dx =

∫
R

�(y)f̂ (y) dy (f ∈ S(R)), (3.16)

which reduces to Parseval’s identity when the tempered distribution� happens to be a
Schwartz function.
Our next result generalizes the one-variable version of Proposition2.19. We consider

a periodic distribution without constant term,

�(x) =
∑

n�=0
ane(nx). (3.17)

Like any periodic distribution,� is tempered. Its inverse Fourier transform

�̂(x) =
∑

n�=0
an�n(x) (�n = delta function atn), (3.18)
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vanishes identically nearx =0, hence vanishes to infinite order at 0. According to
Proposition2.19, � extends canonically across∞. This is one instance of a general
phenomenon:

Theorem 3.19. If a tempered distribution� on the real line vanishes to orderk�0 at
the point0, then its Fourier transform can be extended to a distribution onR � {∞}
which vanishes to orderk at ∞. In particular, if � vanishes to infinite order at0, the
Fourier transform�̂ has a canonical extension across∞.

The theorem does not have a converse: for example, if�̂ ∈ S(R) has compact support,
� is a smooth function whose Taylor series at the origin need not vanish to any order.
Theorem4.12 identifies the obstruction to the converse of the theorem.

Proof of Theorem 3.19. We choose a cutoff function	 ∈ C∞
c (R) such that	 ≡ 1

near 0. Then� = 	�+ (1−	)� is the sum of two tempered distributions, one of which
has compact support and vanishes to infinite order at 0, whereas the other vanishes
identically on a neighborhood of zero. It therefore suffices to deal separately with these
two cases.
Let us suppose first that the tempered distribution� has support away from the

origin. Like any tempered distribution, we can express� as the%th derivative of a
continuous functionF , for some%�0, with F growing at most polynomially. Since
� =F (%) vanishes on some open intervalJ around 0, the restriction ofF to J must be
a polynomial of degree at most%−1. We can subtract the polynomial fromF , which al-
lows us to assume thatF ≡ 0 on J . Then, fork sufficiently large,Fk(x)=def x

−kF (x)

is not only continuous but decays like, say,|x|−2 as |x| → ∞. That makes the Fourier

transformF̂k bounded and continuous. Since�(x)= d%

dx%
(xkFk(x)),

�̂(1/x) = (−1)k(2�i)%−kx−%
(

dk

dxk
F̂k

)
(1/x)

= (−1)k(2�i)%−kx−%
(
−x2 d

dx

)k
(F̂k(1/x)), (3.20)

for all sufficiently largek but with % fixed. As a bounded function which is continuous
away from the origin,F̂k(1/x) certainly lies inL∞

loc(R). Also, (−x2 d
dx
)k can be ex-

pressed asxkDk, in terms of a differential operatorDk which is tangential to{0} ⊂ R.
Thus (3.20) defines an extension of̂� across∞ which vanishes there to orderk − %

for all large k, hence to infinite order.
For the remaining case, we suppose that� has compact support and vanishes to

order k�0 at 0. We use Lemmas3.1 and 3.5 to write

�(x) =
∑

0� j �N

dj

dxj
(xk+j hj (x)) with hj ∈ L∞(R)

and hj (x) ≡ 0 for |x|?1. (3.21)



S.D. Miller, W. Schmid / Journal of Functional Analysis 214 (2004) 155–220 173

Then ĥj ∈ C∞(R) and �̂(x)= (−1)k+j (2�i)−k
∑N

j=0 x
j ( dk+j

dxk+j ĥj )(x), hence

�̂(1/x) = (−1)k+j (2�i)−k
∑

0� j �N
x−j

(
−x2 d

dx

)k+j (
ĥj (1/x)

)
. (3.22)

The functionx �→ ĥj (1/x) is bounded, and is smooth except at 0, hence locallyL∞.
The differential operatorx−j (−x2 d

dx
)k+j can be expressed as a linear combination of

xk+i di

dxi
, 0� i� k + j . We have therefore extended̂� across∞, where the extension

vanishes to orderk. �

According to our convention, distributions are dual to compactly supported smooth
measures. A distribution� defined on some neighborhoodU of ∞ in the compactified
real lineRP1= R � {∞} can be integrated against a smooth measure supported inU ,
or equivalently, againstg(1/x) dx, whereg ∈ C∞

c (1/U) must vanish to second order
at 0, to balance the second order pole ofdx at ∞. If � vanishes to second order at
∞, it can absorb the second order pole. Thus, in this situation, the change of variables
formula ∫

U

�(x)g(1/x) dx =
∫
1/U

x−2�(1/x)g(x) dx (3.23)

can be legitimately applied to anyg ∈ C∞
c (1/U), without requiring g to vanish

at 0.
We now suppose that� ∈ S ′(R) vanishes to orderk0�0 at 0 and has an exten-

sion across∞ which vanishes there to orderk∞�0. We also suppose thatk0 +
k∞�1. According to Proposition2.26, for � ∈ Z/2Z and Res > − k0, the distribu-
tion (sgnx)�|x|s−1�(x) has an extension across 0 which depends holomorphically on
s. Similarly, there exists an extension across∞, with holomorphic dependence ons,
for Res < k∞ +2. Equivalently,(sgnx)�|x|s−1�(x) dx is well defined and holomorphic
nearx = ∞ when Res < k∞, sincedx has a second order pole at∞. Putting the two
statements together, we see that(sgnx)�|x|s−1�(x) dx, with −k0<Res < k∞, can be
regarded as global “measure with distribution coefficients” on the compact manifold
R � {∞}. As such, it can be integrated against the constant function 1. This allows us
to define the signed Mellin transform of�,

M��(s) =
∫

R
(sgnx)�|x|s−1�(x) dx (−k0 < Res < k∞), (3.24)

as a holomorphic function ofs in the indicated region. The notation takes some li-
cense: we are really integrating over the compactified real line, and the integrand
needs to be extended across∞ in the described manner. It is sometimes convenient
to split up integral (3.24) into two integrals over bounded intervals. For that purpose,
we choose a cutoff function	 ∈ C∞

c (R) which is identically equal to 1 nearx =0.
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Then � = 	� + (1− 	)�, and

M��(s) =
∫

R
(sgnx)�|x|s−1	(x)�(x) dx

+
∫

R
(sgnx)�|x|−s−1(1− 	)(1/x)�(1/x) dx. (3.25)

Both integrals have compactly supported integrands, and thus can be regarded as in-
tegrals over bounded intervals. The change of variables formula (3.23), which justifies
the passage from (3.24) to (3.25), can also be used to switch the roles of 0 and∞:

M��(s) = M��̃(−s) (−k0 < Res < k∞), with �̃(x) = �(1/x). (3.26)

The relation between� and �̃ is to be understood as an equality of distributions on
R � {∞}, of course.
Recall the generalization of the notion of vanishing to orderk introduced by Re-

mark 2.35: � vanishes at 0 to order−k, k�1, if xk� vanishes to order zero. As in
Definition 2.4, vanishing to orderk implies vanishing to order%, for any integer%� k.
With the extended definition, the discussion of the Mellin transform still applies. More
precisely, we can define the signed Mellin transformM�� of a tempered distribution�
which vanishes to orderk0 ∈ Z at 0 and has an extension across∞ vanishing there to
order k∞ ∈ Z, providedk0 + k∞�1. In this situation,M�� is defined as holomorphic
function on the region{−k0<Res < k∞}, and the identities (3.25–26) remain valid.
A word of caution: ifk0+ k∞�0 even with maximal choices fork0 andk∞, it is still
possible for the two integrals in (3.25) to have analytic continuations whose domains
intersect on some vertical strip. In that case, it is not legitimate to think of the sum of
the two integrals, on their common domain of definition, as the Mellin transform of�.
Any distribution�, defined on some neighborhood of 0, can be expressed locally as

a kth derivative of some continuous function, in which case� vanishes to order−k

according to the generalized definition. If� also has a canonical extension toR � {∞},
M�� is then defined on the right half-plane{k <Res}. Similarly, if � ∈ S ′(R) vanishes
to infinite order at 0, the signed Mellin transformM�� is defined on some left half-
plane{Res < − k}. Lastly, if � both vanishes to infinite order at 0 and has a canonical
extension across∞, M�� is defined as an entire function.
For our next statement, we consider a tempered distribution� ∈ S ′(R) which vanishes

to orderk0 at 0 and has an extension across∞ which vanishes there to orderk∞, with
k0+k∞�1. The productx−1�(x) vanishes to order at leastk0−1 at 0 and has an exten-
sion toR � {∞} which vanishes at∞ to order at leastk∞+1. In this situation,M��(s)
andM�+1(x

−1�)(s +1) are both defined on the region{−k0<Res < k∞}. Differentia-
tion also has this effect onk0 andk∞, soM�+1�′(s+1) is defined on the same region.

Proposition 3.27. Under the hypotheses that were just mentioned,

M�+1�
′(s + 1) = −sM��(s) = −sM�+1(x

−1�)(s + 1),



S.D. Miller, W. Schmid / Journal of Functional Analysis 214 (2004) 155–220 175

as equalities of holomorphic functions in the region{−k0<Res < k∞}. In particular,
M��′(1)=0 if −k0<0<k∞.

Proof. We can argue separately for the two summands in (3.25). In other words, we
may suppose that� has compact support and vanishes at 0 to orderk0. The second
identity follows formally from the definition, and we may use it freely in the proof
of the first identity. In particular, we may supposek0 =1. Then, according to Lemmas
3.1 and 3.5,

� =
∑

0� j �N
xj dj

dxj
hj with hj ∈ Cc(R). (3.28)

Taking one summand at a time and using the identity we already know reduces the
problem to the case of a distribution� =h(j) which arises as thej th derivative of a
function h ∈ Cc(R). According to the definition of the signed Mellin transform,

M�h
(j)(s) =

(∏
1� %� j

(% − s)

) ∫
R
(sgnx)�+j |x|s−j−1h(x) dx (3.29)

in the region{Res > j}. When we substitutej + 1 for j , the identity we want follows
for � =h(j) and hence any compactly supported�, at least when Res?0. If � has
compact support and vanishes to orderk0 at 0, as we had assumed, both sides of the
equation are known to be holomorphic to the right of the line Res = −k0. The equation
to be proved extends to this region by analytic continuation.�

Some examples may be instructive at this point. Dirac’s function�0 based at the
origin vanishes there to order−1, since it can be written, locally near 0, as the first
derivative of a bounded measurable function. That is the lowest possible value for the
order of vanishing, since Lemma2.8 rules out order of vanishing zero. The signed
Mellin transform of�0 has meaning as holomorphic function on the region{Res >1}.
Parity considerations show that the odd Mellin transformM1�0 vanishes identically.
But x�0 =0 andM0�0(s)=M1(x�0)(s − 1) by Proposition3.27, so the even Mellin
transformM0�0 also vanishes. One can argue similarly for the derivatives of�0, which
together with�0 span the space of distributions supported at the origin, hence:

Corollary 3.30. If � ∈ S ′(R) has support at the origin and vanishes there to order
−k, M��(s)=0, as an identity on the region{Res > k}.

The signed Mellin transformM�f of a Schwartz functionf , of parity �, equals
twice the usual Mellin transform off . Thus well-known results about the usual Mellin
transform can be restated as follows:

Lemma 3.31. The signed Mellin transformM�f (s) of a Schwartz functionf ∈ S�(R)

extends meromorphically to the complex plane, with poles only at integral pointss = −n,
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n�0, n ≡ � modulo2, all of first order, with residue2(n!)−1f (n)(0) at s = − n. The
Mellin transforms off and f ′ are related by the identityM�+1f

′(s+1)= − sM�f (s).

If a function f ∈ C∞(R) vanishes to orderk�0 at the origin, it also vanishes
to order k in the sense of Definition2.4 when f is regarded as a distribution. The
converse of this statement is not equally obvious, but can be deduced from properties
of the Mellin transform. To see this, we choose a cutoff function	 ∈ C∞

c (R) which is
identically equal to 1 on some neighborhood of the origin. Iff vanishes to orderk in the
sense of Definition2.4, so does	f , which vanishes near∞, hence extends canonically
across∞. That makesM�(	f ) well defined and holomorphic for Res > − k, for both
choices of�; in particular,M�(	f ) has no poles ats = − n, 0� n<k. In the region
{Res >0}, the definition of the Mellin transform of	f , viewed as distribution, agrees
with the definition ofM�(	f ) when 	f is regarded as Schwartz function. At this
point, Lemma3.31 implies:

Corollary 3.32. For a function f ∈ C∞(R), vanishing to orderk at 0 in the usual
sense is equivalent to vanishing to orderk in the sense of distributions, according to
Definition 2.4.

The corollary applies in particular to the constant function 1, which has order of
vanishingk0 = k∞ =0 both at the origin and at∞. Our definition of the signed Mellin
transform does not apply directly sincek0 + k∞ =0, but there is a weaker notion, as
we shall explain next. We choose a cutoff function	 ∈ Cc(R) such that	(x) ≡ 1
nearx =0. Then 1= 	 + (1− 	), andM�	(s), M�(1− 	)(s) are defined on the right
and left half plane, respectively.

Lemma 3.33. If 	 ∈ Cc(R), 	(x) ≡ 1 near the origin, the signed Mellin transform
M�	(s) extends meromorphically from{Res >0} to the entire complex plane, with at
most a single pole ats =0, of order one and residue2 or 0, depending whether� =0
or � =1. Similarly M�(1− 	)(s) extends meromorphically from{Res <0} to C. The
sum of these two meromorphic continuations vanishes identically.

Proof. The description of the poles and residues follows from Lemma3.31, which also
provides an explicit meromorphic continuation via the equation

M�+1	
′(s + 1) = −sM�	(s). (3.34)

What matters here is the entirety ofM�+1	
′(s + 1), which follows from the fact that

	′ has compact support and vanishes identically nearx =0. According to (3.26),

M�(1− 	)(s) = M��(−s) (Res < 0) with �(x) = 1− 	(1/x). (3.35)

Like 	, the function� has compact support and vanishes nearx =0, hence

M�+1�
′(1− s) = sM��(−s), (3.36)
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is an entire function, in analogy to (3.34). To complete the proof, it suffices to establish
the equality of entire functions

M�+1	
′(s + 1) = M�+1�

′(1− s), (3.37)

which follows from (3.26) and the identity�′(1/x)= x2	′(x). �

As the final example of this section, we consider a periodic distribution without
constant term�(x)= ∑

n�=0 ane(nx). Appealing either to Proposition2.19 or Theo-
rem 3.19, we can conclude that� has a canonical extension across infinity. Its signed
Mellin transform is then well defined on some half-plane{Res > k}. The Fourier co-
efficients an grow at most polynomially withn, so the Dirichlet series

∑
n>0 ann

−s

and
∑

n>0 a−nn
−s converge absolutely for Res?0.

Lemma 3.38. The signed Mellin transform of� = ∑
n�=0 ane(nx) is given by the

formula

M��(s) = G�(s)
∑

n�=0
(sgnn)�an|n|−s for Res?0,

with G0(s)=2(2�)−s�(s) cos(�s/2) andG1(s)=2i(2�)−s�(s) sin(�s/2).

Proof. To shorten the various formulas we only discuss the case� =0; the other
case can be treated exactly the same way. We choosek0 ∈ N large enough to ensure∑

n�=0 |an||n|−k0 <∞. Then, fork� k0,

Fk(x) =
∑

n�=0
an(2�in)−ke(nx) (3.39)

converges absolutely and uniformly to a continuous functionFk(x), such thatF (k)
k (x)=

�(x). As before, we pick a cutoff function	 ∈ C∞
c (R), with 	(x) ≡ 1 for x near 0.

Then, in analogy to (3.25),

M0�(s) =
∫

R
|x|s−1	(x)�(x) dx

+
∫

R
|x|−s−1(1− 	)(1/x)�(1/x) dx. (3.40)

The first integral on the right is to be interpreted as∫
R

|x|s−1	(x)�(x) dx =
∫

R
|x|s−1	(x)F (k0)

k0
(x) dx

= (−1)k0
∫

R

dk0

dxk0
(|x|s−1	(x))Fk0(x) dx, (3.41)
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which has meaning for Res > k0 + �, for any �>0, since then

dk0

dxk0
(|x|s−1	(x)) = O(|x|�−1) (|x|>1). (3.42)

We substitute the uniformly convergent series (3.39) in this identity, interchange the
order of summation and integration, then reverse the integration by parts, and conclude

∫
R

|x|s−1	(x)�(x) dx =
∑

n�=0
an

∫
R

|x|s−1	(x)e(nx) dx, (3.43)

still for Res > k0 + �.
We now choosek1 ∈ N, k1>k0, and suppose that Res < k1 − �, for some �>0.

To paraphrase the proof of Proposition2.26 in light of Lemma3.1, one extends the
distribution |x|−s−1�(1/x) acrossx =0 by means of the formula

|x|−s−1�(1/x) = |x|−s−1(−x2 d
dx

)k1(Fk1(1/x))

=
∑

0� j � k1
qj (s)

dj

dxj
((sgnx)k1+j |x|−s+k1+j−1Fk1(1/x)),

(3.44)

with suitable polynomialsqj (s); this depends on the fact that

(sgnx)k1+j |x|−s+k1+j−1Fk1(1/x) = O(|x|�−1) (|x|>1), (3.45)

becauseFk1(1/x) is bounded and Res < k1 − �. We substitute series (3.39) for Fk1 in
(3.44) and interchange the order of differentiation and summation; that is legitimate
because the series converges absolutely. When we integrate the resulting formula against
the smooth—even atx =0! —compactly supported function(1 − 	)(1/x) and work
backwards, we obtain the formula

∫
R

|x|−s−1(1− 	)(1/x)�(1/x) dx

=
∑

n�=0
an

∫
R

|x|−s−1(1− 	)(1/x)e(n/x) dx. (3.46)

The integral on the right is not an ordinary integral, but rather denotes the integral of
the canonical extension of the distribution|x|−s−1e(n/x) against the smooth, compactly
supported measure(1− 	)(1/x) dx.
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We now make the change of variablesx� x/n in (3.43), the change of variables
x� n/x in (3.46), and combine the resulting formulas with (3.40):

M0�(s) =
∑
n�=0

|n|−san

∫
R

|x|s−1e(x) dx. (3.47)

In deriving this identity, we have assumed thatk0+�<Res < k1−�, which in particular
implies absolute convergence of the series. The integral is an ordinary, convergent
integral nearx =0, but nearx = ∞, it must be interpreted as the integral of the
canonical extension of the distribution|x|s+1e(x) against the smooth measurex−2dx.
Taken in this sense, the integral represents a holomorphic function at least on the
region {Res >0}. But this function is well known: on the subregion{0<Res <1}, the
integral converges conditionally, to the limitG0(s). The lemma follows. �

4. Fourier and Mellin transforms

In this section we use the signed Mellin transform to characterize tempered distri-
butions which vanish to infinite order at 0 and extend canonically across∞, and we
relate the Fourier and Mellin transforms of such distributions.
We start out by introducing the two main results. For� ∈ Z/2Z, we letS�(R) denote

the space of Schwartz functions of parity�,

S�(R) = {f ∈ S(R) | f (−x) = (−1)�f (x)}, (4.1)

and similarlyS ′
�(R) the space of tempered distributions of parity�. Then

S(R) = S0(R) ⊕ S1(R), S ′(R) = S ′
0(R) ⊕ S ′

1(R). (4.2)

When it is defined, the signed Mellin of a tempered distribution� satisfies the relation

M��̃ = (−1)�M�� if �̃(x) = �(−x), (4.3)

for entirely formal reasons. In particular, the even Mellin transform of an odd distri-
bution vanishes identically, as does the odd Mellin transform of an even distribution.
We shall say that a holomorphic functionH(s), defined on the region{a < Res < b},

−∞� a <b�∞, has “locally uniform polynomial growth” on vertical lines if

|H(s)| = O(|s|N) as |Im s| → ∞,

for someN ∈ N, locally uniformly in Res. (4.4)
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The integerN may depend on Res, but must do so in a locally uniform manner.
Equivalently, for each choice ofa′, b′, with a <a′ <b′ <b, there must exist positive
constantsT = T (a′, b′), C =C(a′, b′), andN =N(a′, b′) ∈ N, such that

a′�Res� b′, |Im s|� T �⇒ |H(s)|�C|Im s|N. (4.5)

For this reason, we shall also use the synonymous terminology “H(s) has moderate
growth on vertical strips”. We refer to the dual notion,

|H(s)| = O(|s|−N) as |Im s| → ∞,

for everyN ∈ N, locally uniformly in Res, (4.6)

by saying that “H(s) has locally uniform rapid decay” along vertical lines, or syn-
onymously, that “H(s) decays rapidly on vertical strips”. This condition holds if and
only if, for all a′, b′ ∈ R, with a <a′ <b′ <b, and everyN ∈ N, there exist positive
constantsT = T (a′, b′, N), C =C(a′, b′, N), such that

a′�Res� b′, |Im s|� T �⇒ |H(s)|�C|Im s|−N. (4.7)

The conditions (4.4–7) make sense even whenH(s) is meromorphic, provided the real
parts of the poles ofH(s) have no accumulation points in the open interval(a, b)—in
particular, when all the poles lie on the real line. We shall use the same terminology
in that situation.

Theorem 4.8. For � ∈ Z/2Z, the Mellin transformM� establishes an isomorphism
between

{� ∈ S ′
�(R) | � vanishes to inf inite order at 0, extends canonically across ∞}

and

{H : C → C | H is entire, of moderate growth on vertical strips}.

Recall that the signed Mellin transformM��(s) is well defined and regular for
Res>0 provided � ∈ S ′(R) vanishes to infinite order atx =0, whereasM��(s) is
well defined and regular for Res?0 when� has a canonical extension across infin-
ity. According to Theorem3.19, if � ∈ S ′(R) vanishes to infinite order atx =0, the
Fourier transform̂� extends canonically across infinity. In that situation, the domains
of definition ofM��(1− s) andM��̂(s) intersect in some half-plane Res?0. Our next
statement also involves the function

G�(s) =
∫

R
e(x)(sgnx)�|x|s−1dx (0< Res < 1). (4.9)
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It extends meromorphically to the entire complex plane by virtue of the formula

G�(s) = 2i�(2�)−s�(s) cos(�(s − �)/2), (4.10)

which follows from standard identities for the Mellin transform. Note that the current
definition is consistent with the earlier use of the notationG�(s) in Lemma3.38. We
shall also use the functional equation

G�(s)G�(1− s) = (−1)�, (4.11)

which is equivalent to the Gamma identity�(s)�(1− s)= � csc(�s).

Theorem 4.12. (a) If � ∈ S ′(R) vanishes to infinite order at the origin, M��̂(s)=
(−1)�G�(s)M��(1− s) for Res?0.
(b) Suppose that� ∈ S ′

�(R) extends canonically across infinity and vanishes to order
k0�1 at the origin. Then̂� vanishes to infinite order at the origin if and only if
G�(s)M��(1− s) is regular forRes <1.When that is the case, M��̂(s)= (−1)�G�(s)

M��(1− s) for Res <1.

A periodic distribution without constant term�(x)= ∑
n�=0 ane(nx) has Fourier

transform �̂(x)= ∑
n�=0 an�n(x), which vanishes identically near the origin. Since

M�̂�(s)= ∑
n�=0(sgnn)

�an|n|1−s , and since�(−x) is the double Fourier transform
of �, the theorem contains Lemma3.38 as a special case.
The remainder of this section contains the proofs of Theorems4.8 and 4.12, which

depend on similar arguments.
Recall Lemma3.31, which relates the Mellin transformM�f of a Schwartz function

f to that of its derivative, and which asserts thatM�f is regular on the complex plane,
except for first order poles at non-positive integers of parity�.

Lemma 4.13. For every choice of�, R ∈ R, with 0< �<R, there exists a continuous
seminorm��,R : S(R) → R�0 such that

f ∈ S(R), ��Res�R �⇒ |M�f (s)|� ��,R(f ).

Proof. The family of seminorms�n,k(f )= supx∈R((1 + x2)n|f (k)(x)|), indexed by
integersk, n�0, defines the topology ofS(R). We choosen so that 2n>R. Then, for
��Res�R,

|M�f (s)| =
∣∣∣∣ ∫

R
(sgnx)�|x|s−1f (x) dx

∣∣∣∣ � ∫
R

|x|Res−1|f (x)|dx

� �n,0(f )

∫
R
(1+ x2)−n|x|Res−1dx�

(
2

�
+ 2

(2n − R)

)
�n,0(f ).

(4.14)

Thus ��,R =2(�−1 + (2n − R)−1)�n,0 will do. �
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In particular,M�f (s) decays rapidly on vertical strips to the right of Res =0.
Repeated application of the relation−sM�f (s)=M�+1f

′(s + 1) implies

M�f (s) = (−1)m
(∏

0� %�m−1
(s + %)−1)M�+mf

(m)(s + m), (4.15)

so the boundedness of the Mellin transform off (m) ∈ S(R) to the right of the line
Res =0 forces the bound|M�f (s)| =O(|Im s|−m) to the right of Res = −m, for any
m ∈ N.

Corollary 4.16. The signed Mellin transformM�f (s) of a Schwartz functionf decays
rapidly on vertical strips.

This is equivalent, of course, to the same, and well known, property of the ordinary
Mellin transform. Fork0, k∞ ∈ Z � {+∞}, we define

S ′(R)k0,k∞ = {� ∈ S ′(R) | � vanishes to orderk0 at 0,has

extension across∞ vanishing to orderk∞ at ∞}. (4.17)

We use the natural conventionk0 + k∞ = + ∞ when at least one of the summands
has the value+∞. Recall that the signed Mellin transformM��(s) of a distribution
� ∈ S ′(R)k0, k∞ is well defined and lies in the function space

O({−k0 < Res < k∞})
= {H : {−k0 < Res < k∞} → C | H is holomorphic}, (4.18)

providedk0 + k∞�1.

Lemma 4.19. If � ∈ S ′(R)k0, k∞ , with k0 + k∞�1, M��(s) has locally uniform poly-
nomial growth on vertical lines.

Proof. We expressM�� as the sum of two terms, as in (3.25). They are of the same
type, so it suffices to show that the first term has locally uniform polynomial growth
on vertical lines to the right of Res = − k0. Changing notation from	� to �, we may
and shall suppose that� has compact support and vanishes to orderk0 at 0. We appeal
to Lemmas3.1 and 3.5, to write

�(x) =
∑

0� j �N
xk0+j dj

dxj
hj (x) with hj ∈ L∞(R)

and hj (x) ≡ 0 for |x|?1, (4.20)
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which then implies

∫
R
(sgnx)�|x|s−1�(x) dx

=
∑

0� j �N
(−1)j

∫
R
hj (x)

dj

dxj
((sgnx)�+k0+j |x|s+k0+j−1) dx

=
∑

0� j �N

∏
0� %<j

(−s − k0 − %)

∫
R
hj (x)(sgnx)

�+k0|x|s+k0−1 dx.

(4.21)

For 0< �>1, R?0, and−k0 + ��Res�R, the integral on the right can be bounded
in terms of�, R, the supremum of the|hj | and the support of thehj , entirely without
reference to Ims. �

To paraphrase Lemma4.19, the signed Mellin transformM� defines a linear map
from S ′(R)k0, k∞ to the subspace

Opg({−k0 < Res < k∞}) = space of allH ∈ O({−k0 < Res < k∞})
which have locally uniform polynomial growth on vertical lines. (4.22)

For our next statement we consider a functionH ∈ Opg({−k <Res <1}), k�0. Be-
cause of Lemma 3.27 and Corollary4.16, for anyf ∈ S�(R) and anys0 in the interval
(0, k + 1), the functions �→ M�f (s)H(1 − s) is smooth and decays rapidly on the
vertical line Res = s0. It is therefore integrable over that line.

Lemma 4.23. For H ∈ Opg({−k <Res <1}), the linear function

S�(R) � f �→ 1

4�i

∫
Res=s0

M�f (s)H(1− s) ds

is continuous with respect to the topology ofS(R). It does not depend on the particular
choice ofs0, 0<s0<k + 1.

Proof. The independence ofs0 follows from the Cauchy integral theorem and a limiting
argument. Lemma4.13 and (4.15) bound (s20 + (Im s)2)m/2M�f (s), for Res = s0, in
terms of a continuous seminorm, applied tof (m). The lemma follows, sincef �→ f ′
is continuous with respect to the topology ofS(R). �
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The integration pairing exhibitsS ′
�(R) as the continuous dual ofS�(R). Hence

Lemma4.23 implicitly defines a linear map

�� : Opg({−k < Res < 1}) → S ′
�(R), such that∫

R
f (x)��H(x) dx = 1

4�i

∫
Res=s0

M�f (s)H(1− s) ds (4.24)

for all f ∈ S�(R); the particular choice ofs0, 0<s0<k + 1, does not matter. The
identity remains correct forf ∈ S(R) since both sides vanish whenf ∈ S�+1(R).

Lemma 4.25. If k�0, the identity∫
R
f (x)�(x) dx = 1

4�i

∫
Res=s0

M�f (s)M��(1− s) ds,

holds for all � ∈ S ′(R)k,1, f ∈ S�(R), and 0<s0<k + 1.

Proof. We already know thats0 may be chosen anywhere in the interval(0, k + 1).
Both sides of the identity vanish if� has the opposite parity to�. We may there-
fore suppose� ∈ S�(R). Recall the definition of�x�0, �x�0 in Lemma2.36. Since
�x�0(−x)= (−1)��x�0(x) and f ∈ S�(R),∫

R
f (x)�(x) dx = 2

∫
R
f (x)�x�0(x) dx. (4.26)

We now impose the temporary hypothesis

supp� is compact and does not contain the origin. (4.27)

Then �x�0(x) has compact support inR>0, which justifies the change of variables
x�ex in the integral on the right in (4.26):∫

R
f (x)�(x) dx = 2

∫
R
(ex/2f (ex))(ex/2�x�0(e

x)) dx. (4.28)

The functionx �→ ex/2f (ex) decays rapidly, along with all its derivatives, both asx →
− ∞ and x → + ∞. Thus ex/2f (ex) is a Schwartz function, with Fourier transform

F(ex/2f (ex))(y) =
∫

R
ex/2f (ex)e(−xy) dx =

∫
R>0

f (x)x−1/2−2�iydx

= 1

2

∫
R
(sgnx)�f (x)|x|−1/2−2�iydx = 1

2
M�f (1/2− 2�iy).

(4.29)
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Like any distribution with compact support,x �→ ex/2�x�0(e
x) has a smooth Fourier

transform, which can be computed using the change of variablesx� log x, along the
same lines as (4.29):

F(ex/2�x�0(e
x))(y) =

∫
R>0

�x�0(x)x
−1/2−2�iydx

= 1

2

∫
R
(sgnx)��(x)|x|−1/2−2�iydx = 1

2
M��(1/2− 2�iy).

(4.30)

This is a tempered distribution. In view of (4.28–30), we find

∫
R
f (x)�(x) dx = 2

∫
R
(ex/2f (ex))(ex/2�(ex)) dx

= 2
∫

R
F(ex/2f (ex))(−y)F(ex/2�(ex))(y) dy

= 1

2

∫
R
M�f (1/2+ 2�iy)M��(1/2− 2�iy) dy

= 1

4�i

∫
Res=1/2

M�f (s)M��(1− s) ds, (4.31)

still under the simplifying hypothesis (4.27).
To deal with the general case, we choose a cutoff function	 ∈ C∞

c (R) such that
	(x) ≡ 1 nearx =0 and	(−x) ≡ 	(x). Then, for t >0,

�t (x) =def (1− 	(x/t))	(tx) ∈ C∞
c (R) (4.32)

is an even function, which vanishes nearx =0. In particular,� t� ∈ S ′
�(R) satisfies

(4.27). According to Lemma3.8and Corollary3.12, � t� → � in the strong distribution
topology, ast → 0. This is a statement not just about convergence inC−∞(R). Recall
that � extends across∞ and vanishes there to order 1; convergence takes place in
C−∞(R � {∞}) when� is replaced by this extension. Any Schwartz function extends
naturally to aC∞ function on R � {∞}, and the integral of a Schwartz function
against� can be re-interpreted as an integral overR � {∞}—this, too, follows from
Corollary 3.12. We conclude:

∫
R
f (x)�t (x)�(x) dx →

∫
R
f (x)�(x) dx as t → 0. (4.33)
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To complete the proof, it suffices to show: there existsm>0 such that

((Im s)2 + 1)−m|M�(�t�)(s) − M��(s)| → 0 as t → 0,

locally uniformly in− k <Res <1. (4.34)

Since f is a Schwartz function,((Im s)2 + 1)mM�f (s) decays rapidly along vertical
strips. Thus (4.33–34) and identity (4.31), with � t� in place of�, imply the identity
asserted by the lemma.
The verification of (4.34) splits into two local problems, one at 0, the other at∞.

The coordinate changex�1/x relates the two, so we only need to treat the former.
In other words, the problem can be solved by showing

((Im s)2 + 1)−m|M�((1− 	(x/t))�)(s) − M��(s)| → 0

as t → 0, locally uniformly in Res, (4.35)

for somem>0, and for Res > − k, provided� ∈ C−∞(R) has compact support and
vanishes to orderk�0 at the origin. Pointwise convergence follows directly from
Lemma 3.8, applied to the distribution(sgnx)�|x|s−1�. To establish locally uniform
convergence, we express� as in (3.21). Taking one term at a time, we find

∫
R
(sgnx)�|x|s−1	(x/t) dj

dxj
(xk+j hj (x)) dx

= (−1)j
∫

R
xk+j hj (x)

dj

dxj
((sgnx)�|x|s−1	(x/t)) dx

=
∑

0� %� j
cj,%(s)

∫
R
(x/t)%hj (x)(sgnx)

�+k|x|s+k−1	(%)(x/t) dx,

(4.36)

with suitably chosen constantscj,%(s) which depend polynomially ons. The support
of the integrands shrinks down to{0} linearly in t , and on the support, the integrands
are bounded by a multiple of|x|Res+k−1. We conclude that the integrals tend to 0 for
Res > − k, locally uniformly in Res. The factor((Im s)2 + 1)−m compensates for the
cj,%(s), so (4.35) follows. �

As one consequence of Lemma4.25, the linear map�� defined in (4.24) constitutes
a left inverse of the signed Mellin transform:

��(M��) = � if � ∈ S ′(R)k,1, k�1. (4.37)

Lemma 4.38. The linear map�� : Opg({0<Res < 1}) → S ′
�(R) is injective.
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Proof. If H ∈ Opg({0<Res <1}) and��H =0,∫
Res=1/2

M�f (s)H(1− s)ds = 0 for all f ∈ S�(R). (4.39)

This will be the case in particular iff (x)= (sgnx)�|x|−1/2	(log |x|) for some	 ∈
Cc(R). In this situation, by (4.29),

M�f (1/2+ 2�iy) = 2(F	)(−y). (4.40)

We may regardy �→ H(1/2 − 2�iy) as a tempered distribution, since it is function
of moderate growth. According to (4.39–40), the Fourier transform of this distribution
annihilates	, which is an arbitrary smooth function of compact support. But then
H(1/2− 2�iy) ≡ 0, which forcesH =0. �

Lemma 4.41. If k0�0, k∞�1, and �>0,
(a) H ∈ Opg({−k0 − �<Res < k∞}) implies that��H vanishes to orderk0 at 0,

and
(b) H ∈ Opg({−k0<Res < k∞ + �}) implies that��H has an extension across∞

vanishing there to orderk∞.

Proof. We begin with the proof of (a). Because of Lemma3.31, M�(xf
′)(s)= −

sM�f (s) for all f ∈ S�(R). Via the defining relation (4.24), this translates into the
equation d

dx
(x��H)= ��((1− s)H(s)), which is equivalent to

x d
dx

��H = −��(sH(s)). (4.42)

Similarly the identityM�f (s + 1)=M�+1(xf (x))(s) for f ∈ S�(R) translates into

x(��H)(x) = ��+1(s �→ H(s + 1))(x). (4.43)

The image under�� of the constant function 1 is the distribution whose integral against
a test functionf ∈ S�(R) equals(4�i)−1

∫
Res=1/2M�f (s)ds. In view of (4.29), this

is the integral of the inverse Fourier transform of the constant function 1 against
x �→ ex/2f (ex); in other words,

��1(x) = 1
2

(
�1(x) + (−1)��−1(x)

)
, (4.44)

where�n(x) denotes Dirac’s delta function based atx = n. Taken together, (4.42) and
(4.44) show that�� maps the space of polynomialsC[s] to the space of linear combi-
nations of delta functions and their derivatives atx =1 andx = −1. All of these vanish
to infinite order at 0 and extend canonically across∞, so all polynomial functionsH(s)

satisfy the lemma.
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The hypothesis of locally uniform polynomial growth allows us to chooseN �0 and
C >0 so that

|Res + k0|� ε/2, |Im s|�1 �⇒ |H(s)|�C|Im s|N−2. (4.45)

This inequality remains valid, with a possibly differentC, if we subtract any polynomial
of degreeN − 2. Since the lemma holds for polynomials, we are free to assume that
H(s) has a zero of orderN − 1 at s = − k0. Then

H̃ (s) =def s
−NH(s − k0) has at most a first order pole ats = 0, (4.46)

is otherwise regular for−�<Res < k0+k∞, and has locally uniform polynomial growth
on vertical lines. In particular, we can apply�� to H̃ . We use the defining relation
(4.24), with s0 =1− �/2, and then calculate as in (4.29–31) forf ∈ S�(R),

∫
R
f (x)��H̃ (x) dx = 1

4�i

∫
Res=1−�/2

M�f (s)H̃ (1− s) ds

= 1

2

∫
R
M�f (1− �/2+ 2�iy)H̃ (�/2− 2�iy) dy

=
∫

R
F(e(1−�/2)xf (ex))(−y)H̃ (�/2− 2�iy) dy

=
∫

R
e(1−�/2)xf (ex)F(H̃ (�/2+ 2�iy))(x) dx. (4.47)

The integral on the right represents the integration pairing between the Schwartz func-
tion e(1−�/2)xf (ex) against the Fourier transform of the tempered distributionH̃ (�/2+
2�iy). Because of (4.45), this tempered distribution is actually a function inL1(R)�L2

(R), so both the integral on the right of (4.47) and the Fourier transform itself can be
calculated as ordinary, absolutely convergent integrals:

∫
R
e(1−�/2)xf (ex)F(H̃ (�/2+ 2�iy))(x) dx

=
∫

R>0

f (x)x−�/2F(H̃ (�/2+ 2�iy))(log x) dx

=
∫

R>0

∫
R
f (x)H̃ (�/2+ 2�iy)x−�/2−2�iy dy dx

=
∫

R
f (x)

(
(sgnx)�

4�i

∫
Res=�/2

H̃ (s)|x|−s ds

)
dx. (4.48)
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Putting together (4.47) and (4.48) and appealing once more to (4.45), we find that

��H̃ (x) = (sgnx)�

4�i

∫
Res=�/2

H̃ (s)|x|−s ds (4.49)

is continuous forx �= 0. When we shift the line of integration across the origin, we
pick up a residue from the first-order pole of̃H(s) at s =0, and otherwise get the
same integral, now over the line Res = − �/2. Hence��H̃ (x) is bounded near the
origin. In view of (4.42–43), relationship (4.46) betweenH and H̃ implies

��+NH(x) = xk0
(− x d

dx

)N��H̃ (x) with ��H̃ ∈ L∞(R). (4.50)

But � ∈ Z/2Z can take either value, so��H vanishes to orderk0 at the origin, as
asserted in statement (a).
The restriction of��H to R−{0} is completely determined by relation (4.24) corre-

sponding only to test functionsf ∈ Cc(R) which vanish near the origin. Iff has this
property, then so doesx−1f (1/x), and bothM�f (s) andM�(x

−1f (1/x))(s)=M�+1
(f (x))(1− s) are entire. We can then shift the line of integration in (4.24) across the
origin if necessary, and conclude

1

x
(��H)(1/x) = (��+1H

−)(x) on R − {0} with H−(s) = H(1− s). (4.51)

Since the change of variablesx�1/x interchanges 0 and∞, and since the passage
from H to H− has the effect of replacing the hypotheses of (b) with those of (a), the
preceding argument now also implies (b).�

At this point we have assembled all the pieces for the proof of Theorem4.8.
Lemma4.19 tells us thatM� induces a linear mapM� : S ′

�(R)∞,∞ → Opg(C), and
Lemmas4.23 and 4.25 produce a left inverse�� : Opg(C) → S ′

�(R). The left inverse
takes values inS ′

�(R)∞,∞ by Lemma4.41, and is injective by Lemma4.38, hence
defines a two-sided inverse.
We begin the proof of Theorem4.12 with an observation about the signed Mellin

kernel(sgnx)�|x|s−1, which visibly defines a tempered distribution if Res >0. Integra-
tion by parts can be used to extend the definition to alls ∈ C, s /∈ (2Z + �)� Z�0,
and the resulting tempered distribution depends meromorphically ons.

Lemma 4.52. F(x �→ (sgnx)�|x|s−1) = (−1)�G�(s)(sgnx)
�|x|−s .

Proof. We choose a cutoff function	 ∈ C∞
c (R), such that	(x) ≡ 1 nearx =0. Then

(sgnx)�|x|s−1 = 	(x)(sgnx)�|x|s−1 + (1− 	(x))(sgnx)�|x|s−1, (4.53)
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and both summands on the right have meromorphic continuations. We compute the
Fourier transform separately for each summand. The first summand is anL1 function
when Res >0, and lies inL1(R)�L2(R) when Res >1/2. In the latter case, at least,
the Fourier transform can be calculated as an ordinary integral. The integral converges,
of course, for Res >0; by analytic continuation,

F(x �→ 	(x)(sgnx)�|x|s−1)(y) =
∫

R
	(x)(sgnx)�|x|s−1e(−xy) dx (4.54)

for Res >0, as an integral in the ordinary sense. The second summand lies inL1(R)�
L2(R) when Res <0, in which case the Fourier transform is given by an ordinary
integral. That integral exists as a conditionally convergent integral even when Res <1,
providedy �= 0. Arguing by analytic continuation, one sees that integral (4.54), with
(1− 	) in place of	, represents the Fourier transform, restricted toR − {0}, in the
wider range Res <1. We conclude:

F(x �→ (sgnx)�|x|s−1)(y)|{y �=0} =
∫

R
(sgnx)�|x|s−1e(−xy) dx

= (−sgny)�|y|−s

∫
R
(sgnx)�|x|s−1e(x) dx = (−sgny)�G�(s)|y|−s

(4.55)

in the range 0<Res <1. In other words, the two sides of the identity asserted by the
lemma differ by a distribution supported at the origin. But the region{0<Res <1}
is invariant unders �→ 1 − s, so (sgnx)�|x|s−1 and (sgnx)�|x|−s play essentially
symmetric roles. Taking the Fourier transform, we find that the two sides of the identity
also differ by the Fourier transform of a distribution supported at the origin, i.e., by
a polynomial. That is a contradiction unless (4.55) remains correct even around the
origin. The lemma follows by meromorphic continuation.�

The Fourier transform preserves the parity of Schwartz functions and of tempered
distributions. Thus, in proving part (a) of Theorem4.12, we may as well suppose
that � ∈ S ′

�(R), in which casê� also has parity�. The identity we need to prove is
equivalent to the corresponding identity withx�(x) in place of� and � + 1 in place
of �—this follows from Proposition3.27 and the identitysG�(s)= − 2�iG�+1(s + 1),
which is equivalent to the Gamma identitys�(s)= �(s + 1). Division by x does not
affect vanishing to infinite order at the origin. We may therefore suppose, without loss of
generality, that� is the restriction toR of a distribution onR � {∞} which vanishes to
orderk∞�1 at infinity. In that caseM��(s) is holomorphic on{Res <1}, of moderate
growth on vertical strips. Stirling’s formula implies thatG�(s) has moderate growth on
vertical strips, and from the definition one can see thatG�(s) has no poles to the right
of Res =0. In particular,G�(s)M��(1− s) lies in the spaceOpg({0<Res <∞}), on
which �� is injective. Since��(M��)= �, and in view of Lemma4.25, the assertion
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of part (a) of the theorem comes down to the equality

∫
R
f (x)̂�(x) dx = (−1)�

4�i

∫
Res=1/2

M�f (s)G�(1− s)M��(s) ds

= (−1)�

4�i

∫
Res=1/2

M�f (1− s)G�(s)M��(1− s) ds, (4.56)

for all f ∈ S�(R). We use Parseval’s identity
∫

R f (x)̂�(x) dx = ∫
R f̂ (x)�(x) dx and

Lemma4.25 to write (4.56) in the equivalent form

∫
Res=1/2

M�f̂ (s)M��(1− s) ds

= (−1)�
∫
Res=1/2

M�f (1− s)G�(s)M��(1− s) ds, (4.57)

again for allf ∈ S�(R). This reduces part (a) of the theorem to the identity

M�f̂ (s) = (−1)�G�(s)M�f (1− s) for all f ∈ S(R), (4.58)

which is a direct consequence of Lemma4.52.
If � ∈ S ′

�(R) satisfies the hypotheses of part (b)—i.e., vanishing to order at least
zero at the origin and extending canonically across∞—the Mellin transformM��(s) is
holomorphic on{Res <0}, of moderate growth on vertical strips. For the “if” statement,
we suppose thatG�(s)M��(1− s) has no poles for Res <1. As was mentioned earlier,
G�(s) has moderate growth on vertical strips, so the productG�(s)M��(1 − s) has
that property as well. Thus (4.24) and Lemma4.41 guarantee the existence of some
�̃ ∈ S ′

�(R) such that�̃ vanishes to infinite order atx =0 and

∫
R
f (x)�̃(x) dx = (−1)�

4�i

∫
Res=1/2

M�f (s)G�(1− s)M��(s) ds, (4.59)

for all f ∈ S(R). The change of variabless�1−s, the identity (4.58), and Lemma4.25
transform this into the equation

∫
R f (x)�̃(x) dx = ∫

R f̂ (x)�(x) dx, so �̂ = �̃ vanishes
to infinite order atx =0, as asserted. To establish the “only if” statement, we suppose
that �̂ vanishes to infinite order atx =0 and apply the first part of the theorem tõ�:
M��(s)=G�(s)M��̂(1 − s) for Res?0; the factor(−1)� has disappeared since the
inverse Fourier transform and the Fourier transform of any� ∈ S ′

�(R) are related by
this sign factor. Appealing to the functional equation (4.11) for G�(s), we find

M��̂(s) = (−1)�G�(s)M��(1− s). (4.60)
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Since � vanishes to order at least one atx =0, �̂ ∈ S ′(R)∞,1 by Theorem3.19, so
M��̂(s) is regular for Res <1, as remained to be shown.

5. Examples: applications toL-functions

The methods developed in the previous two sections can be used to prove the analytic
continuation and functional equations of variousL-functions. We shall show how this
works by giving the proofs for the Riemann zeta function, DirichletL-functions, and
L-functions for automorphic forms onGL(2,R). These are exceedingly well-known
results, of course—the aim is to illustrate our technique, not to explain the results. Our
paper [7] contains more substantial applications.
We begin with the Riemann zeta function�(s)= ∑

n�1 n
−s . The point of departure

is the tempered distribution�Z(x)= ∑
n∈Z �n(x), i.e., the sum of the Dirac delta

functions based at all the integers. The Poisson summation formula forZ can be
paraphrased by the identity�Z = �̂Z. Since �̂n(x)= e(−nx), we can write this in the
equivalent form

∑
n�=0

�n(x) − (1− 	(x)) =
∑

n�=0
e(nx) − �0(x) + 	(x); (5.1)

here	 ∈ Cc(R) denotes a cutoff function such that	(x) ≡ 1 nearx =0. The distri-
bution on the left of the equality sign vanishes identically nearx =0, and therefore
vanishes to infinite order at 0. The distribution on the right differs from a compactly
supported distribution by one that is periodic, without constant term. Thus, according
to Proposition2.19, the right-hand side has a canonical extension across∞. Since the
two distributions are equal, the discussion leading up to Proposition3.27 allow us to
conclude that

M0
(∑

n�=0
e(nx) − �0(x) + 	(x)

)
(s)

= M0
(∑

n�=0
�n(x) − 1+ 	(x)

)
(s) is an entire function. (5.2)

These Mellin transforms are globally defined. That is not the case for the summands on
the left and right of the identity (5.1): both

∑
n�=0 �n(x) and (1− 	(x)) have Mellin

transforms, in the sense of our definition, only for Res <0, hence

M0
(∑

n�=0
�n(x) − 1+ 	(x)

)
(s)

= M0
(∑

n�=0
�n(x)

)
(s) + M0(	(x) − 1)(s) for Res < 0. (5.3)
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Quite similarly,

M0
(∑

n�=0
e(nx) − �0(x) + 	(x)

)
(s)

= M0
(∑

n�=0
e(nx)

)
(s) − M0�0(s) + M0	(s) for Res > 1. (5.4)

One can appeal to Corollary3.12 to justify the heuristically obvious equation

M0
(∑

n�=0
�n(x)

)
(s) = 2�(1− s) (Res < 0). (5.5)

On the other hand, Lemma3.38 implies

M0
(∑

n�=0
e(nx)

)
(s) = 4(2�)−s�(s) cos(�s/2)�(s) (Res > 1). (5.6)

The function	 satisfies the hypotheses of Lemma3.33, hence

M0	(s) andM0(	 − 1)(s) extend meromorphically toC,

the two extensions coincide, and have no singularities

except for a simple pole ats = 0, with residue 2. (5.7)

The analytic continuation of�(s) − 1/(s − 1) follows from (5.2–3), (5.5), and (5.7).
The functional equation can be read off from (5.2–7) and the identityM0�0(s)=0,
Res >1, which is a special case of Corollary3.30.
The case of DirichletL-functions is simpler from the analytic point of view, but

requires some combinatorics. We recall the definition of a Dirichlet character modulo
q >1: a multiplicative function : Z → C obtained from a character of the multi-
plicative group(Z/qZ)∗, which is extended toZ/qZ by setting it equal to zero on
non-units, and then lifted fromZ/qZ to Z. One calls the Dirichlet character primitive
if the character of(Z/qZ)∗ which it encodes is not lifted from a quotient(Z/q ′Z)∗,
corresponding to a proper divisorq ′|q. In the primitive case, one callsq the conductor
of . Like �(s), the Dirichlet series

L(s, ) =
∑∞

n=1
(n)n−s (5.8)

converges absolutely and uniformly for Res >1. This is theL-function of the primitive
Dirichlet character.
For the remainder of this discussion we fix a particular primitive Dirichlet character

 and the conductorq >1. Then̄ corresponds to the reciprocal character of(Z/qZ)∗
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and is also primitive. The tempered distribution

�(x) =
∑

n∈Z
(n)�n(x) =

∑
a∈(Z/qZ)∗

(a)
∑

n∈Z,n≡ a(q)
�n(x) (5.9)

vanishes near the origin, since(0)=0. To calculatê�, we note that
∑

m∈Z �a+mq(x)

= q−1�Z((x − a)/q) has
∑

n∈Z e(−na/q)�n(qx) as Fourier transform, which implies

�̂(x) =
∑

a∈(Z/qZ)∗
∑

n∈Z
(a)e(−na/q)�n(qx). (5.10)

A basic identity for Dirichlet characters asserts that

∑
a∈(Z/qZ)∗

(a)e(na/q) = ḡ(n), (5.11)

with g = ∑
a∈(Z/qZ)∗ (a)e(a/q) denoting the so-called Gauss sum. Hence

�̂(x) = (−1)g�̄(qx) (5.12)

also vanishes near the origin. Appealing to Theorem3.19 we see that both� and �̂
have canonical extensions across∞, which lets us conclude that

M��(s) and M�̂�(s) are entire holomorphic functions. (5.13)

Theorem4.12 relates the two Mellin transforms:

M��(s) = G�(s)M�̂�(1− s), (5.14)

with G0(s)=2(2�)−s�(s) cos(�s/2) andG1(s)=2i(2�)−s�(s) sin(�s/2). We now fix
� ∈ Z/2Z so that

(−1) = ̄(−1) = (−1)�. (5.15)

Then, in analogy to (5.5),

M��(s) = 2L(1− s, ), M��̄(qx)(s) = 2q−sL(1− s, ̄), (5.16)

both in the range Res <0. The identities (5.12–16) give the analytic continuation of
the twoL-functions, as well as the functional equation

L(s, ) = (−1)�G�(1− s)gL(s, ̄). (5.17)
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This can be written in more symmetric form. For details, and for the history of the
functional equation, we refer the reader to [3].
To keep the discussion ofGL(2) reasonably succinct, we define the notion of a

GL(2,Z)-automorphic distribution without any further introduction. Motivation and
a much more general notion of automorphic distribution can be found in [7,8]. We
fix parameters� ∈ C, � ∈ Z/2Z, and defineV −∞

�,� as the vector space of pairs of

distributions(�, �̃), with �, �̃ ∈ C−∞(R) related by the equation

�̃(x) = |x|2�−1�(−1/x) (x �= 0). (5.18)

Then � determines̃� except atx =0. We therefore may, and shall, think of vec-
tors in V −∞

�,� as a distribution�, together with the datum of a specific extension of

x �→ |x|2�−1�(−1/x) acrossx =0. The groupG=GL(2,R) acts onV −∞
�,� by the rule

(��,�(g)�)(x) = (sgn detg)�

|cx + d|1−2� �
(
ax + b

cx + d

)
if g−1 =

(
a b

c d

)
∈ G. (5.19)

At points where the denominatorcx + d vanishes this identity retains meaning when
re-written in terms of̃�. In any case,��,� defines a representation ofG on V −∞

�,� . By
definition, the invariants for� =GL(2,Z),

(V −∞
� )� = {� ∈ V −∞

�,� | ��,�(�)� = � for all � ∈ �}, (5.20)

constitute the space ofGL(2,Z)-automorphic distributions corresponding to(�, �). For
a �-invariant distribution�, the invariance condition��,�(g)� = �, with a = d =0, b=
− c=1 in (5.19), implies �̃ = �, so we no longer need to specifỹ� separately.
To see how automorphic distributions arise fromGL(2,Z)-automorphic forms in

the usual sense, we first consider a modular form of weight 2k and parity�, i.e., a
holomorphic functionF(z) on C − R which grows at most polynomially iny = Im z

as |y| → ∞, and satisfies the automorphy condition

F(z) = (cz + d)−2kF

(
az + b

cz + d

)
for all � =

(
a b

c d

)
∈ SL(2,Z), (5.21)

as well as the parity conditionF(−z)= (−1)�F(z). The limit

�(x) = limy→0+ F(x + iy) (5.22)

converges in the strong distribution topology to an automorphic distribution� ∈ V −∞
�,� ,

with � =1/2− k [8]. Next we consider a Maass form of parity�, i.e., anSL(2,Z)-
invariant eigenfunctionF(x+iy) of the hyperbolic Laplace operator� on the upper half
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plane H, of polynomial growth in y, which obeys the parity condition
F(−x + iy)= (−1)�F(x + iy). We choose� ∈ C so that�F = (1/4 − �2)F . In this
situation,F(x + iy) has an asymptotic expansion fory → 0+,

F(x + iy) ∼ y1/2−�
∑

n�0
��,n(x)y

n + y1/2+�
∑

n�0
�−�,n(x)y

n, (5.23)

and� = ��,0 is the automorphic distribution� ∈ V −∞
�,� corresponding toF [8]. Then� is

determined only up to sign, but the two automorphic distributions inV −∞
±�,� are related

by the so-called standard intertwining operatorV −∞
−�,� → V −∞

�,� . The passage from a
modular form or Maass formF to the automorphic distribution� can be reversed: there
is a simple, explicit formula forF in terms of� [8].
The automorphy condition (5.19–20), witha = b= d =1 and c=0, implies �(x +

1)= �(x), so � ∈ V −∞
�,� can be developed as a Fourier series:

�(x) =
∑

n∈Z
|n|−�ane(nx); (5.24)

the factor|n|−� has the effect of making the coefficientsan independent of the choice
between� and −� in the Maass case, except for a normalizing factor. The parity
condition implies

an = (−1)�a−n, (5.25)

both in the holomorphic and the Maass case. We shall call� cuspidal if

a0 = 0 and � vanishes to infinite order atx = 0. (5.26)

The first of these two conditions ensures that� has a canonical extension across
∞, and the second can be paraphrased by saying that the automorphy condition
�(x)= |x|2�−1�(−1/x) for x �= 0 extends as an equality of canonical extensions toR �
{∞}. One can show without great difficulty that our definition agrees with the usual
notion of cuspidality for the modular form or Maass form from which� was derived.
Non-cuspidal automorphic forms should be thought of as attached to automorphic rep-
resentations ofGL(1). As such, they are less interesting in the context ofGL(2).
To simplify the arguments, we shall consider only cuspidal automorphic distributions
� ∈ V −∞

� .
Because of (5.24–25),� is completely determined by the Fourier coefficientsan,

n>0, or equivalently, by the Dirichlet series

L(s, �) =
∑

n�1
ann

−s , (5.27)

which converges for Res?0. This is the standardL-function of �, though in the
holomorphic case, definition (5.27) differs from the classical definition by an additive
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shift in the variables, which makes the functional equation relate values ats and 1−s,
rather than ats and 2k − s.
We can appeal either to Lemma3.38 or to Theorem4.12 and Corollary3.12, to

conclude

M��(s) = 2G�(s)L(s + �, �) (Res?0). (5.28)

The hypothesis of cuspidality, in conjunction with Lemma4.19, implies

M��(s) is entire, of moderate growth on vertical strips. (5.29)

Since�(x)= |x|2�−1�(−1/x), the definition ofM� and the change of variables formula
(3.23) lead to the identity

M��(s) = (−1)�M��(1− s − 2�). (5.30)

At this point, (5.28–30) provide a meromorphic continuation ofL(s, �) and the func-
tional equation

G�(s − �)L(s, �) = (−1)�G(1− s − �)L(1− s, �), (5.31)

which can be re-written in various equivalent ways. To see thatL(s, �) is entire, we
observe that

�̂(x) =
∑

n∈Z
|n|−�an�n(x) (5.32)

vanishes near the origin and extends canonically across∞ by (5.26) and Theorem3.19.
Consequently,

L(�, s) = 1/2 M�̂�(1+ � − s) (Res?0) (5.33)

extends to an entire function, of moderate growth on vertical strips.
We can also use our methods to prove a “converse theorem”, which reconstructs a

cuspidal automorphic distribution� ∈ V −∞
�,� from itsL-function and functional equation.

We fix (�, �) as before, and suppose thatan, n�1, is a sequence of complex numbers
which grows at most polynomially withn. Then

L(s) =
∑

n�1
ann

−s (5.34)

converges for Res?0, and

�(x) =
∑

n�=0
|n|−�ane(nx) with a−n = (−1)�an, (5.35)
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converges to a periodic distribution� without constant term. In particular,� has a
canonical extension across∞. We had just argued that if� also vanishes to infinite
order at 0, then bothL(s) andG�(s − �)L(s) extend to entire functions, of moderate
growth on vertical strips. We shall now reverse that argument: we make the holomorphic
extension and growth behavior ofL(s) andG�(s − �)L(s) the hypothesis, and shall
deduce that� vanishes to infinite order at 0.
Indeed, Theorems4.8 and4.12guarantee the existence of� ∈ S ′

�(R) such that both�
and its Fourier transform �̂ vanish to infinite order at the origin,
M��(s)=2G�(s)L(s + �), andM��̂(s)=2L(1 − s + �). These identities hold glob-
ally. The identitiesM��(s)=2G�(s)L(s + �) andM�̂�(s)=2L(1− s + �), which can
be derived just as in the proof of the functional equation, only hold for Res?0 and
Res>0, respectively. We can push up the order of vanishing at the origin to at least
one when we multiply� by a high enough powerxn of the variablex. Doing so
has no effect on the existence of a canonical extension across∞. On the other hand,
multiplication by xn shifts both the arguments of the Mellin transform and the parity
� by n. Hence, forn large enough,

M�+n(x
n�)(s) = M�+n(x

n�)(s) if Re s > −1, (5.36)

which according to (4.37) implies xn� = xn�, or equivalently� = � + P( d
dx
)�0, for

some polynomialP(X) ∈ C[X]. Taking the Fourier transform, we find that̂�(x) and
�̂(x)= ∑

n�=0 |n|�an�n(x)—both of which have canonical extensions across∞—differ
by P(2�ix). That, in conjunction with Corollary3.32, forcesP(X) to vanish as polyno-
mial, so� = � does vanish to infinite order atx =0. For future reference, we summarize:

Proposition 5.37. Fix (�, �) ∈ C × Z/2Z and suppose that the Dirichlet seriesL(s)
and the distribution� ∈ S ′

�(R) are related as in(5.34–35).Then� vanishes to infinite
order at x =0 if and only if bothL(s) and G�(s − �)L(s) extend to entire functions,
of moderate growth on vertical strips.

Let us continue with the proof of the converse theorem. We not only suppose that
L(s) and G�(s − �)L(s) extend to entire functions, of moderate growth on vertical
strips, but also impose the functional equation

G�(s − �)L(s) = (−1)�G(1− s − �)L(1− s). (5.38)

As we have seen,� vanishes to infinite order at 0 and has a canonical extension
across∞. Hence there exists̃� ∈ S ′

�(R), also vanishing to infinite order at 0 and
having a canonical extension across∞, such that̃�(x)= |x|2�−1�(−1/x) for x �= 0.
The functional equation is equivalent to the equalityM�̃� =M��, hence by Theo-
rem 4.8, to the equalitỹ� = �. The pair �, �̃ = � defines a vector inV −∞

�,� which is
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��,�-invariant under

�n =
(
1 n

0 1

)
, �(�1, �2) =

(
�1 0
0 �2

)
, w =

(
0 −1
1 0

)
, (5.39)

with n ∈ Z and�1, �2 ∈ { ± 1}; in the case of�n, the invariance follows from the peri-
odicity of � and its canonical extension across∞, for �(�1, �2) from the parity condition
on �, and forw from the identitỹ� = �. The matrices (5.39) generate� =GL(2,Z), so
� does define a�-automorphic distribution. It satisfies the cuspidality condition (5.26)
by construction. This completes the proof of the converse theorem.

6. The operatorsT�,�

In this section we introduce and study the operatorsT
,�, which play an important
role in our proof of the Voronoi summation formula forGL(3) [7].
For 
 ∈ C and � ∈ Z/2Z, the integral that computes the Fourier transform in the

expression

T
,�(f ) = F(x �→ f (1/x)(sgnx)�|x|−
−1) (f ∈ S(R)) (6.1)

converges absolutely when Re
>0. We can make sense ofT
,�(f )(y), at least as
function onR − {0}, for all 
 ∈ C because the Fourier kernelx �→ e(−xy), y �= 0,
vanishes to infinite order at∞. With this extended definition the valuesT
,�(f )(y),
y �= 0, depend holomorphically on
.

Lemma 6.2. The functionT
,�(f )(x), x �= 0, is infinitely differentiable. It decays
rapidly as |x| → ∞, along with all its derivatives.

Proof. For Re
>0, the Fourier integral converges absolutely, soT
,�(f ) is bounded.
Multiplying T
,�(f ) by 2�ix has the same effect as differentiating the argument ofF ,
which results in an expression of the same type, but with
 raised by 1. Repeating this
reasoning gives the rapid decay ofT
,�(f )(x), for any 
. Differentiating the function
T
,�(f ) also results in an expression of the same type, now with
 lowered by 1. Thus
T
,�(f ) is differentiable, and the derivative decays rapidly, etc.�

We can apply the operatorT
,� also to distributions which extend canonically across
∞. If � ∈ S ′(R) has this property,(sgnx)�|x|−
−1�(1/x) is well defined as distri-
bution on R, with holomorphic dependence on
. Since �(1/x) extends across∞,
x �→ �(1/x) has the temperedness property at∞, and that remains the case when we
multiply this distribution with (sgnx)�|x|−
−1. In short, (sgnx)�|x|−
−1�(1/x) is a
tempered distribution, to which we can apply the Fourier transform:

T
,�(�) = F(x �→ �(1/x)(sgnx)�|x|−
−1) ∈ S ′(R)

if � ∈ S ′(R) has a canonical extension across∞. (6.3)
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The two definitions (6.1–3) are consistent: if we regard a Schwartz functionf as
distribution with canonical extension across∞, the definitions agree if Re
>0 because
the Fourier transform of a function inL2(R)�L1(R) has unambiguous meaning. For
other values of
 we can argue by analytic continuation.
As things stand, we cannot compose two operators of type (6.1). To remedy this

deficiency, we shall first extend the domain of definition ofT
,�, and then show that
T
,� maps this extended domain to itself.

Definition 6.4. A function f ∈ C∞(R − {0}) has a singularity of type(
, �) ∈
C × Z/2Z at x =0 if there existC∞ functions f0, f1, . . . , fn, defined nearx =0,
such that

f (x) =
∑

0� j � n
(sgnx)�|x|
(log |x|)j fj (x) for 0< |x|>1.

When it is chosen minimally, the integern will be called the index of the singularity.
We say thatf has a simple singularity atx =0 if, locally nearx =0, it can be expressed
as a sum of functionsgj , 1� j �m, each of which has a singularity of some type
(
j , �j ) ∈ C × Z/2Z. We let Ssis(R) denote the space of functionsf ∈ C∞(R − {0})
which have a simple singularity atx =0 and decay rapidly, along with all of their
derivatives, as|x| → ∞.

Multiplication with a C∞ function does not change the type of a singularity, and
differentiation changes the type from(
, �) to (
 − 1, � + 1). In particular,Ssis(R) is
a module over the ring of linear differential operators with coefficients which areC∞,
and which grow at most polynomially as|x| → ∞, along with all their derivatives.
Pointwise multiplication turnsSsis(R) into a ring.
Definition (6.1) ofT
,�(f ) has meaning even for a functionf with a singularity of

type (
, �), because Proposition2.26also allows for powers of log|x|. We can therefore
extend the definition toSsis(R),

T
,� : Ssis(R) −→ C∞(R − {0}). (6.5)

Lemma6.2 remains valid in the current setting, though the proof needs to be adapted
slightly.

Theorem 6.6. The operatorT
,� maps the spaceSsis(R) to itself.

Our proof will establish a quantitative version of the theorem, which pins down the
potential singularities ofT
,�f in terms of those off and the parameter(
, �). We
shall state the more refined version in the cases of interest to us, at the end of this
section.
For the applications we need to know the effect of the adjoint ofT
,� on the level

of distributions. If � ∈ S ′(R) vanishes to infinite order atx =0, and if f ∈ Ssis(R)

has a singularity of type(
, �), Proposition2.26 identifies f� as the product of a
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smooth function and a distribution which vanishes to infinite order atx =0; away
from the origin, f� may be regarded as the product of a Schwartz function and a
tempered distribution. It therefore makes sense to integratef� over R. Taking linear
combinations, we can define the integration pairing

f �→
∫

R
f (x)�(x) dx (f ∈ Ssis(R)) (6.7)

on all of Ssis(R), against any tempered distribution� ∈ S ′(R) which vanishes to infi-
nite order atx =0. According to Theorem3.19, the Fourier transform̂� of any such
� extends canonically across∞. We may therefore regard(sgnx)�|x|
−1̂�(1/x) as
tempered distribution—see the discussion following the proof of Lemma6.2—which
vanishes to infinite order atx =0. In short,

T ∗

,�(�)(x) = (sgnx)�|x|
−1̂�(1/x) (6.8)

is a well-defined distribution if� ∈ S ′(R) vanishes to infinite order atx = 0, and (6.8)
defines a mapT ∗


,� from the space of all such� to itself.

Theorem 6.9. The operatorT ∗

,� is the adjoint ofT
,�, in the sense that

∫
R
T
,�(f )(x)�(x) dx =

∫
R
f (x)T ∗


,�(�)(x) dx

if � ∈ S ′(R) vanishes to infinite order at the origin andf ∈ Ssis(R).

The proofs of the two theorems occupy most of the remainder of this section. We
begin with a decomposition of the spaceSsis(R), which is formally similar to the
classification of regular singularities in the theory of ordinary differential equations.
Note that the rule

(
1, �1)� (
2, �2) ⇔ 
2 − 
1 ∈ (2Z + �1 + �2)� Z�0 (6.10)

defines an order relation on the setC × Z/2Z.

Lemma 6.11. Each f ∈ Ssis(R) can be expressed as a sum

f (x) = f0(x) +
∑

1� j �m

∑
0� %� nj

(sgnx)�j (log |x|)%|x|
j fj,%(x),

with f0 ∈ S(R) vanishing to infinite order at the origin, with fj,% ∈ S(R), (
j , �j ) ∈
C × Z/2Z, m�0, nj �0, and (
i , �i ) �� (
j , �j ) unless i = j . If f has parity
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� ∈ Z/2Z—i.e., if f (−x)= (−1)�f (x)—one can choosef0 ∈ S�(R), fj,% ∈ S�+�j (R).
The 
j and nj become uniquely determined when one requires that for eachj ,
fj,%(0) �= 0 for some%, and that nofj,nj vanishes to infinite order at the origin.
The fj,% are unique up to addition of a Schwartz function which vanishes to infinite
order at x =0.

Proof. The definition of Ssis(R) provides a decomposition locally, near the origin,
which can be made global by means of a suitable cutoff function. Since(
j , �j )�
(
i , �i ) implies

(sgnx)�i (log |x|)%|x|
iS(R) ⊂ (sgnx)�j (log |x|)%|x|
j S(R), (6.12)

terms can be combined so as to satisfy the conditions on the(
j , �j ). The function
f0 is needed in the decomposition only ifm=0, i.e., if f vanishes to infinite order at
the origin. The uniqueness statements follow from the fact thatf (x) has an asymptotic
expansion asx → 0, which completely determines the Taylor series of thefj,% at the
origin. �

We suspect that our next statement is known, though we have not been able to find
it stated elsewhere.

Lemma 6.13. The signed Mellin transformM�, � ∈ Z/2Z, establishes an isomorphism
betweenS�(R) and the space of meromorphic functionsH(s) whose only singularities
are first-order poles at points in(2Z + �)� Z�0, and which decay rapidly along
vertical lines, locally uniformly inRes.

Proof. Lemma3.31 and Corollary4.16 tell us thatH(s)=M�f (s), with f ∈ S�, has
the properties asserted by the lemma. Inversion of the Fourier transform in (4.29), the
parity condition onf , and the change of variablesx� logx make it possible to recover
f (x), for x �= 0, from H(s)=M�f (s):

f (x) = (sgnx)�

4�i

∫
Res=s0

H(s)|x|−s ds (x �= 0, s0 > 0), (6.14)

at least ifs0 =1/2, but then for others0>0 by a simple contour shift. IfH(s) has the
required properties, we define its “signed Mellin inverse”��H as the integral on the
right of (6.14), initially as a function onR − {0}. We should remark that the notation
is consistent with our earlier definition (4.24). SinceH(s) decays rapidly on the line
of integration, we can differentiate under the integral sign, to conclude

(
dk

dxk
��H

)
(x) = (sgnx)�+kk!

4�i

∫
Res=s0

(−s

k

)
H(s)|x|−s−k ds, (6.15)

again with s0>0, but otherwise arbitrary. Shifting the contour to the right and using

the rapid decay, we get the bound( dk

dxk
��H)(x)=O(|x|−N) for all k,N �0. That is
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the Schwartz condition at infinity. To show that��H has a smooth extension across
x =0, we now shift the contour to the left. As we do so, we pick up residues when we
move across pointss ∈ (2Z + �)� Z�0, but only those for which−s − k�0, since
the other poles are canceled by the zeros of the binomial coefficient: forN ∈ N, with
2N >k,

(
dk

dxk
��H

)
(x) = k!

2

∑
k� n<2N
n≡ � mod 2

(
n

k

) (
Ress=−nH(s)

)
xn−k

+ (sgnx)�+kk!
4�i

(−s

k

) ∫
Res=1/2−2N

H(s)|x|−s−k ds.

(6.16)

The sum provides an asymptotic expansion fordk

dxk
��H , because the error term tends to

zero faster than|x|2N−k−1 asx → 0. These asymptotic expansions are consistent with
the identity d

dx
(��H(s))= ��+1((1− s)H(s − 1)), and therefore do define a smooth

extension of��H . �

Corollary 6.17. The signed Mellin transformM� establishes an isomorphism between
(sgnx)�(log |x|)%|x|
S�+�(R) and the space of meromorphic functionsH(s), whose
only singularities are (% + 1)−st order poles at points s = 
 − n,
with n ∈ (2Z + � + �)� Z�0, such thatP(s)H(s) has zero residues at all poles,
for every polynomialP(s) of degree% − 1, and such thatH(s) decays rapidly along
vertical lines, locally uniformly inRes.

The condition on the poles ofH(s) can be paraphrased by saying that they are of
“pure order% + 1”, i.e., with principal parta(s − s0)

−%−1 around any poles0.

Proof. SinceM�((sgnx)
�(log |x|)%|x|
f )(s)=M�+�((log |x|)%f )(s + 
), it suffices to

deal with the case
 =0, � =0. We argue by induction on%, beginning with%=0
which reduces to Lemma6.13. For the induction step, we use the identity

d
dt

M�((log |x|)%f (x))(s + t)|t=0 = M�((log |x|)%+1f (x))(s), (6.18)

coupled with the observation that differentiation maps the space of meromorphic func-
tionsH(s) corresponding to%�0 isomorphically onto the space corresponding to%+1.
What matters here is the vanishing of the residues and the rapid decay, which excludes
constants. Note that rapid decay is preserved by differentiation, as can be shown by
means of the Cauchy integral formula.�

Because of (6.3), we may regardT
,�f , for f ∈ Ssis(R), as distribution with canon-
ical extension across∞. As such, its Mellin transform is defined for Res?0, as is the
Mellin transform off . Recall the functionG�(s), which was introduced in Lemma3.38.
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Lemma 6.19. For f ∈ Ssis(R), M�(T
,�f )(s)= (−1)�G�(s)M�+�f (s+
) on the com-
mon domain of definition.

Proof. Substitution of either|x|�f (x) or (sgnx)|x|�f (x) for f (x) has the same effect
on both sides of the identity to be proved. Also, both sides depend holomorphically on

. We are therefore free to suppose thatf (x)= (log |x|)%x2g(x) for some%�0 and
g ∈ S�+�(R), and that Re
>0. In that case, when we considerFT
,�f andT
,�f as
distributions, the former vanishes to orderk0 = ∞ at x =0 and has an extension across
∞ which vanishes there to orderk∞ =1. According to Lemma6.2, T
,�f has a canon-
ical extension across∞. As the Fourier transform of a function inL2(R)�L1(R),
T
,�f is continuous, hence vanishes to orderk0 =0 at x =0. In particular,M� maps
bothFT
,�f andT
,�f into Opg({0<Res <1}), in the notation of Section4. We can
now argue exactly as in the proof of Theorem4.12 and conclude

M�(T
,�f )(s) = G�(s)M�(FT
,�f )(1− s)

= G�(s)

∫
R
(sgnx)�(−sgnx)�|x|−1−
−sf (−1/x) dx

= (−1)�G�(s)

∫
R
(sgnx)�+�|x|s+
−1f (x) dx, (6.20)

which is the assertion of the lemma.�

Let us summarize what we have shown so far. The signed Mellin transformM� maps
Ssis(R) to a space of meromorphic functionsMsis(C) which we are about to define for-
mally. ViaM�, the operatorT
,� corresponds to the mapH(s) �→ (−1)�G�(s)H(s+
)
from the spaceMsis(C) to itself.

Definition 6.21. In the following,Msis(C) shall denote the space of all meromorphic
functionsH(s) on the complex plane, such that
(a) the poles ofH(s) lie in a finite number of sets{� − 2n | n ∈ Z�0}, � ∈ C;
(b) the order of the poles ofH(s) is uniformly bounded; and
(a) H(s) decays rapidly along vertical lines, locally uniformly in Res.

To complete the proof of Theorem6.6, we need a decomposition of the space
Msis(C) analogous to the decomposition ofSsis(R) given in Lemma6.11. This depends
on certain Gamma identities. Recall that�(s) is a meromorphic function which has
a first-order pole at every non-positive integer, but has no other poles and no zeros.
Stirling’s formula provides an asymptotic expansion of|�(s)| along vertical lines, whose
first term describes the asymptotic behavior:

|�(s)| ∼ √
2�|Im s|Res−1/2e−�|Im s|/2 as |Im s| → ∞. (6.22)
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This, in conjunction with the Cauchy integral formula, implies bounds for the
derivatives:

|�(s)|−1|�(k)(s)| has polynomial growth along vertical

lines, locally uniformly in Res, (6.23)

for every k ∈ Z>0. Note that�(k)(s) has poles at the same points as�(s), but the
poles of�(k)(s) have “pure orderk + 1”, in the sense that the productP(s)�(k)(s)

with any polynomialP(s) of degreek − 1 has zero residues.

Lemma 6.24. Let k1, k2 be non-negative integers, and � a complex number.
(a) If � /∈ Z, there exist entire functionsFj,%(s) such that�(s)−1Fj,%(s) has locally

uniform polynomial growth on vertical lines, and

�(k1)(s)�(k2)(s + �) =
∑

0� %� k1

F1,%(s + �)�(%)(s) +
∑

0� %� k2

F2,%(s)�(%)(s + �).

(b) If � = n ∈ Z�0, there exist entire functionsFj,%(s) such that�(s)−1Fj,%(s) has
locally uniform polynomial growth on vertical lines, and

�(k1)(s)�(k2)(s + n) =
∑

0� %� k1

F1,%(s)�(%)(s) +
∑

k1<%� k1+k2+1

F2,%(s)�(%)(s + n).

Proof. We begin with the two equivalent identities

�(s)�(s + �) = �
sin(��)

(
ei�s

�(1− s − �)
�(s) − ei�(s+�)

�(1− s)
�(s + �)

)

= �
sin(��)

(
e−i�s

�(1− s − �)
�(s) − e−i�(s+�)

�(1− s)
�(s + �)

)
, (6.25)

which can be verified by multiplying both sides with�(1 − s)�(1 − s − �). Since
�(s)�(1−s)= �/(sin�s), the first identity then becomes equivalent to the trigonometric
identity sin(��)= ei�s sin(�(s+�))−ei�(s+�) sin(�s). The second follows from the first
because�(s) is real on the real axis. We re-write the first identity as

�(s)�(s + �) = c(�)h(s + �)�(s) + c(−�)h(s)�(s + �),

with h(s) = ei�s

�(1− s)
and c(�) = �e−i��

sin(��)
. (6.26)
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Then c(�) is periodic, meromorphic, and has only simple poles with residue 1 at the
integers. The functionh(s) is entire. In the upper half plane only,�(s)−1h(k)(s) has
locally uniform polynomial growth along vertical lines, as follows from (6.23). In the
lower half plane�(s)−1h(k)(s) grows exponentially; more precisely,�(s)3h(k)(s) has
locally uniform polynomial growth along vertical lines in the lower half plane. Had
we used the second equation in (6.25) instead of the first, we would have obtained the
same type of expression, with̄h(s̄) and c̄(�̄) in place ofh(s) and c(�), which would
have resulted in exponential decay in the lower half plane and exponential growth in the
upper half plane. We now suppose� /∈ Z. We temporarily treats1= s ands2 = s+� as
independent variables, apply( d

ds1
)k1( d

ds2
)k2 to the identity (6.26), then substitute back

s and�. The result is an expression for�(k1)(s)�(k2)(s+�) as a finite sum of products
of derivatives ofc(�), c(−�), h(s), h(s+�), �(s), and�(s+�). In view of the growth
properties of the derivatives ofh(s) mentioned above, this exhibits�(k1)(s)�(k2)(s +�)
as a sum of the form asserted in the lemma, but with the required growth properties of
the Fj,%(s) satisfied only in the upper half plane, and subject to the weaker condition
of locally uniform polynomial growth of�(s)3Fj,%(s) along vertical lines in the lower
half plane.
As was just remarked, the upper and lower half-planes play symmetric roles. We

therefore get another expression of the same type, with coefficient functions with locally
uniform polynomial growth in the lower half-plane. To blend the two expressions, we
use an “analytic partition of unity” created from the classical error function

erf(s) = 2√
�

∫ s

0
e−z2 dz. (6.27)

Note that erf(s) is an entire function, erf(−s)= − erf(s), and erf(s) → 1 as s ap-
proaches∞ along the positive real axis. Simple estimates imply

|1− erf(s)| = O(e−(Res)2) as Res → + ∞,

locally uniformly in Ims; (6.28)

for details see [5], for example. The related functionE(s)= 1
2(1+erf(−is)) tends to 1

as s → ∞ along the positive imaginary axis, and to 0 ass → ∞ along the negative
imaginary axis. In fact,

|1− E(s)| = O(e−(Im s)2) as Ims → + ∞,

|E(s)| = O(e−(Im s)2) as Ims → − ∞,

in both cases locally uniformly in Res; (6.29)

this follows from (6.28). We now take the expressions for�(k1)(s)�(k2)(s + �) which
we had derived, multiply the first—i.e., the one which has the required growth behavior
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in the upper half plane—withE(s), and the second with(1−E(s)), then add the two.
Because of (6.22) and (6.29), the resulting expression has the properties asserted in the
first part of the lemma.
The proof of the second part is similar, though slightly more involved. Recall that

� �→ c(�) is periodic of period 1 and has a first order pole at� =0, with residue 1.
We subtract off the pole, to makẽc(�)= c(�)− 1/� regular at the origin. Specializing
(6.26) we now find

�(s + s1)�(s + n + s2) = c̃(s2 − s1)h(s + n + s2)�(s + s1)

+ c̃(s1 − s2)h(s + s1)�(s + n + s2)

+ 1

s2 − s1
[h(s + n + s2)�(s + s1)

−h(s + s1)�(s + n + s2)]. (6.30)

We expand both sides of this identity as a Taylor series in powers ofs1 and s2, then
equate the coefficient ofsk11 s

k2
2 and clear out the denominatork1!k2!. On the left-hand

side this gives us�(k1)(s)�(k2)(s+n), which is the left-hand side of the identity we want
to prove. We shall show that this process, applied to the right-hand side of (6.30), gives
us an expression of the type asserted in the lemma, but with coefficientsFj,%(s) which
satisfy the appropriate bound only in the upper half plane and the weaker condition
of locally uniform polynomial growth of�(s)3Fj,%(s) in the lower half-plane. The
two summands containing̃c contribute the type of terms we expect, except that the
summation in the second sum extends over 0� %� k2, instead ofk1<%� k1 + k2 + 1
as claimed. Terms corresponding to 0� %� k1, if any, can be absorbed by the first
sum, thanks to the identity

�(%)(s + n) =
∑

0� j � %

(
%

j

)
�(%−j)(s)

dj

dsj

(
s(s + 1) · · · (s + n − 1)

)
, (6.31)

which follows from the standard identity�(s + 1)= s�(s) by induction onn and
differentiation. Next, we expand the last term on the right of (6.30) as a Taylor series:

1

s2 − s1
[. . . − . . .] = 1

s2 − s1

∑
j1,j2�0

bj1,j2(s)s
j1
1 s

j2
2 with

bj1,j2(s) = 1

j1!j2! [h
(j2)(s + n)�(j1)(s) − h(j1)(s)�(j2)(s + n)]. (6.32)

The series is formally divisible bys2 − s1 because the other terms in (6.30) have no
singularity along the hyperplanes2 = s1:

1

s2 − s1

∑
j1,j2�0

bj1,j2(s)s
j1
1 s

j2
2 =

∑
j1,j2�0

aj1,j2(s)s
j1
1 s

j2
2 . (6.33)
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This implies
∑

0� j � k bj, k−j (s)=0 for all k, and

ak1,k2(s) =
∑

0� %� k1
b%,k1+k2+1−%(s). (6.34)

When we combine (6.34) with (6.32), we almost get the expression we want. Derivatives
of �(s + n) of order %� k1 constitute the only remaining obstacle, but they can be
absorbed into the first sum, as before. To complete the proof, we repeat the “partition
of unity” argument used in proving part (a) to construct an expression of the required
type which has the appropriate growth behavior in both half planes.�

Lemma 6.35. EveryH ∈ Msis(C) can be expressed as a sum

H(s) = H0(s) +
∑

1� j �m

∑
0� %� nj

Hj,%(s),

in terms of an entire functionH0(s) and meromorphic functionsHj,%(s), satisfying
the following properties: there exist�1,�2, . . . ,�m ∈ C, such that�i − �j /∈ 2Z for
i �= j and
(a) Hj,% has poles only at the points in�j − 2Z�0, all of order % + 1;
(b) P(s)Hj,%(s) has zero residues for every polynomialP(s) of degree% − 1;
(c) H0 and theHj,% decay rapidly on vertical lines, locally uniformly inRes.
The �j and nj become uniquely determined when one requiresH(s) to have an
actual pole at each�j , and when for eachj , H(s) has a pole of order exactlynj
at s = �j − 2k, for somek�0. The Hj,%(s) are unique up to addition of an entire
function which decays rapidly along vertical lines.

The condition on the poles ofHj,%(s) means that they are of “pure order% + 1”,
just as in the case of Corollary6.17.

Proof. The definition ofMsis(C) implies the existence of distinct complex numbers
�j , no two of which differ by an even integer, andnj �0, such that

F(s) =def
(∏

1� j �m
�(2s + �j )

nj+1)−1
H(s) is an entire function. (6.36)

Repeated application of the two identities in Lemma6.24—the second in particular with
n=0—makes it possible to separate the poles of the product of Gamma functions: there
exist entire functionsFj,%(s) such that

∏
1� j �m

�(2s + �j )
nj+1 =

∑
1� j �m

∑
0� %� nj

Fj,%(s)�(%)(2s + �j ), (6.37)

with �(s)1−∑
j (nj+1)

Fj,%(s) having polynomial growth on vertical lines, locally uni-
formly in Res. The functionsH̃j, %(s)=F(s)Fj,%(s)�(%)(2s + �j ) add up toH(s) and
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satisfy the condition (a). According to (6.22–23), all the�(2s + �j ) and their deriva-

tives have the same type of growth behavior, up to polynomial growth. TheH̃j, %(s)

therefore inherit the rapid decay fromH(s); i.e., they satisfy (c) as well. We still need
to modify the H̃j, %(s) to establish the condition (b). At this point, we may as well
suppose thatm=1 and�1=0. We shall argue by induction onn1= n. For n=0 the
condition (b) holds vacuously. Forn>0, we set

H1,n(s) = 2−n dn

dsn
(F (s)F1,n(s)�(2s))

= H̃1,n(s) +
∑

1� i� n
2−i

(
n

i

)
di

dsi
(F (s)F1,n(s))�(n−i)(2s). (6.38)

ThenH1, n(s) has poles of “pure ordern + 1”, andH(s) − H1, n(s) has poles of order
at mostn. Differentiation does not change the order of growth or decay, so we have
reducedn by 1 without affecting the other hypotheses. That completes the inductive
argument.
The functionH0 is needed only whenm=0, i.e., whenH(s) is entire. The conditions

(a) and (b) determine the principal part of eachHj,%(s) at each of its poles, and
that makes eachHj,%(s) unique up to addition of an entire function. The uniqueness
statement about the�j and nj is correct for purely formal reasons.�

Corollary 6.39. The signed Mellin transformM� induces an isomorphism

M� : {f ∈ Ssis(R) | f (−x) = (−1)�f (x)} ∼−→ Msis(C).

Proof. According to Corollary6.17, M� relates the decomposition of the space{f ∈
Ssis(R) | f (−x)= (−1)�f (x)} in Lemma 6.11 to the decomposition ofMsis(C) in
Lemma 6.35, andM� induces isomorphisms between components on the two sides
that correspond to each other. Lemmas3.31 and 6.13 ensure thatM� also relates the
ambiguities in the two decompositions bijectively.�

The proof of Theorem6.6 is essentially complete. Forf ∈ Ssis(R), T
,�(f ) ex-
ists at least as distribution with canonical extension across∞. Corollary 6.39 and
Lemma6.19guarantee the existence of somẽf ∈ Ssis(R) such thatM�T
,�(f )=M�f̃

for both choices of�. But a distribution� ∈ S ′
�(R), with canonical extension across

∞, is determined byM�� up to a distribution supported at the origin—see the dis-
cussion around (5.36). We conclude thatT
,�(f ) agrees withf̃ as function onR −
{0}, and consequently as function inSsis(R). That, in effect, is the assertion
of Theorem6.6.
We begin the proof of Theorem6.9 with another lemma. The signed Mellin trans-

form M�f (s) of any f ∈ Ssis(R) is regular for Re(s)?0 and decays rapidly along
vertical lines. In section Section4, we saw thatM��(s) is regular for Re(s)>0,
provided� ∈ S ′

�(R) vanishes to infinite order at the origin; moreover,M��(s) grows
polynomially along vertical lines.
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Lemma 6.40. If � ∈ S ′
�(R) vanishes to infinite order at the origin,

∫
R
f (x)�(x) dx = 1

4�i

∫
Re(s)=s0

M�f (s)M��(1− s) ds (s0?0),

for anyf ∈ Ssis(R). The abscissa of integrations0 must be chosen so that the integrand
is regular on, and to the right of, the line of integration, but s0 is otherwise arbitrary.

Proof. According to the comments before the statement of the lemma, the integrand
is indeed regular on some right half-plane and decays rapidly along vertical lines, as
always locally uniformly in Re(s). It follows that the integral on the right converges
and does not depend on the particular choice ofs0. Both sides of the equation van-
ish when f has the parity opposite to�. We therefore may and shall assume that
f (−x)= (−1)�f (x). Lemma6.11 allows us to also suppose

f (x) = (sgnx)�|x|
(log |x|)ng(x) with g ∈ S�+�(R), (6.41)

for some(
, �) ∈ C × Z/2Z and n�0. In this situation,

∫
R
f (x)�(x) dx =

∫
R
g(x)((sgnx)�|x|
(log |x|)n�(x)) dx, (6.42)

by definition of pairing (6.7). Since� vanishes to infinite order at the origin, so does
the tempered distribution(sgnx)�|x|
(log |x|)n�(x). We can replace
 by 
 − 2m, for
any m>0, at the expense of makingg vanish to high order at the origin. By doing
so we can make sure that(sgnx)�|x|
(log |x|)n�(x) has an extension across∞ which
vanishes there to orderk∞�1, in which case Lemma4.25 applies:

∫
R
g(x)((sgnx)�|x|
(log |x|)n�(x)) dx

= 1

4�i

∫
Re(s)=s0

M�+�g(s)M�+�((sgnx)
�|x|
(log |x|)n�)(1− s) ds,

(6.43)

for s0?1. Going back to the definition ofM�, one finds

M�+�((sgnx)
�|x|
(log |x|)n�)(s) = dn

dsn
M��(s + 
), (6.44)

and relation (6.41) betweenf and g translates into the relation

M�f (s) = dn

dsn
M�+�g(s + 
) (6.45)
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between their Mellin transforms. The identity asserted by the lemma follows from (6.42
–45) when we translate the line of integration by
 and perform ann-fold integration
by parts on the right-hand side of (6.43). �

In proving Theorem6.9, we may as well suppose that each off and � is either
even or odd. SinceT
,� and T ∗


,� change the parity by�, the identity to be proved
holds vacuously unless the parities off and � are related by�. Thus, from now on,

f ∈ Ssis(R), f (−x) = (−1)�+�f (x) and � ∈ S ′
�(R). (6.46)

Letting T
,�(f ) play the role off in Lemma6.40, we find∫
R
T
,�(f )� dx = 1

4�i

∫
Re(s)=s0

M�(T
,�(f ))(s)M��(1− s) ds

= (−1)�

4�i

∫
Re(s)=s0

G�(s)M�+�f (s + 
)M��(1− s) ds;

(6.47)

at the second step we have used Lemma6.19. Since T ∗

,�� ∈ S ′


+�(R) is known to
vanish to infinite order at the origin, we can also apply Lemma6.40 with T ∗


,�� in
place of�:∫

R
f T ∗


,�(�) dx = 1

4�i

∫
Re(s)=s0

M�+�f (s)M�+�
(
T ∗


,�(�)
)
(1− s) ds. (6.48)

The equations (6.47–48) reduce the assertion of the theorem to the identity

M�+�(T
∗

,�(�))(1− s) = (−1)�G�(s − 
)M��(1− s + 
), (6.49)

which would follow from Theorem4.12 if not only �, but also �̂ were to vanish to
infinite order atx =0. Since we cannot make that assumption we must argue differ-
ently. The equations (6.47–48) hold in particular whenf is a Schwartz function which
vanishes identically near the origin. In that case, the Fourier integral in definition (6.1)
of T
,�f has a Schwartz function as argument. One can then prove Theorem6.9,
for the particular choice off , by direct computation, using only the Parseval identity
(3.16) and the change of variables formula (3.23). We conclude that (6.49) becomes
valid when integrated against the Mellin transform of anyf ∈ S�+�(R) which vanishes
identically nearx =0:∫

Re(s)=s0

M�+�(T
∗

,�(�))(1− s)M�+�f (s) ds

= (−1)�
∫
Re(s)=s0

G�(s − 
)M��(1− s + 
)M�+�f (s) ds, (6.50)
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provided s0?0. But M�+�f (s0 + iy)=2F(es0xf (ex))(−y/2�), as can be seen by
arguing as in (4.29). Any h ∈ C∞

c (R) can play the role ofx �→ es0xf (ex). Thus,
when we take the difference of the two expressions in (6.49) and substitutes = s0 +
iy, the resulting function of the variabley—which may be regarded as a tempered
distribution—is perpendicular toFh, for all test functionsh ∈ C∞

c (R). That is possible
only if the identity (6.49) holds along the vertical line Re(s)= s0, or equivalently, for
all s ∈ C. The proof of Theorem6.9 is now complete.
Our statement of the Voronoi summation formula forGL(3) involves the integral

transform operator

(sgnx)�3|x|�3S(R) � f �→ F ∈ Ssis(R),

F = (sgnx)�1|x|1−�1T�1−�2,�3 ◦ T�2−�3,�1 ◦ F((sgnx)�3|x|−�3f ), (6.51)

which depends on the parameters(�j , �j ) ∈ C × Z/2Z, 1� j �3 [7]. The passage from
f to F does not affect the parity, so we may as well suppose thatf (−x)= (−1)�f (x)
and F(−x)= (−1)�F(x), in which case the Mellin transformM�F completely deter-
minesF . According to Lemma6.19,

M�F(s) = (−1)�3G�1+�(s − �1 + 1)G�2+�(s − �2 + 1)

× M�3+�h(s − �3 + 1), (6.52)

whereh= F((sgnx)�3|x|−�3f ) ∈ S�3+�(R). Each of the three factors on the right has
only first-order poles, only at points in

s ∈ �j − 1+ (2Z + � + �j )� Z�0 (j = 1,2,3). (6.53)

Recall definition (6.10) of the partial order�. In the generic situation, when no two of
the pairs(�j , �j ) are related by the order, the poles of the three factors do not overlap.
Hence, in view of Corollary6.17,

F ∈
∑

1� j �3
(sgnx)�j |x|1−�j S(R) if (�i , �i ) �� (�j , �j ) for i �= j, (6.54)

independently of the particular value of�. As far as the location of the poles is
concerned, the three pairs(�j , �j ) play completely symmetric roles in (6.52). Thus, if
exactly two pairs are related by�, we may as well suppose that(�1, �1)� (�2, �2).
The poles at pointss ∈ �1 − 1+ (2Z + � + �1)� Z�0 can then have order two, but
all other poles are still simple. In this situation,

F ∈ (sgnx)�1|x|1−�1 log |x|S(R) +
∑

2� j �3
(sgnx)�j |x|1−�j S(R)

if (�1, �1)� (�2, �2) and (�j , �j ) �� (�3, �3) for j = 1,2. (6.55)
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At first glance,(sgnx)�1|x|1−�1S(R) may also contribute, but this space is contained in
(sgnx)�2|x|1−�2S(R) because(�1, �1)� (�2, �2). In the only remaining case the three
pairs must be linearly ordered. Appealing to the symmetry among the(�j , �j ) once
again, we may suppose that the order increases with increasingj . Then

F ∈
∑

1� j �3

(sgnx)�j |x|1−�j (log |x|)3−jS(R)

if (�1, �1)� (�2, �2)� (�3, �3), (6.56)

since the poles at pointss ∈ �j − 1+ (2Z + � + �j )� Z�0, for 1� j �3, can have
order up to 3− j . The comment following (6.55) applies triply in the current setting.
The introduction to [7] sketches a proof the Voronoi summation formula forSL(2),

which has a long history [6]. Our formulation involves theSL(2) analogue of the
integral transform (6.51),

|x|−�S(R) � f �→ F = |x|1−�T2�,0 ◦ F(|x|�f ) ∈ Ssis(R), (6.57)

with � ∈ C. This case is simpler, of course. One can argue as before, to find

F ∈
{ |x|1−�S(R) + |x|1+�S(R) if � /∈ Z,

|x|1−� log |x|S(R) + |x|1+�S(R) if � ∈ Z�0.
(6.58)

As in the previous case, we can interchange� and−� in deriving (6.58), even though
they do not occur symmetrically in the definition of the integral transform (6.57).

7. The multi-variable case revisited

We had remarked earlier that the distributions� ∈ C−∞(R) which vanish to order
k�∞ at x =0 do not constitute a closed subspace, relative to the strong distribution
topology. To put a useful topology on this space, one can use the methods of the
previous section to translate the problem into a tractable problem in complex analysis.
Alternatively, one can use the local description of distributions in Definition2.4 or
Lemma3.1 to define an appropriate topology. We shall pursue the latter strategy, which
has the advantage of working just as well in the context of manifolds. Even though
we shall state and prove certain results without mentioning the topology explicitly, the
use of a topology will be visible in the background.
We begin with a version of Definition2.4 with dependence on parameters. Again

M denotes aC∞ manifold, andS ⊂ M a locally closed submanifold. We consider a
family of distributions�n ∈ C−∞(M) indexed byn= (n1, n2, . . . , nd) ∈ Zd , or more
generally, indexed byd-tuples n of integers ranging over some subset ofZd . For
n= (n1, n2, . . . , nd) ∈ Zd and y = (y1, y2, . . . , yd) ∈ Rd , we let ny denote the
sum

∑
j nj yj .
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Definition 7.1. The family�n vanishes to orderk�0 alongS, uniformly in n, if every
p ∈ S has a coordinate neighborhoodUp in M on which

�n =
∑

1� j �N
fn,jDn,jhn,j ,

with hn,j ∈ L∞(Up), with fn,j ∈ C∞(Up) vanishing to orderk along S �Up, and
with differential operatorsDn,j on Up which are tangential toS �Up, of order r—
which may depend onk andUp, but not onn—such that theL∞ norms‖hn,j‖∞ are
bounded by a polynomial in‖n‖, and such that the coefficient functions of theDn,j

as well as thefn,j are uniformly bounded, along with all their derivatives up to order
k + 2r. When this is the case for everyk�0, we say that the�n vanish to infinite
order alongS, uniformly in the parametern.

The definition involves the choice of a coordinate system for the sole purpose of
comparing the sizes of thefn,j andDn,j for variousn. We shall soon argue that both
thefn,j andDn,j can be made independent ofn, so the particular choice of coordinate
functions does not matter at all—as can also be seen directly, of course.

Lemma 7.2. A family �n, n ∈ Zd , vanishes to orderk�0 along S, uniformly in n, if
and only if the series

�(p, y) =
∑

n∈Zd
�n(p)e(ny) ((p, y) ∈ M × Rd/Zd)

converges on some open neighborhood ofS × Rd/Zd in M × Rd/Zd in the strong
distribution topology, to a distribution which vanishes to orderk along S × Rd/Zd .

Proof. We shall argue locally, as we may. For the “only if” direction, we change the
coordinates on the coordinate neighborhoodUp so that

S �Up = {x = (x1, x2, . . . , xm) ∈ Up | x1 = . . . = xc = 0}. (7.3)

We then write

fn,jDn,j =
∑

an,j,I,J
�|I |
�xI

�|J |
�xJ

, (7.4)

with �|I |
�xI

running over all monomials in the��xi
, 1� i� c, of degree|I |� r, and �|J |

�xJ
over all monomials in the �

�xj
, c < j �m, also with |J |� r; moreover,an,j, I,J =0

unless |I | + |J |� r. Because of the hypotheses, the functionsan,j, I,J and all their
partial derivatives up to orderk+2r are bounded independently ofn, and eachan,j, I,J
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vanishes alongS �Up to order |I | + k. Thus

an,j,I,J =
∑

L
xLbn,j,I,J,L, (7.5)

where nowxL runs over all monomials in thexi , 1� i� c, of degree|L| = |I | + k.
In passing from thean,j, I,J to the bn,j, I,J,L, the bound on the partial derivatives
gets weakened: the latter functions have partial derivatives bounded independently of
n up to order 2r − |I |� |I | + |J |. When we substitute expressions (7.5) into (7.4) and

commute thebn,j, I,J,L across the operators�
|I |

�xI
�|J |
�xJ

, the result is an expression

�n =
∑

1� j �N
fjDjhn,j (7.6)

as in Definition7.1, but with functionsfj and differential operatorsDj which no longer
depend onn; the hj,n areL∞ functions whose norm still grows at most polynomially
in ‖n‖. Hence, fors ∈ N sufficiently large, the series

h̃j (x, y) =
∑

n∈Zd
(1+ 4�2‖n‖2)−shn,j (x)e(ny) (7.7)

converges uniformly, to a bounded measurable function onUp × Rd/Zd . By construc-
tion, the series∑

n∈Zd
�n(x)e(ny) =

∑
1� j �N

fj D̃j h̃j (x, y),

with D̃j = Dj

(
1−

d∑
i=1

�2

�y2i

)s
, (7.8)

converges to a distribution� ∈ C−∞(Up × Rd/Zd) in the strong distribution topology,
and � vanishes alongS × Rd/Zd to orderk.
For the argument in the “if” direction, we fixp ∈ S. SinceRd/Zd is compact, there

exists an open neighborhoodUp of p in M such that the open set on which the series
for � converges containsUp × Rd/Zd . The local expressions for� in Definition 2.4 are
only required to exist locally, but we can use a partition of unity to glue together such
local expressions to get one that is valid on a neighborhood of{p} × Rd/Zd ; equiva-
lently, if we shrinkUp, we can get this type of expression globally onUp × Rd/Zd .
ShrinkingUp further, if necessary, we may suppose that there exist coordinate functions
xj on Up, as in (7.3). We now argue as in the first half of the proof to put the local
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expression for� into the following form:

�(x, y) =
∑

1� j �N
fj (x)D

′
j (x)D

′′
j (y)hj (x, y); (7.9)

here thefj ∈ C∞(Up) vanish to orderk alongS �Up, theD′
j (x) are differential oper-

ators onUp with polynomial coefficients, tangential toS �Up, theD′′
j (y) are constant

coefficient differential operators in theyi , and thehj (x, y) areL∞ functions depending
on both sets of variables. The torusRd/Zd acts continuously onC−∞(Up × Rd/Zd).
Taking Fourier coefficients, we find

�n(x) =
∑

1� j �N
fj (x)D

′
j (x)

∫
Rd/Zd

e(−ny)D′′
j (y)hj (x, y) dy. (7.10)

Integration by parts exhibits the integral as a bounded, measurable function of the
xj whoseL∞ norm is bounded by a polynomial in‖n‖. This is the kind of local
expression for the�n required by Definition 7.1, withfn,j = fj andDn,j =D′

j both

independent of the parametern ∈ Zd . �

For future reference, we record a fact which we just established in the course of the
proof of Lemma7.2:

Corollary 7.11. In the setting of Definition7.1, it is possible to choose thefn,j = fj
and Dn,j =Dj independently ofn. In terms of any local coordinate neighborhood
(Up; x1, x2, . . . , xm) such that

S �Up = {x = (x1, x2, . . . , xm) ∈ Up | x1 = . . . = xc = 0},

the fj can be assumed to be polynomial functions and theDj differential operators
with polynomial coefficients.

The fact that thefn,j = fj andDn,j =Dj can be chosen independently ofn makes
it easy to extend our earlier results to families depending on parameters. We begin
with a version of Proposition2.26 for families of distributions; the earlier proof carries
over almost word-for-word. As in Proposition2.26, we suppose that the submanifold
S ⊂ M has a global defining functionf ∈ C∞(R) whose differential is non-zero at
every point ofS.

Lemma 7.12. Let �n ∈ C−∞(M), n ∈ Zd , be a family which vanishes alongS to order
0� k�∞, uniformly in n. If 
,� ∈ C and %�0 satisfy the conditions in part(a) of
Proposition 2.26, the family of distributions(sgnf )�|f |
(log |f |)��n vanishes along
S to order %, also uniformly inn.

Periodic distributions without constant term furnish the simplest example of dis-
tributions vanishing to infinite order. Such distributions can be represented askth
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derivatives of bounded continuous functions, for everyk?0—that is the crux of the
proof of Proposition2.19. In the setting of families, the same reasoning implies:

Lemma 7.13. Let �n ∈ C−∞(R), n ∈ Zd , be a family of distributions which, for
every sufficiently largek ∈ N, can be expressed as�n(x)= f

(k)
n (x), with fn continu-

ous, bounded, and sup|fn| =O(‖n‖m) for somem ∈ N. Then the�n have canonical
extensions across∞ which vanish there to infinite order, uniformly in n.

Definition 7.1 imposes conditions on the�n only near points ofS. The Fourier trans-
form of a tempered distribution is a global operation, so the extension of Theorem3.19
to the present setting also requires a global hypothesis. We shall say that a family of
tempered distributions�n ∈ S ′(R), n ∈ Zd , is bounded if there exist positive integers
m, k, %, such that

�n(x) = dk

dxk
fn(x) with fn ∈ C(R)

and supx∈R ((1+ x2)−%|fn(x)|) = O(‖n‖m). (7.14)

If the �n constitute a bounded family, then the family of Fourier transforms�̂n is
bounded, too.

Lemma 7.15. If �n ∈ S ′(R), n ∈ Zd , is a bounded family which vanishes atx =0 to
order k�0, uniformly in n, the �̂n extend to distributions onR � {∞} which vanish
at ∞ to order k, uniformly in n.

The proof of Theorem3.19 can easily be adapted to the present situation. This
is also true for the proofs of Lemmas3.1 and 3.5, which are used in the proof of
Theorem3.19.
Other constructions for tempered distributions can also be carried for bounded fam-

ilies. We now state a number of results in this direction; all can be proved by keeping
track of bounds in the analogous arguments for single distributions.

Lemma 7.16. In the statements that follow�n, n ∈ Zd , is a bounded family of tempered
distributions.
(a) The family of distributions�n(1/x) is bounded, provided the�n have been extended
to distributions onR � {∞} which vanish at∞ to order k in the uniform sense, for
somek�0.
(b) For 
 ∈ C and � ∈ Z/2Z, the family (sgnx)�|x|
�n(x) is bounded.
(c) If cn ∈ R∗, n ∈ Zd , is a family of constants such that|cn| =O(‖n‖m)
and |cn|−1=O(‖n‖m) for somem ∈ N, then �n(cnx) is a bounded family. If the
original family vanishes to orderk�0 at the origin in the uniform sense, then so does
the family�n(cnx).
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(d) If f ∈ C∞(R) and all of its derivatives grow at most polynomially as|x| → ∞,
the familyf (x)�n(x) is bounded. If the original family vanishes to orderk�0 at the
origin in the uniform sense, then so does the familyf (x)�n(x).

We conclude with a discussion of families of distributions arising from a geometric
action. The submanifoldS ⊂ M will now assumed to be closed. We suppose that a Lie
groupH acts smoothly onM, and that the action preservesS:

%hS ⊂ S for every h ∈ H ; (7.17)

here%h :M → M denotes translation byh. We shall need to consider not only scalar
distributions, but also distributions with values in anH -equivariant vector bundle
E → M, i.e., a vector bundle to which the action ofH on M lifts. Then H acts
on

C−∞(M, E) = space ofE-valued distributions onM. (7.18)

Locally the datum of anE-valued distribution amounts to anr-tuple of scalar dis-
tributions, with r = rank of E . The notion of vanishing to orderk along S therefore
has meaning forE-valued distributions. Ifdh is a smooth measure onH—such as
left or right Haar measure, for example—and� an E-valued distribution, the family
h �→ %h� can be integrated with respect todh over any compact measurable subset
� ⊂ H : ∫

�
%h� dh ∈ C−∞(M, E). (7.19)

Typically, this type of integral arises when both� anddh are invariant under a cocom-
pact discrete subgroup� ⊂ H . In that case one may want to integrate%h� over �\H ,
or equivalently, over a fundamental domain� for the action of� on H .

Proposition 7.20. In the situation (7.17–19), if � ∈ C−∞(M, E) vanishes to order
k�0 along S, then so does

∫
� %h� dh.

Proof. We first give the argument for a scalar valued distribution�. Partitions of unity
for bothM andH make it possible to reduce the problem to the following situation:
the translates%h�, with h ∈ �, all have compact support in a coordinate neighborhood
U as in (7.3). We choose a reference pointh0 ∈ � and use Corollary7.11—for the
“trivial family” %h0� without dependence on a parametern—to write

%h0�(x) =
∑

1� j �N
fj (x)Dj (x)hj (x), (7.21)

in terms of polynomial functionsfj which vanish onS �U to orderk and differential
operatorsDj with polynomial coefficients which are tangential toS �U . We enlarge
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the collection offj and Dj until we get finite generating sets over the polynomial
algebraC[x] for the ideal of polynomials vanishing onS �U to order k and the
space of differential operatorsDj tangential toS �U , of degree up to the maximum
necessary in expression (7.21). The action ofH preserves the order of vanishing of
functions alongS and the notion of tangentiality of a differential operator. It follows
that there exist matrices ofC∞ functionsaj,%(h, x), bj,%(h, x), such that

(%hfj )(x) =
∑

i
aj,i(h, x)fi(x), (%hDj )(x) =

∑
i
bj,%(h, x)D%(x). (7.22)

Then

%h�(x) =
∑

i,%,j
aj,i(h, x)bj,%(h, x)fi(x)D%(x)(%hhj )(x), (7.23)

for h ∈ � and x ∈ U . We now move theaj, i1 and bj, i2 across theD%. Arguing as
in the proof of Lemma3.1, but in higher dimension, we can transform (7.23) into an
expression where the dependence onh appears to the right of the differential operators:

%h�(x) =
∑

i,%,j
fi(x)D%(x)(ci,%,j (h, x)(%hhj )(x)), (7.24)

with coefficient functionsci, %, j which are products of partial derivatives of theaj, i
and of thebj,% and coordinate functions. Thus

∫
�
%h�dh =

∑
i,%,j

fi(x)D%(x)

(∫
�
ci,%,j (h, x)(%hhj )(x) dh

)
(7.25)

does vanish to orderk along S �U , as was to be shown.
If � takes values in anH -equivariant vector bundleE , we shrink the coordinate

neighborhoodU so thatE can be trivialized overU . We can then identify theE-valued
distribution� with an r-tuple of scalar distributions(�1,�2, . . . ,�r ). The action ofH ,
expressed in terms of ther-tuple, involves a matrix-valued factor of automorphy:

%h(�1,�2, . . . ,�r )(x)

= (∑
j
A1,j (h, x)%h�j (x), . . . ,

∑
j
Ar,j (h, x)%h�j (x)

)
, (7.26)

with C∞ coefficientsAi,j (h, x). These must be moved across theD% along with the
aj, i and bj,%. Otherwise the argument remains the same.�
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