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Abstract

Selective autophagy contributes to intracellular homeostasis by mediating the degradation of cytoplasmic
material such as aggregated proteins, damaged or over-abundant organelles, and invading pathogens. The
molecular machinery for selective autophagy must ensure efficient recognition and sequestration of the cargo
within autophagosomes. Cargo specificity can be mediated by autophagic cargo receptors that specifically
bind the cargo material and the autophagosomal membrane. Here we review the recent insights into the
mechanisms that enable cargo receptors to confer selectivity and exclusivity to the autophagic process. We
also discuss their different roles during starvation-induced and selective autophagy. We propose to classify
autophagic events into cargo-independent and cargo-induced autophagosome formation events.

© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Macroautophagy (hereafter autophagy) is a con-
served pathway for the degradation of cytoplasmic
material and the recycling of nutrients. During au-
tophagy, a double-membrane organelle called
autophagosome is formed in a de novo manner.
Autophagosomes originate from a crescent-shaped
structure termed the isolation membrane or phago-
phore (Fig. 1). In yeast isolation, membranes are
likely nucleated at a specific site in the perivacuolar
region referred to as Phagophore Assembly Site
(PAS) [1,2]. As they grow, isolation membranes
sequester a portion of the cytoplasm. When they
close to give rise to an autophagosome, this
cytoplasmic material is trapped in its lumen and is
ultimately degraded upon fusion of the autophago-
some with the lysosomal compartment (or the
vacuole in yeast) [1].
The formation of autophagosomes requires a set of

conserved factors that are recruited to the site of
autophagosome formation in a hierarchical manner
[1]. These factors can be grouped into functional units
including the Atg1/ULK1 kinase complex, the class III
phosphatidylinositol 3-phosphate kinase complex 1
(PI3Kc1) containing the Atg14/ATG14 subunit, the
uthors. Published by Elsevier Ltd. This
rg/licenses/by-nc-nd/4.0/).
Atg9/ATG9A cycling system, the WIPIs and the two
conjugation systems for Atg12/ATG12 and the ATG8
family members. One of the most downstream effects
of the combined action of these proteins is the cova-
lent attachment of the ubiquitin-like ATG8-family
proteins to the membrane lipid phosphatidylethanol-
amine in the isolation membrane.
Autophagy was initially characterized as a bulk

degradation pathway induced by glucagon and
nutrient deprivation [3–7]. So-called bulk autophagy
serves to recycle building blocks to compensate for
the lack of nutrients and is thought to be rather non-
selective toward its substrates (referred to as cargos)
[8,9]. It has, however, become clear that autophagy
also contributes to intracellular homeostasis in non-
starved cells by selectively degrading cargo material
such as aggregated proteins, damaged mitochon-
dria, excess peroxisomes and invading pathogens
(reviewed in Refs. [10–12]). The crucial role of selec-
tive autophagy for cellular homeostasis is empha-
sized by the fact that tissue-specific knockout of
autophagy genes in mice results in neurodegenera-
tion or liver cancer [13–16]. Additionally, it has been
shown that cells with defective autophagy are unable
to clear certain intracellular pathogens (reviewed in
Refs. [17,18]). Emerging evidence has also shown
is an open access article under the CC BY-NC-ND license
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Fig. 1. Autophagy delivers cytoplasmic material to the lysosomal compartment for degradation. (1) Membrane donors
including Atg9 vesicles nucleate an isolation membrane. (2) The isolation membrane expands and engulfs cytoplasmic
cargo material including organelles and macromolecules. (3) The isolation membrane matures into a closed double-
membrane autophagosome. (4) The outer autophagosomal membrane fuses with a lysosome (or the vacuole in yeast),
leading to the degradation of the inner membrane and the cargo. (5) Components are recycled back into the cytoplasm.
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that selective autophagy plays an important role in
the homeostasis of intracellular free iron, by control-
ling the levels of the iron-chelating protein ferritin
(referred to as ferritinophagy) [19–22].
Finally, in yeast, the cytoplasm-to-vacuole targeting

(Cvt) pathway exploits the autophagic machinery for
the delivery of the Ape1, Ams1 and Ape4 enzymes to
the vacuole via autophagosome-like vesicles called
Cvt vesicles [23–25]. The Cvt pathway also mediates
the degradation of retrotransposon particles and
thereby serves to protect the Saccharomyces cerevi-
siae genome from retrotransposition [26].
Unlike bulk autophagy, selective autophagy and

the Cvt pathway need to meet at least three criteria
for an efficient process to happen: first, the cargo has
to be specifically recognized; second, the cargo has
to be effectively tethered to a nascent autophago-
some; and third, non-cargo material has to be ex-
cluded from the autophagosome. In fact, Cvt
vesicles are smaller in diameter than starvation-
induced autophagosomes, and in contrast to autop-
hagosomes, their membrane is tightly apposed to
the cargo preventing unrelated material from being
engulfed [27–30].
Selectivity in autophagy is conferred by cargo

receptor proteins, which are able to tether a cargo
to a nascent autophagosomal by simultaneously
binding the cargo and ATG8-family proteins on the
isolation membrane (see below). While some cargo
receptors bind their cargos directly, in mammalian
cells several receptor proteins recognize poly-ubi-
quitin chains attached to the surface of cargos for
selective autophagy [11]. In the following sections,
we will discuss the biochemical principles of cargo
sorting from other cellular material that often contains
the same binding sites. We will further discuss how
cargo receptors bind membrane-localized ATG8-
family proteins as opposed to their soluble forms.
Finally, we will discuss the position of the cargo
receptors in the autophagic hierarchy dependent on
the stimulus for autophagosome formation.
Principles of Cargo Recognition by
Autophagic Cargo Receptors

The Cvt pathway is the prototypical example for
selective autophagy in S. cerevisiae [31]. prApe1,
the major cargo of the Cvt pathway, is synthesized
in the cytoplasm as a zymogen with an N-terminal
propeptide. prApe1 monomers assemble in the
cytoplasm into dodecamers which further aggregate
into higher order particles in a propeptide-dependent
manner [32–34]. The cargo receptor Atg19 specifi-
cally binds to the prApe1 propeptide with high affinity
via its coiled-coil domain [30,35–37]. Atg19 can also
bind to Ams1 and thereby include it into the so-called
Cvt complex [36,38]. Subsequently, Atg19 mediates
the recruitment of the Cvt complex to the PAS via an
interaction with Atg11 [36,39,40]. Finally, the inter-
action of Atg19 with Atg8 on the isolation membrane
mediates the engulfment of the Cvt complex by a Cvt
vesicle (see below) [30,36]. The propeptide region of
prApe1 is essential for the formation of the prApe1
complex and its transport into the vacuole [33,34,36].
It has recently been shown that a mutation that
prevents the formation of prApe1 dodecamers also
prevents its delivery into the vacuole, even though
this mutant still retains an intact propeptide. Con-
versely, the fusion of a propeptide to unrelated
oligomeric particles is sufficient to drive their efficient
delivery into the vacuole [34]. Intriguingly, these data
suggest that several propeptides, and by implication
several Atg19 cargo receptors clustered on a larger
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structure, are required and sufficient for efficient
transport into the vacuole via the Cvt pathway.
In mammalian cells, NCOA4 has been recently

identified as the cargo receptor for ferritin during a
process referred to as ferritinophagy [19,21,22].
Excessive intracellular iron is sequestered by ferritin,
to prevent harmful oxidative reactions. Ferritin forms
complexes consisting of 24 subunits and therefore
also represent multimeric particles [41]. Under
conditions of low intracellular iron, NCOA4 receptors
bind specifically to ferritin heavy chains (FTH1) and
mediate the delivery of the ferritin complexes into the
lysosomal compartment via selective autophagy
[19,21,22]. Degradation of ferritin within the lyso-
somes ultimately leads to the release of chelated
iron, which is subsequently transported back into the
cytosol [42,43].
The human cargo receptor p62/SQSTM1mediates

the degradation of ubiquitinated cargo material such
as aggregated proteins or cytosolic bacteria [44–47].
p62 binds ubiquitin with a relatively low affinity. This
low affinity is at least in part due to homo-dimerization
of the UBA domain, which is mutually exclusive with
mono-ubiquitin binding [48–51]. The affinity of p62
for ubiquitin can be increased by phosphorylation
of serine 403 within the UBA domain [52]. The
N-terminal PB1 domain of p62 drives homo-oligo-
merization [53,54], and in vitro p62 oligomers were
shown to assemble into long helical structures [55].
Oligomerization of p62 confers high avidity to the
interaction with clustered ubiquitin and, thus, stabi-
lizes binding to the cargo material on which ubiquitin
is concentrated [56]. It was proposed that the
interaction of multiple UBA domains in oligomeric
p62 with clustered ubiquitin counteracts the self-
association of UBA domain [50]. Thus, oligomeriza-
tion of p62 and dimerization of UBA domain might
cooperate to achieve selectivity for highly ubiquiti-
nated cargos [50,56].
The preferential binding of p62 to certain ubiquitin

chain types might constitute a further level of regu-
lation during selective autophagy. Indeed, it is
known that different ubiquitin chains trigger different
cellular processes. While K48-linked chains are
recognized by the proteasome and therefore medi-
ate proteasomal degradation of their substrates,
K63-linked chains have also been associated with
autophagy [57,58]. Interestingly, it has been shown
that oligomeric p62 preferentially binds to linear and
K63-linked chains, as well as to mono-ubiquitin,
compared to K48-linked chains [44,56,59]. Further-
more, it has been reported that binding to ubiquitin
chains partially disrupts p62 oligomers in vitro, and
that this effect is most evident in the presence of
K48-linked chains [56,60]. Their presence on a
substrate might therefore prevent the accumulation
of p62 and thereby counteract its degradation by
autophagy. This may in turn favor its proteasomal
degradation.
The cargo receptor CALCOCO2/NDP52 acts dur-
ing selective autophagy of intracellular bacteria and
damaged mitochondria [61–65]. NDP52 contains a
predicted coiled-coil region that mediates homo-di-
merization and a C-terminal ubiquitin binding zinc-fin-
ger domain [66–68]. Recently, it was shown that the
isolated zinc-finger domain of NDP52 binds to
single-ubiquitin moieties and to poly-ubiquitin chains,
regardless of their linkage type. Interestingly, in the
context of full-length dimeric NDP52, the zinc-finger
domains bound to two different ubiquitin chains rather
than to two ubiquitin molecules within the same chain
[68]. Thus, similar to p62, full-length NDP52 might
preferentially accumulate on cargos that are modified
with multiple chains and therefore represent regions
with high local ubiquitin concentrations. Furthermore,
unlike the isolated zinc-finger domain, full-length
NDP52 showed a slightly reduced binding affinity for
K48-linked di-ubiquitin chains compared to linear or
K63-linked di-ubiquitin chains [68,69]. Therefore, it
might be possible that, in analogy to p62, self-
association confers chain specificity to NDP52.
Similarly, the UBA domain of the dimeric NBR1
cargo receptor has been reported to bind to single-
ubiquitin moieties with a slight preference for
K63-linked chains over K48-linked chains [70].
In contrast to the rather weak interactions of p62,

NDP52 and NBR1 with single ubiquitin, Atg19 binds
with high affinity to its prApe1 cargo. prApe1 is
synthesized in the cytoplasm and must be efficiently
delivered into the vacuole by the Cvt pathway in order
to function. The high affinity binding of Atg19 to
prApe1 facilitates the efficient transport of prApe1.
The NCOA4 cargo receptor could act according to
similar principles. On the other hand, the targets of
p62, NDP52 and NBR1 are not normally destined to
be transported into the lysosome but become a target
for selective autophagy only after their ubiquitination.
One way to distinguish ubiquitinated autophagic
cargo material from other cellular structures with
ubiquitin tags may thus be the presence of clustered
ubiquitin on the cargo material that is read out by
high-avidity interactions of the cargo receptors with
ubiquitin. Indeed, while ubiquitination per se could be
sufficient to render any cellular material a substrate
for autophagy [71], the higher the local concentration
of ubiquitin on a cytoplasmic material, the more
efficient the recruitment of cargo receptors will be. An
additional level of regulation may be provided at the
level of ubiquitin chain linkages. In particular,
K48-linked ubiquitin chains may be less preferred
targets for receptor binding, allowing proteinsmarked
with these chains to preferentially undergo protea-
somal degradation. However, it should be noted that
all ubiquitin chain types have been found enriched in
insoluble inclusions of autophagy-deficient mice [72].
Therefore, the relative contribution of ubiquitin
clustering and of specific ubiquitin chains in cargo
receptors recruitment has still to be elucidated.
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Mechanisms of Isolation Membrane
Targeting by Cargo Receptors

During autophagy and the Cvt pathway in S.
cerevisiae, the small ubiquitin-like modifier Atg8
becomes conjugated to the headgroup of phospha-
tidylethanolamine on the isolation membrane [73].
First, Atg8 undergoes a proteolytic cleavage medi-
ated by Atg4, which exposes the C-terminal glycine
employed for the subsequent conjugation reaction
[74]. The reaction proceeds similarly to the conjuga-
tion of ubiquitin to lysine residues in target proteins
and requires Atg7 as the activating enzyme (E1),
Atg3 as the conjugating enzyme (E2) and the Atg12–
Atg5–Atg16 protein complex as the E3-like enzyme
[73,75,76]. In mammalian cells, at least six functional
Atg8 homologues are found: the three members of
the microtubule-associated protein 1 light chain 3
(MAP1LC3) subfamily (LC3A, LC3B and LC3C, re-
spectively) and the three members of the gamma-a-
minobutyric receptor-associated protein (GABARAP)
subfamily (GABARAP, GABARAP-L1 and GABAR-
AP-L2/GATE-16) [77–80].
Cargo receptors bind to ATG8-family proteins via a

conserved LC3-Interacting Region (LIR) motif, also
known as Atg8-Interacting Motif (AIM) [46,81]. The
LIR motif consists of the consensus sequence
ΘXXΓ, where Θ is an aromatic residue (W/F/Y) and
Γ is hydrophobic (L/I/V), while X is any other residue
[82,83]. However, some non-canonical LIR motifs,
which do not apparently match this consensus, are
also found [30,84,85].
The presence of negatively charged residues in the

near proximity of the core LIR sequence has been
shown to contribute to the binding to ATG8-family
proteins [12,46,81,86,87]. For instance, phosphory-
lation of a serine adjacent to the core LIR motif in
cargo receptor Optineurin increases the affinity
toward LC3B by a factor of 5 ([86] and Table 1).
However, the overall affinity of the LIR motif for Atg8
Table 1. Known dissociation constants for LIR-mediated cargo

Protein LIR seq. Partne

Atg19 Multiple LIR motifsa Atg8
p62 DDDWTHL LC3B
NDP52 ENEEDILVVTTQGE LC3C
NDP52 ENEEDILVVTTQGE LC3A
NBR1 SEDYIII LC3B
NBR1 SEDYIII GABARA
OPTN EDSFVEI LC3B
pOPTN (pS177) EDpSFVEI LC3B
OPTN EDSFVEI LC3B
NIX (W35) SSWVEL LC3B
NIX (W35) SSWVEL LC3A
NIX (W139) WVSDWSS LC3B
NIX (W139) WVSDWSS LC3A

Where applicable, the core LIR sequence matching the consensus Θx
ITC = isothermal calorimetry; FA = fluorescence anisotropy; SPR = su

a Overall affinity of the full-length Atg19 molecule containing multipl
family members remains relatively low, that is, in
the micromolar range, even upon phosphorylation
(Table 1) [30,84,86–88]. Furthermore, the modifica-
tion of ATG8-family proteins with phosphatidyletha-
nolamine is not essential for the interaction of Atg8-
family proteins with cargo receptors [30,56,89]. This
raises the question as to how cargo receptors can be
specifically recruited to isolation membranes in vivo,
a question that has recently been addressed for the
Atg19 cargo receptor. Atg19 contains multiple LIR
motifs in its C-terminal domain [30, 90]. Each LIR
motif binds to the same site in Atg8, enabling Atg19 to
bind simultaneously to multiple Atg8 proteins. There-
fore, multiple LIR motifs in tandem allow Atg19 to
select for Atg8-decorated membranes, by establish-
ing high-avidity interactions with concentrated Atg8
[30] (C. Abert et al., unpublished results).
Mammalian p62 contains only one functional LIR

motif [46,56], but oligomerization clusters the LIR
motifs and thereby increases the avidity of p62
toward LC3B concentrated on a surface. In contrast,
oligomerization has no effect on the binding of each
LIR to free LC3B [56]. Furthermore, introducing
multiple LIRs in a non-oligomerizing version of p62
restores avid binding to clustered LC3B, in analogy to
the situation in Atg19 [30,56]. Therefore, Atg19 and
p62 both exploit avidity-driven interactions to select
for ATG8-decorated membranes, albeit employing
different molecular mechanisms to achieve them
(tandem LIR motifs versus oligomerization, respec-
tively). Given that many cargo receptors form dimers
or multimers and/or contain multiple LIR motifs,
avidity-driven interactions with membrane-localized
Atg8-family proteins are likely to be a more general
property of cargo receptors [30,49,56,84,91–94].

Cargo or Isolation Membrane First?

In yeast, the PAS is defined as a peri-vacuolar,
dot-like structure in which the prApe1 cargo and Atg
receptors—ATG8-family proteins interactions

r KD Method Reference

35 μM ITC [30]
1.5 μM ITC [84]
1.5 μM FA [85]
15 μM FA [85]
2.9 μM ITC [88]

P-L1 3 μM ITC [88]
67 μM ITC [86]
13 μM ITC [86]
40 μM ITC [87]
91 μM ITC [84]
28 μM ITC [84]
670 μM ITC [84]
130 μM ITC [84]

xΓ is underlined.
rface plasmon resonance.
e LIR motifs.
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proteins co-localize, and it is likely that autophago-
somes form there [2]. In mammalian cells, autopha-
gosomes are generated at multiple sites throughout
the cytoplasm (for detailed reviews, see Refs.
[95,96]). Selective autophagy requires the efficient
orchestration of autophagosome biogenesis and
cargo recruitment. How these processes are coor-
dinated is still unclear. In principle, it is possible that
the cargo is recruited to pre-existing isolation
membranes. Another intriguing possibility is that
during selective autophagy, the presence of the
cargo induces the formation of isolation membranes
[65,97,98]. Recent literature insights point in the
direction that the nature of the stimulus for autopha-
gosome formation determines whether the genera-
tion of the isolation membrane is upstream or
downstream of cargo recruitment (Fig. 2).
Autophagosome formation can be massively in-

duced by starvation or inhibition of the mechanistic
target of rapamycin complex 1 (mTORC1) using
rapamycin. This system has been used extensively
to study the processes underlying autophagosome
formation. Genetic and imaging approaches have
shown that the main protein complexes required for
this process are recruited in a hierarchical manner.
Although there is some discrepancy between the
genetic and temporal hierarchies, these analyses
have placed the Atg1/ULK1 complex most upstream,
followed by the ATG9A system, PI3Kc1, the WIPIs,
the ATG12–ATG5–ATG16L complex and finally the
ATG8-family proteins [99–101]. There is substantial
evidence that even starvation- or rapamycin-induced
autophagy has some degree of selectivity. For
instance, in S. cerevisiae, the vacuolar transport of
the prApe1 cargo is increased upon starvation and
the protein is tethered to the membrane of larger
autophagosomes that also contain other cytoplasmic
material [29]. In addition, Ams1 can be selectively
delivered into the vacuole upon starvation by the
Atg34 cargo receptor [102]. Similarly, rapamycin
treatment promotes Atg39- and Atg40-mediated
autophagic degradation of the endoplasmic
reticulum (ER-phagy) [103]. In mammalian cells
FAM134B, the functional counterpart of Atg40
mediates ER-phagy during nutrient starvation [104].
Furthermore, acetaldehyde dehydrogenase (Ald6),
leucine aminopeptidase III (Lap3), aspartyl amino-
peptidase (Ape4), ubiquitinated proteins, protea-
somes and mature ribosomes are all preferentially
targeted to the vacuole via autophagy during nitrogen
starvation in S. cerevisiae [25,105–109]. In mamma-
lian cells that were stimulated with Wnt ligand and
subsequently starved, the Wnt-signaling effector
Dishevelled (Dvl2) forms ubiquitinated aggregates
that are selectively incorporated into autophago-
somes in a p62-dependent manner [110]. Rapamy-
cin treatment promoted the clearance of aggregated
proteins by autophagy in mammalian cell lines and
Drosophila melanogaster [111]. In Arabidopsis thali-
ana starvation induces the autophagic degradation of
proteasomes [112].
In starvation-induced autophagy, cargo recruit-

ment is likely downstream of isolation membrane
formation and might coincide or follow ATG8-family
protein conjugation (Fig. 2a). Indeed, in starved
mammalian cells, the accumulation of the p62 cargo
receptor to punctate structures followed the accu-
mulation of the other components of the autophagic
machinery and coincided with the recruitment of
LC3B [100]. However, in an earlier study, it was
shown that p62 recruitment to pre-autophagosomal
structures does not absolutely depend on the
interaction with ATG8-family proteins [113]. There-
fore, the actual mechanism of p62 recruitment to the
site of autophagosome biogenesis might be more
complex.
During autophagic events that are independent

of starvation or global mTORC1 inhibition, the
sequence of events is likely different. In fact there is
increasing evidence that the cargo is upstream of
isolation membrane formation. For instance, it was
shown that in S. cerevisiae, in the absence of
starvation, the deletion of the Cvt pathway cargo
prApe1 prevents the recruitment of several core
autophagy proteins to the PAS, including Atg1 and
Atg8. However, during starvation the localization at
the PAS of these factors is not affected by the
deletion of APE1 [114]. These data strongly suggest
that in the absence of starvation, the Cvt complex
has a crucial role in recruiting the autophagic
machinery. Recently, it was shown that under normal
growth conditions, the activation of the Atg1 kinase is
triggered by Atg11 bound to the Atg19 cargo receptor
on the Cvt complex [115]. The amount of active auto-
phosphorylated Atg1 is strongly reduced in ape1Δ
cells, as wells as in cells lacking Atg19 and Atg11, or
in cells expressing an Atg11 mutant incapable of
binding to Atg19. In contrast, the activity of Atg1
under starvation is not affected by the deficiency of
these proteins [115]. Collectively, these results
suggest that the cargo is required for Atg1 kinase
activation, which is one of the most upstream signals
during autophagosome formation. In contrast, upon
starvation the requirement for the prApe1 cargo is
bypassed.
Employing Salmonella typhimurium or transfection

reagent-coated latex beads as models for selective
autophagy in mammalian cells, it was observed that
both these substrates were associated with ubiqui-
tin-positive structures after rupture of the endosomal
membrane [116]. Interestingly, the localization of the
p62 cargo receptor preceded the recruitment of the
machinery for autophagosome formation and in
particular that of LC3B, which was recruited down-
stream of all the other components [116]. Similarly,
core components of the autophagy machinery
including ULK1 and ATG9A have been found to
localize around damaged mitochondria independent
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of ATG8-family proteins conjugation [117]. Recently,
it was reported that cargo receptors recruit the au-
tophagic machinery to damagedmitochondria during
mitophagy [65]. The recruitment of the autophagic
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Strikingly, ULK1, WIPI1 and DFCP1 were not
efficiently recruited to damaged mitochondria in the
cargo receptors KO cells [65]. In addition, TRIM20
and TRIM21 that act as cargo receptors to degrade
components of the inflammasome and the interferon
response recruit the autophagic machinery to their
cargo material [118].
Collectively, these data suggest that during autoph-

agic events that are triggered in the absence of
starvation and that are commonly referred to as
selective autophagy, the presence of cargo material
triggers autophagosome formation (Fig. 2b). Here the
usually bulky cargo materials such as protein aggre-
gates, mitochondria, bacterial pathogens or the
prApe1 complexes serve as template to recruit the
autophagic machinery. The recruitment of this ma-
chinery is at least in part mediated by cargo receptors
and culminates in local lipidation of ATG8-family
proteins. Additionally, ubiquitinated cargos may also
contribute directly to the recruitment of the autophagic
machinery [116].
These membrane-localized ATG8 proteins in turn

are avidly bound by the cargo receptors resulting in
close apposition of the autophagosomal membrane
and the cargo and therefore exclusion of non-cargo
material from its sequestration within autophago-
somes (Fig. 2b). This process may occur only at
permissive sites that are capable of donating mem-
brane to the process such as ER-related structures
in mammalian cells and plants or the PAS in S.
cerevisiae [2,119,120].
In contrast, during starvation isolation membranes

are generated independently of bulky cargomaterial
[29,114] (Fig. 2a). The high local concentration of
lipidated ATG8-family proteins in turn will recruit
cargo receptors and/or cargo receptor–cargo com-
plexes to the isolation membranes [30,56], which
in turn bring with them cargo material such as
ubiquitinated proteins or prApe1. As a result, cargo
material is tethered to the isolation membranes, but
the engulfment of random material would not be
prevented.
Fig. 2. Autophagosome formation during starvation-indu
starvation, autophagosome formation is likely triggered inde
complex inhibition results in activation of the Atg1/ULK1 comple
(PI3Kc1 complex, WIPIs, Atg9 vesicles, Atg12- and Atg8-conjug
The autophagic machinery nucleates an isolation membrane
cargo-bound cargo receptors are recruited to the PAS. (4) At
receptors selectively tether their cargo to the isolation membra
prevented. (5) The isolationmembranematures into a closed au
material. (b) In non-starved cells, selective autophagosomes an
(1) Autophagic substrates display a high local concentration
propeptide). (2) Cargo receptors are recruited to the cargo
concentrated ligands. (3) Scaffold proteins (i.e., Atg11) and th
cargo site via interactions with cargo receptors and/or the car
drives the nucleation of an isolation membrane in proximity
a complete autophagosome is formed. High-avidity interac
Atg8-family proteinsmediate close apposition of themembrane
material.
Given advances in the field, it is becoming
increasingly confusing to group autophagic events
into selective and starvation-induced autophagy, as
some degree of selectivity may be a universal
property of autophagosome formation. It may there-
fore be more appropriate to classify autophagic
events into cargo-independent and cargo-induced
autophagosome formation (Fig. 2).

Future perspectives

The model of cargo-induced autophagosome
formation could help to explain how isolation
membranes are generated in non-starved cells and
how they can be efficiently tethered to cargos.
However, several links are still missing in order to
have a more thorough understanding of the whole
process. First, the hypothesis of high-avidity inter-
actions between cargo receptors and clustered
target molecules should be tested for other cargo
receptor proteins. Second, a more detailed molecu-
lar understanding of the interaction networks be-
tween cargo receptors, ubiquitin, the autophagic
machinery and membranes will be required.
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